845 lines
19 KiB
C++
845 lines
19 KiB
C++
|
// basisu_resampler.cpp
|
||
|
// Copyright (C) 2019 Binomial LLC. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
#include "basisu_resampler.h"
|
||
|
#include "basisu_resampler_filters.h"
|
||
|
|
||
|
#define RESAMPLER_DEBUG 0
|
||
|
|
||
|
namespace basisu
|
||
|
{
|
||
|
static inline int resampler_range_check(int v, int h)
|
||
|
{
|
||
|
BASISU_NOTE_UNUSED(h);
|
||
|
assert((v >= 0) && (v < h));
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
// Float to int cast with truncation.
|
||
|
static inline int cast_to_int(Resample_Real i)
|
||
|
{
|
||
|
return (int)i;
|
||
|
}
|
||
|
|
||
|
// Ensure that the contributing source sample is within bounds. If not, reflect, clamp, or wrap.
|
||
|
int Resampler::reflect(const int j, const int src_x, const Boundary_Op boundary_op)
|
||
|
{
|
||
|
int n;
|
||
|
|
||
|
if (j < 0)
|
||
|
{
|
||
|
if (boundary_op == BOUNDARY_REFLECT)
|
||
|
{
|
||
|
n = -j;
|
||
|
|
||
|
if (n >= src_x)
|
||
|
n = src_x - 1;
|
||
|
}
|
||
|
else if (boundary_op == BOUNDARY_WRAP)
|
||
|
n = posmod(j, src_x);
|
||
|
else
|
||
|
n = 0;
|
||
|
}
|
||
|
else if (j >= src_x)
|
||
|
{
|
||
|
if (boundary_op == BOUNDARY_REFLECT)
|
||
|
{
|
||
|
n = (src_x - j) + (src_x - 1);
|
||
|
|
||
|
if (n < 0)
|
||
|
n = 0;
|
||
|
}
|
||
|
else if (boundary_op == BOUNDARY_WRAP)
|
||
|
n = posmod(j, src_x);
|
||
|
else
|
||
|
n = src_x - 1;
|
||
|
}
|
||
|
else
|
||
|
n = j;
|
||
|
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
// The make_clist() method generates, for all destination samples,
|
||
|
// the list of all source samples with non-zero weighted contributions.
|
||
|
Resampler::Contrib_List * Resampler::make_clist(
|
||
|
int src_x, int dst_x, Boundary_Op boundary_op,
|
||
|
Resample_Real(*Pfilter)(Resample_Real),
|
||
|
Resample_Real filter_support,
|
||
|
Resample_Real filter_scale,
|
||
|
Resample_Real src_ofs)
|
||
|
{
|
||
|
struct Contrib_Bounds
|
||
|
{
|
||
|
// The center of the range in DISCRETE coordinates (pixel center = 0.0f).
|
||
|
Resample_Real center;
|
||
|
int left, right;
|
||
|
};
|
||
|
|
||
|
int i, j, k, n, left, right;
|
||
|
Resample_Real total_weight;
|
||
|
Resample_Real xscale, center, half_width, weight;
|
||
|
Contrib_List* Pcontrib;
|
||
|
Contrib* Pcpool;
|
||
|
Contrib* Pcpool_next;
|
||
|
Contrib_Bounds* Pcontrib_bounds;
|
||
|
|
||
|
if ((Pcontrib = (Contrib_List*)calloc(dst_x, sizeof(Contrib_List))) == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
Pcontrib_bounds = (Contrib_Bounds*)calloc(dst_x, sizeof(Contrib_Bounds));
|
||
|
if (!Pcontrib_bounds)
|
||
|
{
|
||
|
free(Pcontrib);
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
const Resample_Real oo_filter_scale = 1.0f / filter_scale;
|
||
|
|
||
|
const Resample_Real NUDGE = 0.5f;
|
||
|
xscale = dst_x / (Resample_Real)src_x;
|
||
|
|
||
|
if (xscale < 1.0f)
|
||
|
{
|
||
|
int total;
|
||
|
(void)total;
|
||
|
|
||
|
// Handle case when there are fewer destination samples than source samples (downsampling/minification).
|
||
|
|
||
|
// stretched half width of filter
|
||
|
half_width = (filter_support / xscale) * filter_scale;
|
||
|
|
||
|
// Find the range of source sample(s) that will contribute to each destination sample.
|
||
|
|
||
|
for (i = 0, n = 0; i < dst_x; i++)
|
||
|
{
|
||
|
// Convert from discrete to continuous coordinates, scale, then convert back to discrete.
|
||
|
center = ((Resample_Real)i + NUDGE) / xscale;
|
||
|
center -= NUDGE;
|
||
|
center += src_ofs;
|
||
|
|
||
|
left = cast_to_int((Resample_Real)floor(center - half_width));
|
||
|
right = cast_to_int((Resample_Real)ceil(center + half_width));
|
||
|
|
||
|
Pcontrib_bounds[i].center = center;
|
||
|
Pcontrib_bounds[i].left = left;
|
||
|
Pcontrib_bounds[i].right = right;
|
||
|
|
||
|
n += (right - left + 1);
|
||
|
}
|
||
|
|
||
|
// Allocate memory for contributors.
|
||
|
|
||
|
if ((n == 0) || ((Pcpool = (Contrib*)calloc(n, sizeof(Contrib))) == NULL))
|
||
|
{
|
||
|
free(Pcontrib);
|
||
|
free(Pcontrib_bounds);
|
||
|
return NULL;
|
||
|
}
|
||
|
total = n;
|
||
|
|
||
|
Pcpool_next = Pcpool;
|
||
|
|
||
|
// Create the list of source samples which contribute to each destination sample.
|
||
|
|
||
|
for (i = 0; i < dst_x; i++)
|
||
|
{
|
||
|
int max_k = -1;
|
||
|
Resample_Real max_w = -1e+20f;
|
||
|
|
||
|
center = Pcontrib_bounds[i].center;
|
||
|
left = Pcontrib_bounds[i].left;
|
||
|
right = Pcontrib_bounds[i].right;
|
||
|
|
||
|
Pcontrib[i].n = 0;
|
||
|
Pcontrib[i].p = Pcpool_next;
|
||
|
Pcpool_next += (right - left + 1);
|
||
|
assert((Pcpool_next - Pcpool) <= total);
|
||
|
|
||
|
total_weight = 0;
|
||
|
|
||
|
for (j = left; j <= right; j++)
|
||
|
total_weight += (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale);
|
||
|
const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight);
|
||
|
|
||
|
total_weight = 0;
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("%i: ", i);
|
||
|
#endif
|
||
|
|
||
|
for (j = left; j <= right; j++)
|
||
|
{
|
||
|
weight = (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale) * norm;
|
||
|
if (weight == 0.0f)
|
||
|
continue;
|
||
|
|
||
|
n = reflect(j, src_x, boundary_op);
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("%i(%f), ", n, weight);
|
||
|
#endif
|
||
|
|
||
|
// Increment the number of source samples which contribute to the current destination sample.
|
||
|
|
||
|
k = Pcontrib[i].n++;
|
||
|
|
||
|
Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */
|
||
|
Pcontrib[i].p[k].weight = weight; /* store src sample weight */
|
||
|
|
||
|
total_weight += weight; /* total weight of all contributors */
|
||
|
|
||
|
if (weight > max_w)
|
||
|
{
|
||
|
max_w = weight;
|
||
|
max_k = k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("\n\n");
|
||
|
#endif
|
||
|
|
||
|
//assert(Pcontrib[i].n);
|
||
|
//assert(max_k != -1);
|
||
|
if ((max_k == -1) || (Pcontrib[i].n == 0))
|
||
|
{
|
||
|
free(Pcpool);
|
||
|
free(Pcontrib);
|
||
|
free(Pcontrib_bounds);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (total_weight != 1.0f)
|
||
|
Pcontrib[i].p[max_k].weight += 1.0f - total_weight;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Handle case when there are more destination samples than source samples (upsampling).
|
||
|
|
||
|
half_width = filter_support * filter_scale;
|
||
|
|
||
|
// Find the source sample(s) that contribute to each destination sample.
|
||
|
|
||
|
for (i = 0, n = 0; i < dst_x; i++)
|
||
|
{
|
||
|
// Convert from discrete to continuous coordinates, scale, then convert back to discrete.
|
||
|
center = ((Resample_Real)i + NUDGE) / xscale;
|
||
|
center -= NUDGE;
|
||
|
center += src_ofs;
|
||
|
|
||
|
left = cast_to_int((Resample_Real)floor(center - half_width));
|
||
|
right = cast_to_int((Resample_Real)ceil(center + half_width));
|
||
|
|
||
|
Pcontrib_bounds[i].center = center;
|
||
|
Pcontrib_bounds[i].left = left;
|
||
|
Pcontrib_bounds[i].right = right;
|
||
|
|
||
|
n += (right - left + 1);
|
||
|
}
|
||
|
|
||
|
/* Allocate memory for contributors. */
|
||
|
|
||
|
int total = n;
|
||
|
if ((total == 0) || ((Pcpool = (Contrib*)calloc(total, sizeof(Contrib))) == NULL))
|
||
|
{
|
||
|
free(Pcontrib);
|
||
|
free(Pcontrib_bounds);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
Pcpool_next = Pcpool;
|
||
|
|
||
|
// Create the list of source samples which contribute to each destination sample.
|
||
|
|
||
|
for (i = 0; i < dst_x; i++)
|
||
|
{
|
||
|
int max_k = -1;
|
||
|
Resample_Real max_w = -1e+20f;
|
||
|
|
||
|
center = Pcontrib_bounds[i].center;
|
||
|
left = Pcontrib_bounds[i].left;
|
||
|
right = Pcontrib_bounds[i].right;
|
||
|
|
||
|
Pcontrib[i].n = 0;
|
||
|
Pcontrib[i].p = Pcpool_next;
|
||
|
Pcpool_next += (right - left + 1);
|
||
|
assert((Pcpool_next - Pcpool) <= total);
|
||
|
|
||
|
total_weight = 0;
|
||
|
for (j = left; j <= right; j++)
|
||
|
total_weight += (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale);
|
||
|
|
||
|
const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight);
|
||
|
|
||
|
total_weight = 0;
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("%i: ", i);
|
||
|
#endif
|
||
|
|
||
|
for (j = left; j <= right; j++)
|
||
|
{
|
||
|
weight = (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale) * norm;
|
||
|
if (weight == 0.0f)
|
||
|
continue;
|
||
|
|
||
|
n = reflect(j, src_x, boundary_op);
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("%i(%f), ", n, weight);
|
||
|
#endif
|
||
|
|
||
|
// Increment the number of source samples which contribute to the current destination sample.
|
||
|
|
||
|
k = Pcontrib[i].n++;
|
||
|
|
||
|
Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */
|
||
|
Pcontrib[i].p[k].weight = weight; /* store src sample weight */
|
||
|
|
||
|
total_weight += weight; /* total weight of all contributors */
|
||
|
|
||
|
if (weight > max_w)
|
||
|
{
|
||
|
max_w = weight;
|
||
|
max_k = k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("\n\n");
|
||
|
#endif
|
||
|
|
||
|
//assert(Pcontrib[i].n);
|
||
|
//assert(max_k != -1);
|
||
|
|
||
|
if ((max_k == -1) || (Pcontrib[i].n == 0))
|
||
|
{
|
||
|
free(Pcpool);
|
||
|
free(Pcontrib);
|
||
|
free(Pcontrib_bounds);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (total_weight != 1.0f)
|
||
|
Pcontrib[i].p[max_k].weight += 1.0f - total_weight;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if RESAMPLER_DEBUG
|
||
|
printf("*******\n");
|
||
|
#endif
|
||
|
|
||
|
free(Pcontrib_bounds);
|
||
|
|
||
|
return Pcontrib;
|
||
|
}
|
||
|
|
||
|
void Resampler::resample_x(Sample * Pdst, const Sample * Psrc)
|
||
|
{
|
||
|
assert(Pdst);
|
||
|
assert(Psrc);
|
||
|
|
||
|
int i, j;
|
||
|
Sample total;
|
||
|
Contrib_List* Pclist = m_Pclist_x;
|
||
|
Contrib* p;
|
||
|
|
||
|
for (i = m_resample_dst_x; i > 0; i--, Pclist++)
|
||
|
{
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
total_ops += Pclist->n;
|
||
|
#endif
|
||
|
|
||
|
for (j = Pclist->n, p = Pclist->p, total = 0; j > 0; j--, p++)
|
||
|
total += Psrc[p->pixel] * p->weight;
|
||
|
|
||
|
*Pdst++ = total;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Resampler::scale_y_mov(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
total_ops += dst_x;
|
||
|
#endif
|
||
|
|
||
|
// Not += because temp buf wasn't cleared.
|
||
|
for (i = dst_x; i > 0; i--)
|
||
|
* Ptmp++ = *Psrc++ * weight;
|
||
|
}
|
||
|
|
||
|
void Resampler::scale_y_add(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x)
|
||
|
{
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
total_ops += dst_x;
|
||
|
#endif
|
||
|
|
||
|
for (int i = dst_x; i > 0; i--)
|
||
|
(*Ptmp++) += *Psrc++ * weight;
|
||
|
}
|
||
|
|
||
|
void Resampler::clamp(Sample * Pdst, int n)
|
||
|
{
|
||
|
while (n > 0)
|
||
|
{
|
||
|
Sample x = *Pdst;
|
||
|
*Pdst++ = clamp_sample(x);
|
||
|
n--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Resampler::resample_y(Sample * Pdst)
|
||
|
{
|
||
|
int i, j;
|
||
|
Sample* Psrc;
|
||
|
Contrib_List* Pclist = &m_Pclist_y[m_cur_dst_y];
|
||
|
|
||
|
Sample* Ptmp = m_delay_x_resample ? m_Ptmp_buf : Pdst;
|
||
|
assert(Ptmp);
|
||
|
|
||
|
/* Process each contributor. */
|
||
|
|
||
|
for (i = 0; i < Pclist->n; i++)
|
||
|
{
|
||
|
// locate the contributor's location in the scan buffer -- the contributor must always be found!
|
||
|
for (j = 0; j < MAX_SCAN_BUF_SIZE; j++)
|
||
|
if (m_Pscan_buf->scan_buf_y[j] == Pclist->p[i].pixel)
|
||
|
break;
|
||
|
|
||
|
assert(j < MAX_SCAN_BUF_SIZE);
|
||
|
|
||
|
Psrc = m_Pscan_buf->scan_buf_l[j];
|
||
|
|
||
|
if (!i)
|
||
|
scale_y_mov(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x);
|
||
|
else
|
||
|
scale_y_add(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x);
|
||
|
|
||
|
/* If this source line doesn't contribute to any
|
||
|
* more destination lines then mark the scanline buffer slot
|
||
|
* which holds this source line as free.
|
||
|
* (The max. number of slots used depends on the Y
|
||
|
* axis sampling factor and the scaled filter width.)
|
||
|
*/
|
||
|
|
||
|
if (--m_Psrc_y_count[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] == 0)
|
||
|
{
|
||
|
m_Psrc_y_flag[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] = false;
|
||
|
m_Pscan_buf->scan_buf_y[j] = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now generate the destination line */
|
||
|
|
||
|
if (m_delay_x_resample) // Was X resampling delayed until after Y resampling?
|
||
|
{
|
||
|
assert(Pdst != Ptmp);
|
||
|
resample_x(Pdst, Ptmp);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert(Pdst == Ptmp);
|
||
|
}
|
||
|
|
||
|
if (m_lo < m_hi)
|
||
|
clamp(Pdst, m_resample_dst_x);
|
||
|
}
|
||
|
|
||
|
bool Resampler::put_line(const Sample * Psrc)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (m_cur_src_y >= m_resample_src_y)
|
||
|
return false;
|
||
|
|
||
|
/* Does this source line contribute
|
||
|
* to any destination line? if not,
|
||
|
* exit now.
|
||
|
*/
|
||
|
|
||
|
if (!m_Psrc_y_count[resampler_range_check(m_cur_src_y, m_resample_src_y)])
|
||
|
{
|
||
|
m_cur_src_y++;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Find an empty slot in the scanline buffer. (FIXME: Perf. is terrible here with extreme scaling ratios.) */
|
||
|
|
||
|
for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
|
||
|
if (m_Pscan_buf->scan_buf_y[i] == -1)
|
||
|
break;
|
||
|
|
||
|
/* If the buffer is full, exit with an error. */
|
||
|
|
||
|
if (i == MAX_SCAN_BUF_SIZE)
|
||
|
{
|
||
|
m_status = STATUS_SCAN_BUFFER_FULL;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
m_Psrc_y_flag[resampler_range_check(m_cur_src_y, m_resample_src_y)] = true;
|
||
|
m_Pscan_buf->scan_buf_y[i] = m_cur_src_y;
|
||
|
|
||
|
/* Does this slot have any memory allocated to it? */
|
||
|
|
||
|
if (!m_Pscan_buf->scan_buf_l[i])
|
||
|
{
|
||
|
if ((m_Pscan_buf->scan_buf_l[i] = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Resampling on the X axis first?
|
||
|
if (m_delay_x_resample)
|
||
|
{
|
||
|
assert(m_intermediate_x == m_resample_src_x);
|
||
|
|
||
|
// Y-X resampling order
|
||
|
memcpy(m_Pscan_buf->scan_buf_l[i], Psrc, m_intermediate_x * sizeof(Sample));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert(m_intermediate_x == m_resample_dst_x);
|
||
|
|
||
|
// X-Y resampling order
|
||
|
resample_x(m_Pscan_buf->scan_buf_l[i], Psrc);
|
||
|
}
|
||
|
|
||
|
m_cur_src_y++;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
const Resampler::Sample* Resampler::get_line()
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/* If all the destination lines have been
|
||
|
* generated, then always return NULL.
|
||
|
*/
|
||
|
|
||
|
if (m_cur_dst_y == m_resample_dst_y)
|
||
|
return NULL;
|
||
|
|
||
|
/* Check to see if all the required
|
||
|
* contributors are present, if not,
|
||
|
* return NULL.
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < m_Pclist_y[m_cur_dst_y].n; i++)
|
||
|
if (!m_Psrc_y_flag[resampler_range_check(m_Pclist_y[m_cur_dst_y].p[i].pixel, m_resample_src_y)])
|
||
|
return NULL;
|
||
|
|
||
|
resample_y(m_Pdst_buf);
|
||
|
|
||
|
m_cur_dst_y++;
|
||
|
|
||
|
return m_Pdst_buf;
|
||
|
}
|
||
|
|
||
|
Resampler::~Resampler()
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
printf("actual ops: %i\n", total_ops);
|
||
|
#endif
|
||
|
|
||
|
free(m_Pdst_buf);
|
||
|
m_Pdst_buf = NULL;
|
||
|
|
||
|
if (m_Ptmp_buf)
|
||
|
{
|
||
|
free(m_Ptmp_buf);
|
||
|
m_Ptmp_buf = NULL;
|
||
|
}
|
||
|
|
||
|
/* Don't deallocate a contibutor list
|
||
|
* if the user passed us one of their own.
|
||
|
*/
|
||
|
|
||
|
if ((m_Pclist_x) && (!m_clist_x_forced))
|
||
|
{
|
||
|
free(m_Pclist_x->p);
|
||
|
free(m_Pclist_x);
|
||
|
m_Pclist_x = NULL;
|
||
|
}
|
||
|
|
||
|
if ((m_Pclist_y) && (!m_clist_y_forced))
|
||
|
{
|
||
|
free(m_Pclist_y->p);
|
||
|
free(m_Pclist_y);
|
||
|
m_Pclist_y = NULL;
|
||
|
}
|
||
|
|
||
|
free(m_Psrc_y_count);
|
||
|
m_Psrc_y_count = NULL;
|
||
|
|
||
|
free(m_Psrc_y_flag);
|
||
|
m_Psrc_y_flag = NULL;
|
||
|
|
||
|
if (m_Pscan_buf)
|
||
|
{
|
||
|
for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
|
||
|
free(m_Pscan_buf->scan_buf_l[i]);
|
||
|
|
||
|
free(m_Pscan_buf);
|
||
|
m_Pscan_buf = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Resampler::restart()
|
||
|
{
|
||
|
if (STATUS_OKAY != m_status)
|
||
|
return;
|
||
|
|
||
|
m_cur_src_y = m_cur_dst_y = 0;
|
||
|
|
||
|
int i, j;
|
||
|
for (i = 0; i < m_resample_src_y; i++)
|
||
|
{
|
||
|
m_Psrc_y_count[i] = 0;
|
||
|
m_Psrc_y_flag[i] = false;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < m_resample_dst_y; i++)
|
||
|
{
|
||
|
for (j = 0; j < m_Pclist_y[i].n; j++)
|
||
|
m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
|
||
|
{
|
||
|
m_Pscan_buf->scan_buf_y[i] = -1;
|
||
|
|
||
|
free(m_Pscan_buf->scan_buf_l[i]);
|
||
|
m_Pscan_buf->scan_buf_l[i] = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Resampler::Resampler(int src_x, int src_y,
|
||
|
int dst_x, int dst_y,
|
||
|
Boundary_Op boundary_op,
|
||
|
Resample_Real sample_low, Resample_Real sample_high,
|
||
|
const char* Pfilter_name,
|
||
|
Contrib_List * Pclist_x,
|
||
|
Contrib_List * Pclist_y,
|
||
|
Resample_Real filter_x_scale,
|
||
|
Resample_Real filter_y_scale,
|
||
|
Resample_Real src_x_ofs,
|
||
|
Resample_Real src_y_ofs)
|
||
|
{
|
||
|
int i, j;
|
||
|
Resample_Real support, (*func)(Resample_Real);
|
||
|
|
||
|
assert(src_x > 0);
|
||
|
assert(src_y > 0);
|
||
|
assert(dst_x > 0);
|
||
|
assert(dst_y > 0);
|
||
|
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
total_ops = 0;
|
||
|
#endif
|
||
|
|
||
|
m_lo = sample_low;
|
||
|
m_hi = sample_high;
|
||
|
|
||
|
m_delay_x_resample = false;
|
||
|
m_intermediate_x = 0;
|
||
|
m_Pdst_buf = NULL;
|
||
|
m_Ptmp_buf = NULL;
|
||
|
m_clist_x_forced = false;
|
||
|
m_Pclist_x = NULL;
|
||
|
m_clist_y_forced = false;
|
||
|
m_Pclist_y = NULL;
|
||
|
m_Psrc_y_count = NULL;
|
||
|
m_Psrc_y_flag = NULL;
|
||
|
m_Pscan_buf = NULL;
|
||
|
m_status = STATUS_OKAY;
|
||
|
|
||
|
m_resample_src_x = src_x;
|
||
|
m_resample_src_y = src_y;
|
||
|
m_resample_dst_x = dst_x;
|
||
|
m_resample_dst_y = dst_y;
|
||
|
|
||
|
m_boundary_op = boundary_op;
|
||
|
|
||
|
if ((m_Pdst_buf = (Sample*)malloc(m_resample_dst_x * sizeof(Sample))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Find the specified filter.
|
||
|
|
||
|
if (Pfilter_name == NULL)
|
||
|
Pfilter_name = BASISU_RESAMPLER_DEFAULT_FILTER;
|
||
|
|
||
|
for (i = 0; i < g_num_resample_filters; i++)
|
||
|
if (strcmp(Pfilter_name, g_resample_filters[i].name) == 0)
|
||
|
break;
|
||
|
|
||
|
if (i == g_num_resample_filters)
|
||
|
{
|
||
|
m_status = STATUS_BAD_FILTER_NAME;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
func = g_resample_filters[i].func;
|
||
|
support = g_resample_filters[i].support;
|
||
|
|
||
|
/* Create contributor lists, unless the user supplied custom lists. */
|
||
|
|
||
|
if (!Pclist_x)
|
||
|
{
|
||
|
m_Pclist_x = make_clist(m_resample_src_x, m_resample_dst_x, m_boundary_op, func, support, filter_x_scale, src_x_ofs);
|
||
|
if (!m_Pclist_x)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_Pclist_x = Pclist_x;
|
||
|
m_clist_x_forced = true;
|
||
|
}
|
||
|
|
||
|
if (!Pclist_y)
|
||
|
{
|
||
|
m_Pclist_y = make_clist(m_resample_src_y, m_resample_dst_y, m_boundary_op, func, support, filter_y_scale, src_y_ofs);
|
||
|
if (!m_Pclist_y)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_Pclist_y = Pclist_y;
|
||
|
m_clist_y_forced = true;
|
||
|
}
|
||
|
|
||
|
if ((m_Psrc_y_count = (int*)calloc(m_resample_src_y, sizeof(int))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if ((m_Psrc_y_flag = (unsigned char*)calloc(m_resample_src_y, sizeof(unsigned char))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Count how many times each source line contributes to a destination line.
|
||
|
|
||
|
for (i = 0; i < m_resample_dst_y; i++)
|
||
|
for (j = 0; j < m_Pclist_y[i].n; j++)
|
||
|
m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++;
|
||
|
|
||
|
if ((m_Pscan_buf = (Scan_Buf*)malloc(sizeof(Scan_Buf))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
|
||
|
{
|
||
|
m_Pscan_buf->scan_buf_y[i] = -1;
|
||
|
m_Pscan_buf->scan_buf_l[i] = NULL;
|
||
|
}
|
||
|
|
||
|
m_cur_src_y = m_cur_dst_y = 0;
|
||
|
{
|
||
|
// Determine which axis to resample first by comparing the number of multiplies required
|
||
|
// for each possibility.
|
||
|
int x_ops = count_ops(m_Pclist_x, m_resample_dst_x);
|
||
|
int y_ops = count_ops(m_Pclist_y, m_resample_dst_y);
|
||
|
|
||
|
// Hack 10/2000: Weight Y axis ops a little more than X axis ops.
|
||
|
// (Y axis ops use more cache resources.)
|
||
|
int xy_ops = x_ops * m_resample_src_y +
|
||
|
(4 * y_ops * m_resample_dst_x) / 3;
|
||
|
|
||
|
int yx_ops = (4 * y_ops * m_resample_src_x) / 3 +
|
||
|
x_ops * m_resample_dst_y;
|
||
|
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
printf("src: %i %i\n", m_resample_src_x, m_resample_src_y);
|
||
|
printf("dst: %i %i\n", m_resample_dst_x, m_resample_dst_y);
|
||
|
printf("x_ops: %i\n", x_ops);
|
||
|
printf("y_ops: %i\n", y_ops);
|
||
|
printf("xy_ops: %i\n", xy_ops);
|
||
|
printf("yx_ops: %i\n", yx_ops);
|
||
|
#endif
|
||
|
|
||
|
// Now check which resample order is better. In case of a tie, choose the order
|
||
|
// which buffers the least amount of data.
|
||
|
if ((xy_ops > yx_ops) ||
|
||
|
((xy_ops == yx_ops) && (m_resample_src_x < m_resample_dst_x)))
|
||
|
{
|
||
|
m_delay_x_resample = true;
|
||
|
m_intermediate_x = m_resample_src_x;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_delay_x_resample = false;
|
||
|
m_intermediate_x = m_resample_dst_x;
|
||
|
}
|
||
|
#if BASISU_RESAMPLER_DEBUG_OPS
|
||
|
printf("delaying: %i\n", m_delay_x_resample);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
if (m_delay_x_resample)
|
||
|
{
|
||
|
if ((m_Ptmp_buf = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL)
|
||
|
{
|
||
|
m_status = STATUS_OUT_OF_MEMORY;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Resampler::get_clists(Contrib_List * *ptr_clist_x, Contrib_List * *ptr_clist_y)
|
||
|
{
|
||
|
if (ptr_clist_x)
|
||
|
* ptr_clist_x = m_Pclist_x;
|
||
|
|
||
|
if (ptr_clist_y)
|
||
|
* ptr_clist_y = m_Pclist_y;
|
||
|
}
|
||
|
|
||
|
int Resampler::get_filter_num()
|
||
|
{
|
||
|
return g_num_resample_filters;
|
||
|
}
|
||
|
|
||
|
const char* Resampler::get_filter_name(int filter_num)
|
||
|
{
|
||
|
if ((filter_num < 0) || (filter_num >= g_num_resample_filters))
|
||
|
return NULL;
|
||
|
else
|
||
|
return g_resample_filters[filter_num].name;
|
||
|
}
|
||
|
|
||
|
} // namespace basisu
|