virtualx-engine/thirdparty/openssl/crypto/whrlpool/wp_dgst.c

258 lines
8.4 KiB
C
Raw Normal View History

/**
* The Whirlpool hashing function.
*
* <P>
* <b>References</b>
*
* <P>
* The Whirlpool algorithm was developed by
* <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
* <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
*
* See
* P.S.L.M. Barreto, V. Rijmen,
* ``The Whirlpool hashing function,''
* NESSIE submission, 2000 (tweaked version, 2001),
* <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
*
* Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
* Vincent Rijmen. Lookup "reference implementations" on
* <http://planeta.terra.com.br/informatica/paulobarreto/>
*
* =============================================================================
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* OpenSSL-specific implementation notes.
*
* WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect
* number of *bytes* as input length argument. Bit-oriented routine
* as specified by authors is called WHIRLPOOL_BitUpdate[!] and
* does not have one-stroke counterpart.
*
* WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially
* to serve WHIRLPOOL_Update. This is done for performance.
*
* Unlike authors' reference implementation, block processing
* routine whirlpool_block is designed to operate on multi-block
* input. This is done for perfomance.
*/
#include "wp_locl.h"
#include <openssl/crypto.h>
#include <string.h>
fips_md_init(WHIRLPOOL)
2016-04-10 15:18:59 +02:00
{
memset(c, 0, sizeof(*c));
return (1);
}
2016-04-10 15:18:59 +02:00
int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes)
{
/*
* Well, largest suitable chunk size actually is
* (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not
* to care about excessive calls to WHIRLPOOL_BitUpdate...
*/
size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4);
const unsigned char *inp = _inp;
2016-04-10 15:18:59 +02:00
while (bytes >= chunk) {
WHIRLPOOL_BitUpdate(c, inp, chunk * 8);
bytes -= chunk;
inp += chunk;
}
if (bytes)
WHIRLPOOL_BitUpdate(c, inp, bytes * 8);
2016-04-10 15:18:59 +02:00
return (1);
}
2016-04-10 15:18:59 +02:00
void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits)
{
size_t n;
unsigned int bitoff = c->bitoff,
bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7;
const unsigned char *inp = _inp;
2016-04-10 15:18:59 +02:00
/*
* This 256-bit increment procedure relies on the size_t being natural
* size of CPU register, so that we don't have to mask the value in order
* to detect overflows.
*/
c->bitlen[0] += bits;
if (c->bitlen[0] < bits) { /* overflow */
n = 1;
do {
c->bitlen[n]++;
} while (c->bitlen[n] == 0
&& ++n < (WHIRLPOOL_COUNTER / sizeof(size_t)));
}
#ifndef OPENSSL_SMALL_FOOTPRINT
2016-04-10 15:18:59 +02:00
reconsider:
if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */
while (bits) {
if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) {
whirlpool_block(c, inp, n);
inp += n * WHIRLPOOL_BBLOCK / 8;
bits %= WHIRLPOOL_BBLOCK;
} else {
unsigned int byteoff = bitoff / 8;
2016-04-10 15:18:59 +02:00
bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */
if (bits >= bitrem) {
bits -= bitrem;
bitrem /= 8;
memcpy(c->data + byteoff, inp, bitrem);
inp += bitrem;
whirlpool_block(c, c->data, 1);
bitoff = 0;
} else {
memcpy(c->data + byteoff, inp, bits / 8);
bitoff += (unsigned int)bits;
bits = 0;
}
c->bitoff = bitoff;
}
}
} else /* bit-oriented loop */
#endif
2016-04-10 15:18:59 +02:00
{
/*-
inp
|
+-------+-------+-------
|||||||||||||||||||||
+-------+-------+-------
+-------+-------+-------+-------+-------
|||||||||||||| c->data
+-------+-------+-------+-------+-------
|
c->bitoff/8
*/
while (bits) {
unsigned int byteoff = bitoff / 8;
unsigned char b;
#ifndef OPENSSL_SMALL_FOOTPRINT
2016-04-10 15:18:59 +02:00
if (bitrem == inpgap) {
c->data[byteoff++] |= inp[0] & (0xff >> inpgap);
inpgap = 8 - inpgap;
bitoff += inpgap;
bitrem = 0; /* bitoff%8 */
bits -= inpgap;
inpgap = 0; /* bits%8 */
inp++;
if (bitoff == WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
bitoff = 0;
}
c->bitoff = bitoff;
goto reconsider;
} else
#endif
2016-04-10 15:18:59 +02:00
if (bits >= 8) {
b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap)));
b &= 0xff;
if (bitrem)
c->data[byteoff++] |= b >> bitrem;
else
c->data[byteoff++] = b;
bitoff += 8;
bits -= 8;
inp++;
if (bitoff >= WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
byteoff = 0;
bitoff %= WHIRLPOOL_BBLOCK;
}
if (bitrem)
c->data[byteoff] = b << (8 - bitrem);
} else { /* remaining less than 8 bits */
b = (inp[0] << inpgap) & 0xff;
if (bitrem)
c->data[byteoff++] |= b >> bitrem;
else
c->data[byteoff++] = b;
bitoff += (unsigned int)bits;
if (bitoff == WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
byteoff = 0;
bitoff %= WHIRLPOOL_BBLOCK;
}
if (bitrem)
c->data[byteoff] = b << (8 - bitrem);
bits = 0;
}
c->bitoff = bitoff;
}
}
}
2016-04-10 15:18:59 +02:00
int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c)
{
unsigned int bitoff = c->bitoff, byteoff = bitoff / 8;
size_t i, j, v;
unsigned char *p;
2016-04-10 15:18:59 +02:00
bitoff %= 8;
if (bitoff)
c->data[byteoff] |= 0x80 >> bitoff;
else
c->data[byteoff] = 0x80;
byteoff++;
2016-04-10 15:18:59 +02:00
/* pad with zeros */
if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) {
if (byteoff < WHIRLPOOL_BBLOCK / 8)
memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff);
whirlpool_block(c, c->data, 1);
byteoff = 0;
}
if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER))
memset(&c->data[byteoff], 0,
(WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff);
/* smash 256-bit c->bitlen in big-endian order */
p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */
for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++)
for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8)
*p-- = (unsigned char)(v & 0xff);
2016-04-10 15:18:59 +02:00
whirlpool_block(c, c->data, 1);
2016-04-10 15:18:59 +02:00
if (md) {
memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH);
memset(c, 0, sizeof(*c));
return (1);
}
return (0);
}
2016-04-10 15:18:59 +02:00
unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md)
{
WHIRLPOOL_CTX ctx;
static unsigned char m[WHIRLPOOL_DIGEST_LENGTH];
2016-04-10 15:18:59 +02:00
if (md == NULL)
md = m;
WHIRLPOOL_Init(&ctx);
WHIRLPOOL_Update(&ctx, inp, bytes);
WHIRLPOOL_Final(md, &ctx);
return (md);
}