2021-09-24 13:23:49 +02:00
|
|
|
/*************************************************************************/
|
|
|
|
/* easing_equations.h */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/*************************************************************************/
|
2022-01-03 21:27:34 +01:00
|
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
2021-09-24 13:23:49 +02:00
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/*************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Derived from Robert Penner's easing equations: http://robertpenner.com/easing/
|
|
|
|
*
|
|
|
|
* Copyright (c) 2001 Robert Penner
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
|
|
* copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef EASING_EQUATIONS_H
|
|
|
|
#define EASING_EQUATIONS_H
|
|
|
|
|
|
|
|
namespace linear {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * t / d + b;
|
|
|
|
}
|
|
|
|
}; // namespace linear
|
|
|
|
|
|
|
|
namespace sine {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return -c * cos(t / d * (Math_PI / 2)) + c + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * sin(t / d * (Math_PI / 2)) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return -c / 2 * (cos(Math_PI * t / d) - 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace sine
|
|
|
|
|
|
|
|
namespace quint {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * pow(t / d, 5) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * (pow(t / d - 1, 5) + 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t = t / d * 2;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * pow(t, 5) + b;
|
|
|
|
}
|
|
|
|
return c / 2 * (pow(t - 2, 5) + 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace quint
|
|
|
|
|
|
|
|
namespace quart {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * pow(t / d, 4) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return -c * (pow(t / d - 1, 4) - 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t = t / d * 2;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * pow(t, 4) + b;
|
|
|
|
}
|
|
|
|
return -c / 2 * (pow(t - 2, 4) - 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace quart
|
|
|
|
|
|
|
|
namespace quad {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c * pow(t / d, 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d;
|
|
|
|
return -c * t * (t - 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t = t / d * 2;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * pow(t, 2) + b;
|
|
|
|
}
|
|
|
|
return -c / 2 * ((t - 1) * (t - 3) - 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace quad
|
|
|
|
|
|
|
|
namespace expo {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == 0) {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == d) {
|
|
|
|
return b + c;
|
|
|
|
}
|
|
|
|
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == 0) {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t == d) {
|
|
|
|
return b + c;
|
|
|
|
}
|
|
|
|
|
|
|
|
t = t / d * 2;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005;
|
|
|
|
}
|
|
|
|
return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace expo
|
|
|
|
|
|
|
|
namespace elastic {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == 0) {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t /= d;
|
|
|
|
if (t == 1) {
|
|
|
|
return b + c;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 1;
|
|
|
|
float p = d * 0.3f;
|
|
|
|
float a = c * pow(2, 10 * t);
|
|
|
|
float s = p / 4;
|
|
|
|
|
|
|
|
return -(a * sin((t * d - s) * (2 * Math_PI) / p)) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == 0) {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t /= d;
|
|
|
|
if (t == 1) {
|
|
|
|
return b + c;
|
|
|
|
}
|
|
|
|
|
|
|
|
float p = d * 0.3f;
|
|
|
|
float s = p / 4;
|
|
|
|
|
|
|
|
return (c * pow(2, -10 * t) * sin((t * d - s) * (2 * Math_PI) / p) + c + b);
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t == 0) {
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((t /= d / 2) == 2) {
|
|
|
|
return b + c;
|
|
|
|
}
|
|
|
|
|
|
|
|
float p = d * (0.3f * 1.5f);
|
|
|
|
float a = c;
|
|
|
|
float s = p / 4;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
t -= 1;
|
|
|
|
a *= pow(2, 10 * t);
|
|
|
|
return -0.5f * (a * sin((t * d - s) * (2 * Math_PI) / p)) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 1;
|
|
|
|
a *= pow(2, -10 * t);
|
|
|
|
return a * sin((t * d - s) * (2 * Math_PI) / p) * 0.5f + c + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace elastic
|
|
|
|
|
|
|
|
namespace cubic {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d;
|
|
|
|
return c * t * t * t + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t = t / d - 1;
|
|
|
|
return c * (t * t * t + 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d / 2;
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * t * t * t + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 2;
|
|
|
|
return c / 2 * (t * t * t + 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace cubic
|
|
|
|
|
|
|
|
namespace circ {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d;
|
|
|
|
return -c * (sqrt(1 - t * t) - 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t = t / d - 1;
|
|
|
|
return c * sqrt(1 - t * t) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d / 2;
|
|
|
|
if (t < 1) {
|
|
|
|
return -c / 2 * (sqrt(1 - t * t) - 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 2;
|
|
|
|
return c / 2 * (sqrt(1 - t * t) + 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace circ
|
|
|
|
|
|
|
|
namespace bounce {
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
t /= d;
|
|
|
|
|
|
|
|
if (t < (1 / 2.75f)) {
|
|
|
|
return c * (7.5625f * t * t) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t < (2 / 2.75f)) {
|
|
|
|
t -= 1.5f / 2.75f;
|
|
|
|
return c * (7.5625f * t * t + 0.75f) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t < (2.5 / 2.75)) {
|
|
|
|
t -= 2.25f / 2.75f;
|
|
|
|
return c * (7.5625f * t * t + 0.9375f) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 2.625f / 2.75f;
|
|
|
|
return c * (7.5625f * t * t + 0.984375f) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
return c - out(d - t, 0, c, d) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return in(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return out(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace bounce
|
|
|
|
|
|
|
|
namespace back {
|
|
|
|
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
float s = 1.70158f;
|
|
|
|
t /= d;
|
|
|
|
|
|
|
|
return c * t * t * ((s + 1) * t - s) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
float s = 1.70158f;
|
|
|
|
t = t / d - 1;
|
|
|
|
|
|
|
|
return c * (t * t * ((s + 1) * t + s) + 1) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
float s = 1.70158f * 1.525f;
|
|
|
|
t /= d / 2;
|
|
|
|
|
|
|
|
if (t < 1) {
|
|
|
|
return c / 2 * (t * t * ((s + 1) * t - s)) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 2;
|
|
|
|
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
|
|
|
if (t < d / 2) {
|
|
|
|
return out(t * 2, b, c / 2, d);
|
|
|
|
}
|
|
|
|
return in(t * 2 - d, b + c / 2, c / 2, d);
|
|
|
|
}
|
|
|
|
}; // namespace back
|
|
|
|
|
|
|
|
#endif
|