351 lines
7.4 KiB
C++
351 lines
7.4 KiB
C++
|
/*
|
|||
|
Bullet Continuous Collision Detection and Physics Library
|
|||
|
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
|
|||
|
|
|||
|
This software is provided 'as-is', without any express or implied warranty.
|
|||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|||
|
Permission is granted to anyone to use this software for any purpose,
|
|||
|
including commercial applications, and to alter it and redistribute it freely,
|
|||
|
subject to the following restrictions:
|
|||
|
|
|||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|||
|
3. This notice may not be removed or altered from any source distribution.
|
|||
|
*/
|
|||
|
///original version written by Erwin Coumans, October 2013
|
|||
|
|
|||
|
#ifndef BT_LEMKE_SOLVER_H
|
|||
|
#define BT_LEMKE_SOLVER_H
|
|||
|
|
|||
|
|
|||
|
#include "btMLCPSolverInterface.h"
|
|||
|
#include "btLemkeAlgorithm.h"
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
///The btLemkeSolver is based on "Fast Implementation of Lemke<6B>s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
|
|||
|
///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
|
|||
|
///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
|
|||
|
class btLemkeSolver : public btMLCPSolverInterface
|
|||
|
{
|
|||
|
protected:
|
|||
|
|
|||
|
public:
|
|||
|
|
|||
|
btScalar m_maxValue;
|
|||
|
int m_debugLevel;
|
|||
|
int m_maxLoops;
|
|||
|
bool m_useLoHighBounds;
|
|||
|
|
|||
|
|
|||
|
|
|||
|
btLemkeSolver()
|
|||
|
:m_maxValue(100000),
|
|||
|
m_debugLevel(0),
|
|||
|
m_maxLoops(1000),
|
|||
|
m_useLoHighBounds(true)
|
|||
|
{
|
|||
|
}
|
|||
|
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
|||
|
{
|
|||
|
|
|||
|
if (m_useLoHighBounds)
|
|||
|
{
|
|||
|
|
|||
|
BT_PROFILE("btLemkeSolver::solveMLCP");
|
|||
|
int n = A.rows();
|
|||
|
if (0==n)
|
|||
|
return true;
|
|||
|
|
|||
|
bool fail = false;
|
|||
|
|
|||
|
btVectorXu solution(n);
|
|||
|
btVectorXu q1;
|
|||
|
q1.resize(n);
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
q1[row] = -b[row];
|
|||
|
}
|
|||
|
|
|||
|
// cout << "A" << endl;
|
|||
|
// cout << A << endl;
|
|||
|
|
|||
|
/////////////////////////////////////
|
|||
|
|
|||
|
//slow matrix inversion, replace with LU decomposition
|
|||
|
btMatrixXu A1;
|
|||
|
btMatrixXu B(n,n);
|
|||
|
{
|
|||
|
BT_PROFILE("inverse(slow)");
|
|||
|
A1.resize(A.rows(),A.cols());
|
|||
|
for (int row=0;row<A.rows();row++)
|
|||
|
{
|
|||
|
for (int col=0;col<A.cols();col++)
|
|||
|
{
|
|||
|
A1.setElem(row,col,A(row,col));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
btMatrixXu matrix;
|
|||
|
matrix.resize(n,2*n);
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
for (int col=0;col<n;col++)
|
|||
|
{
|
|||
|
matrix.setElem(row,col,A1(row,col));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
btScalar ratio,a;
|
|||
|
int i,j,k;
|
|||
|
for(i = 0; i < n; i++){
|
|||
|
for(j = n; j < 2*n; j++){
|
|||
|
if(i==(j-n))
|
|||
|
matrix.setElem(i,j,1.0);
|
|||
|
else
|
|||
|
matrix.setElem(i,j,0.0);
|
|||
|
}
|
|||
|
}
|
|||
|
for(i = 0; i < n; i++){
|
|||
|
for(j = 0; j < n; j++){
|
|||
|
if(i!=j)
|
|||
|
{
|
|||
|
btScalar v = matrix(i,i);
|
|||
|
if (btFuzzyZero(v))
|
|||
|
{
|
|||
|
a = 0.000001f;
|
|||
|
}
|
|||
|
ratio = matrix(j,i)/matrix(i,i);
|
|||
|
for(k = 0; k < 2*n; k++){
|
|||
|
matrix.addElem(j,k,- ratio * matrix(i,k));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
for(i = 0; i < n; i++){
|
|||
|
a = matrix(i,i);
|
|||
|
if (btFuzzyZero(a))
|
|||
|
{
|
|||
|
a = 0.000001f;
|
|||
|
}
|
|||
|
btScalar invA = 1.f/a;
|
|||
|
for(j = 0; j < 2*n; j++){
|
|||
|
matrix.mulElem(i,j,invA);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
for (int col=0;col<n;col++)
|
|||
|
{
|
|||
|
B.setElem(row,col,matrix(row,n+col));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
btMatrixXu b1(n,1);
|
|||
|
|
|||
|
btMatrixXu M(n*2,n*2);
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
b1.setElem(row,0,-b[row]);
|
|||
|
for (int col=0;col<n;col++)
|
|||
|
{
|
|||
|
btScalar v =B(row,col);
|
|||
|
M.setElem(row,col,v);
|
|||
|
M.setElem(n+row,n+col,v);
|
|||
|
M.setElem(n+row,col,-v);
|
|||
|
M.setElem(row,n+col,-v);
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
btMatrixXu Bb1 = B*b1;
|
|||
|
// q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
|
|||
|
|
|||
|
btVectorXu qq;
|
|||
|
qq.resize(n*2);
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
qq[row] = -Bb1(row,0)-lo[row];
|
|||
|
qq[n+row] = Bb1(row,0)+hi[row];
|
|||
|
}
|
|||
|
|
|||
|
btVectorXu z1;
|
|||
|
|
|||
|
btMatrixXu y1;
|
|||
|
y1.resize(n,1);
|
|||
|
btLemkeAlgorithm lemke(M,qq,m_debugLevel);
|
|||
|
{
|
|||
|
BT_PROFILE("lemke.solve");
|
|||
|
lemke.setSystem(M,qq);
|
|||
|
z1 = lemke.solve(m_maxLoops);
|
|||
|
}
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
y1.setElem(row,0,z1[2*n+row]-z1[3*n+row]);
|
|||
|
}
|
|||
|
btMatrixXu y1_b1(n,1);
|
|||
|
for (int i=0;i<n;i++)
|
|||
|
{
|
|||
|
y1_b1.setElem(i,0,y1(i,0)-b1(i,0));
|
|||
|
}
|
|||
|
|
|||
|
btMatrixXu x1;
|
|||
|
|
|||
|
x1 = B*(y1_b1);
|
|||
|
|
|||
|
for (int row=0;row<n;row++)
|
|||
|
{
|
|||
|
solution[row] = x1(row,0);//n];
|
|||
|
}
|
|||
|
|
|||
|
int errorIndexMax = -1;
|
|||
|
int errorIndexMin = -1;
|
|||
|
float errorValueMax = -1e30;
|
|||
|
float errorValueMin = 1e30;
|
|||
|
|
|||
|
for (int i=0;i<n;i++)
|
|||
|
{
|
|||
|
x[i] = solution[i];
|
|||
|
volatile btScalar check = x[i];
|
|||
|
if (x[i] != check)
|
|||
|
{
|
|||
|
//printf("Lemke result is #NAN\n");
|
|||
|
x.setZero();
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
//this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
|
|||
|
//we need to figure out why it happens, and fix it, or detect it properly)
|
|||
|
if (x[i]>m_maxValue)
|
|||
|
{
|
|||
|
if (x[i]> errorValueMax)
|
|||
|
{
|
|||
|
fail = true;
|
|||
|
errorIndexMax = i;
|
|||
|
errorValueMax = x[i];
|
|||
|
}
|
|||
|
////printf("x[i] = %f,",x[i]);
|
|||
|
}
|
|||
|
if (x[i]<-m_maxValue)
|
|||
|
{
|
|||
|
if (x[i]<errorValueMin)
|
|||
|
{
|
|||
|
errorIndexMin = i;
|
|||
|
errorValueMin = x[i];
|
|||
|
fail = true;
|
|||
|
//printf("x[i] = %f,",x[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
if (fail)
|
|||
|
{
|
|||
|
int m_errorCountTimes = 0;
|
|||
|
if (errorIndexMin<0)
|
|||
|
errorValueMin = 0.f;
|
|||
|
if (errorIndexMax<0)
|
|||
|
errorValueMax = 0.f;
|
|||
|
m_errorCountTimes++;
|
|||
|
// printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
|
|||
|
for (int i=0;i<n;i++)
|
|||
|
{
|
|||
|
x[i]=0.f;
|
|||
|
}
|
|||
|
}
|
|||
|
return !fail;
|
|||
|
} else
|
|||
|
|
|||
|
{
|
|||
|
int dimension = A.rows();
|
|||
|
if (0==dimension)
|
|||
|
return true;
|
|||
|
|
|||
|
// printf("================ solving using Lemke/Newton/Fixpoint\n");
|
|||
|
|
|||
|
btVectorXu q;
|
|||
|
q.resize(dimension);
|
|||
|
for (int row=0;row<dimension;row++)
|
|||
|
{
|
|||
|
q[row] = -b[row];
|
|||
|
}
|
|||
|
|
|||
|
btLemkeAlgorithm lemke(A,q,m_debugLevel);
|
|||
|
|
|||
|
|
|||
|
lemke.setSystem(A,q);
|
|||
|
|
|||
|
btVectorXu solution = lemke.solve(m_maxLoops);
|
|||
|
|
|||
|
//check solution
|
|||
|
|
|||
|
bool fail = false;
|
|||
|
int errorIndexMax = -1;
|
|||
|
int errorIndexMin = -1;
|
|||
|
float errorValueMax = -1e30;
|
|||
|
float errorValueMin = 1e30;
|
|||
|
|
|||
|
for (int i=0;i<dimension;i++)
|
|||
|
{
|
|||
|
x[i] = solution[i+dimension];
|
|||
|
volatile btScalar check = x[i];
|
|||
|
if (x[i] != check)
|
|||
|
{
|
|||
|
x.setZero();
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
//this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
|
|||
|
//we need to figure out why it happens, and fix it, or detect it properly)
|
|||
|
if (x[i]>m_maxValue)
|
|||
|
{
|
|||
|
if (x[i]> errorValueMax)
|
|||
|
{
|
|||
|
fail = true;
|
|||
|
errorIndexMax = i;
|
|||
|
errorValueMax = x[i];
|
|||
|
}
|
|||
|
////printf("x[i] = %f,",x[i]);
|
|||
|
}
|
|||
|
if (x[i]<-m_maxValue)
|
|||
|
{
|
|||
|
if (x[i]<errorValueMin)
|
|||
|
{
|
|||
|
errorIndexMin = i;
|
|||
|
errorValueMin = x[i];
|
|||
|
fail = true;
|
|||
|
//printf("x[i] = %f,",x[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
if (fail)
|
|||
|
{
|
|||
|
static int errorCountTimes = 0;
|
|||
|
if (errorIndexMin<0)
|
|||
|
errorValueMin = 0.f;
|
|||
|
if (errorIndexMax<0)
|
|||
|
errorValueMax = 0.f;
|
|||
|
printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
|
|||
|
for (int i=0;i<dimension;i++)
|
|||
|
{
|
|||
|
x[i]=0.f;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
return !fail;
|
|||
|
}
|
|||
|
return true;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
};
|
|||
|
|
|||
|
#endif //BT_LEMKE_SOLVER_H
|