virtualx-engine/thirdparty/icu4c/common/rbbisetb.cpp

695 lines
24 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
//
// rbbisetb.cpp
//
/*
***************************************************************************
* Copyright (C) 2002-2008 International Business Machines Corporation *
* and others. All rights reserved. *
***************************************************************************
*/
//
// RBBISetBuilder Handles processing of Unicode Sets from RBBI rules
// (part of the rule building process.)
//
// Starting with the rules parse tree from the scanner,
//
// - Enumerate the set of UnicodeSets that are referenced
// by the RBBI rules.
// - compute a set of non-overlapping character ranges
// with all characters within a range belonging to the same
// set of input unicode sets.
// - Derive a set of non-overlapping UnicodeSet (like things)
// that will correspond to columns in the state table for
// the RBBI execution engine. All characters within one
// of these sets belong to the same set of the original
// UnicodeSets from the user's rules.
// - construct the trie table that maps input characters
// to the index of the matching non-overlapping set of set from
// the previous step.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/uniset.h"
#include "uvector.h"
#include "uassert.h"
#include "cmemory.h"
#include "cstring.h"
#include "rbbisetb.h"
#include "rbbinode.h"
U_NAMESPACE_BEGIN
const int32_t kMaxCharCategoriesFor8BitsTrie = 255;
//------------------------------------------------------------------------
//
// Constructor
//
//------------------------------------------------------------------------
RBBISetBuilder::RBBISetBuilder(RBBIRuleBuilder *rb)
{
fRB = rb;
fStatus = rb->fStatus;
fRangeList = nullptr;
fMutableTrie = nullptr;
fTrie = nullptr;
fTrieSize = 0;
fGroupCount = 0;
fSawBOF = false;
}
//------------------------------------------------------------------------
//
// Destructor
//
//------------------------------------------------------------------------
RBBISetBuilder::~RBBISetBuilder()
{
RangeDescriptor *nextRangeDesc;
// Walk through & delete the linked list of RangeDescriptors
for (nextRangeDesc = fRangeList; nextRangeDesc!=NULL;) {
RangeDescriptor *r = nextRangeDesc;
nextRangeDesc = r->fNext;
delete r;
}
ucptrie_close(fTrie);
umutablecptrie_close(fMutableTrie);
}
//------------------------------------------------------------------------
//
// build Build the list of non-overlapping character ranges
// from the Unicode Sets.
//
//------------------------------------------------------------------------
void RBBISetBuilder::buildRanges() {
RBBINode *usetNode;
RangeDescriptor *rlRange;
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "usets")) {printSets();}
//
// Initialize the process by creating a single range encompassing all characters
// that is in no sets.
//
fRangeList = new RangeDescriptor(*fStatus); // will check for status here
if (fRangeList == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
fRangeList->fStartChar = 0;
fRangeList->fEndChar = 0x10ffff;
if (U_FAILURE(*fStatus)) {
return;
}
//
// Find the set of non-overlapping ranges of characters
//
int ni;
for (ni=0; ; ni++) { // Loop over each of the UnicodeSets encountered in the input rules
usetNode = (RBBINode *)this->fRB->fUSetNodes->elementAt(ni);
if (usetNode==NULL) {
break;
}
UnicodeSet *inputSet = usetNode->fInputSet;
int32_t inputSetRangeCount = inputSet->getRangeCount();
int inputSetRangeIndex = 0;
rlRange = fRangeList;
for (;;) {
if (inputSetRangeIndex >= inputSetRangeCount) {
break;
}
UChar32 inputSetRangeBegin = inputSet->getRangeStart(inputSetRangeIndex);
UChar32 inputSetRangeEnd = inputSet->getRangeEnd(inputSetRangeIndex);
// skip over ranges from the range list that are completely
// below the current range from the input unicode set.
while (rlRange->fEndChar < inputSetRangeBegin) {
rlRange = rlRange->fNext;
}
// If the start of the range from the range list is before with
// the start of the range from the unicode set, split the range list range
// in two, with one part being before (wholly outside of) the unicode set
// and the other containing the rest.
// Then continue the loop; the post-split current range will then be skipped
// over
if (rlRange->fStartChar < inputSetRangeBegin) {
rlRange->split(inputSetRangeBegin, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
continue;
}
// Same thing at the end of the ranges...
// If the end of the range from the range list doesn't coincide with
// the end of the range from the unicode set, split the range list
// range in two. The first part of the split range will be
// wholly inside the Unicode set.
if (rlRange->fEndChar > inputSetRangeEnd) {
rlRange->split(inputSetRangeEnd+1, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
}
// The current rlRange is now entirely within the UnicodeSet range.
// Add this unicode set to the list of sets for this rlRange
if (rlRange->fIncludesSets->indexOf(usetNode) == -1) {
rlRange->fIncludesSets->addElement(usetNode, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
}
// Advance over ranges that we are finished with.
if (inputSetRangeEnd == rlRange->fEndChar) {
inputSetRangeIndex++;
}
rlRange = rlRange->fNext;
}
}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "range")) { printRanges();}
//
// Group the above ranges, with each group consisting of one or more
// ranges that are in exactly the same set of original UnicodeSets.
// The groups are numbered, and these group numbers are the set of
// input symbols recognized by the run-time state machine.
//
// Numbering: # 0 (state table column 0) is unused.
// # 1 is reserved - table column 1 is for end-of-input
// # 2 is reserved - table column 2 is for beginning-of-input
// # 3 is the first range list.
//
RangeDescriptor *rlSearchRange;
int32_t dictGroupCount = 0;
for (rlRange = fRangeList; rlRange!=nullptr; rlRange=rlRange->fNext) {
for (rlSearchRange=fRangeList; rlSearchRange != rlRange; rlSearchRange=rlSearchRange->fNext) {
if (rlRange->fIncludesSets->equals(*rlSearchRange->fIncludesSets)) {
rlRange->fNum = rlSearchRange->fNum;
rlRange->fIncludesDict = rlSearchRange->fIncludesDict;
break;
}
}
if (rlRange->fNum == 0) {
rlRange->fFirstInGroup = true;
if (rlRange->isDictionaryRange()) {
rlRange->fNum = ++dictGroupCount;
rlRange->fIncludesDict = true;
} else {
fGroupCount++;
rlRange->fNum = fGroupCount+2;
addValToSets(rlRange->fIncludesSets, rlRange->fNum);
}
}
}
// Move the character category numbers for any dictionary ranges up, so that they
// immediately follow the non-dictionary ranges.
fDictCategoriesStart = fGroupCount + 3;
for (rlRange = fRangeList; rlRange!=nullptr; rlRange=rlRange->fNext) {
if (rlRange->fIncludesDict) {
rlRange->fNum += fDictCategoriesStart - 1;
if (rlRange->fFirstInGroup) {
addValToSets(rlRange->fIncludesSets, rlRange->fNum);
}
}
}
fGroupCount += dictGroupCount;
// Handle input sets that contain the special string {eof}.
// Column 1 of the state table is reserved for EOF on input.
// Column 2 is reserved for before-the-start-input.
// (This column can be optimized away later if there are no rule
// references to {bof}.)
// Add this column value (1 or 2) to the equivalent expression
// subtree for each UnicodeSet that contains the string {eof}
// Because {bof} and {eof} are not characters in the normal sense,
// they don't affect the computation of the ranges or TRIE.
UnicodeString eofString(u"eof");
UnicodeString bofString(u"bof");
for (ni=0; ; ni++) { // Loop over each of the UnicodeSets encountered in the input rules
usetNode = (RBBINode *)this->fRB->fUSetNodes->elementAt(ni);
if (usetNode==NULL) {
break;
}
UnicodeSet *inputSet = usetNode->fInputSet;
if (inputSet->contains(eofString)) {
addValToSet(usetNode, 1);
}
if (inputSet->contains(bofString)) {
addValToSet(usetNode, 2);
2022-10-28 08:11:55 +02:00
fSawBOF = true;
}
}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rgroup")) {printRangeGroups();}
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "esets")) {printSets();}
}
//
// Build the Trie table for mapping UChar32 values to the corresponding
// range group number.
//
void RBBISetBuilder::buildTrie() {
fMutableTrie = umutablecptrie_open(
0, // Initial value for all code points.
0, // Error value for out-of-range input.
fStatus);
for (RangeDescriptor *range = fRangeList; range!=nullptr && U_SUCCESS(*fStatus); range=range->fNext) {
umutablecptrie_setRange(fMutableTrie,
range->fStartChar, // Range start
range->fEndChar, // Range end (inclusive)
range->fNum, // value for range
fStatus);
}
}
void RBBISetBuilder::mergeCategories(IntPair categories) {
U_ASSERT(categories.first >= 1);
U_ASSERT(categories.second > categories.first);
U_ASSERT((categories.first < fDictCategoriesStart && categories.second < fDictCategoriesStart) ||
(categories.first >= fDictCategoriesStart && categories.second >= fDictCategoriesStart));
for (RangeDescriptor *rd = fRangeList; rd != nullptr; rd = rd->fNext) {
int32_t rangeNum = rd->fNum;
if (rangeNum == categories.second) {
rd->fNum = categories.first;
} else if (rangeNum > categories.second) {
rd->fNum--;
}
}
--fGroupCount;
if (categories.second <= fDictCategoriesStart) {
--fDictCategoriesStart;
}
}
//-----------------------------------------------------------------------------------
//
// getTrieSize() Return the size that will be required to serialize the Trie.
//
//-----------------------------------------------------------------------------------
int32_t RBBISetBuilder::getTrieSize() {
if (U_FAILURE(*fStatus)) {
return 0;
}
if (fTrie == nullptr) {
bool use8Bits = getNumCharCategories() <= kMaxCharCategoriesFor8BitsTrie;
fTrie = umutablecptrie_buildImmutable(
fMutableTrie,
UCPTRIE_TYPE_FAST,
use8Bits ? UCPTRIE_VALUE_BITS_8 : UCPTRIE_VALUE_BITS_16,
fStatus);
fTrieSize = ucptrie_toBinary(fTrie, nullptr, 0, fStatus);
if (*fStatus == U_BUFFER_OVERFLOW_ERROR) {
*fStatus = U_ZERO_ERROR;
}
}
return fTrieSize;
}
//-----------------------------------------------------------------------------------
//
// serializeTrie() Put the serialized trie at the specified address.
// Trust the caller to have given us enough memory.
// getTrieSize() MUST be called first.
//
//-----------------------------------------------------------------------------------
void RBBISetBuilder::serializeTrie(uint8_t *where) {
ucptrie_toBinary(fTrie,
where, // Buffer
fTrieSize, // Capacity
fStatus);
}
//------------------------------------------------------------------------
//
// addValToSets Add a runtime-mapped input value to each uset from a
// list of uset nodes. (val corresponds to a state table column.)
// For each of the original Unicode sets - which correspond
// directly to uset nodes - a logically equivalent expression
// is constructed in terms of the remapped runtime input
// symbol set. This function adds one runtime input symbol to
// a list of sets.
//
// The "logically equivalent expression" is the tree for an
// or-ing together of all of the symbols that go into the set.
//
//------------------------------------------------------------------------
void RBBISetBuilder::addValToSets(UVector *sets, uint32_t val) {
int32_t ix;
for (ix=0; ix<sets->size(); ix++) {
RBBINode *usetNode = (RBBINode *)sets->elementAt(ix);
addValToSet(usetNode, val);
}
}
void RBBISetBuilder::addValToSet(RBBINode *usetNode, uint32_t val) {
RBBINode *leafNode = new RBBINode(RBBINode::leafChar);
if (leafNode == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
leafNode->fVal = (unsigned short)val;
if (usetNode->fLeftChild == NULL) {
usetNode->fLeftChild = leafNode;
leafNode->fParent = usetNode;
} else {
// There are already input symbols present for this set.
// Set up an OR node, with the previous stuff as the left child
// and the new value as the right child.
RBBINode *orNode = new RBBINode(RBBINode::opOr);
if (orNode == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
orNode->fLeftChild = usetNode->fLeftChild;
orNode->fRightChild = leafNode;
orNode->fLeftChild->fParent = orNode;
orNode->fRightChild->fParent = orNode;
usetNode->fLeftChild = orNode;
orNode->fParent = usetNode;
}
}
//------------------------------------------------------------------------
//
// getNumCharCategories
//
//------------------------------------------------------------------------
int32_t RBBISetBuilder::getNumCharCategories() const {
return fGroupCount + 3;
}
//------------------------------------------------------------------------
//
// getDictCategoriesStart
//
//------------------------------------------------------------------------
int32_t RBBISetBuilder::getDictCategoriesStart() const {
return fDictCategoriesStart;
}
//------------------------------------------------------------------------
//
// sawBOF
//
//------------------------------------------------------------------------
UBool RBBISetBuilder::sawBOF() const {
return fSawBOF;
}
//------------------------------------------------------------------------
//
// getFirstChar Given a runtime RBBI character category, find
// the first UChar32 that is in the set of chars
// in the category.
//------------------------------------------------------------------------
UChar32 RBBISetBuilder::getFirstChar(int32_t category) const {
RangeDescriptor *rlRange;
UChar32 retVal = (UChar32)-1;
for (rlRange = fRangeList; rlRange!=nullptr; rlRange=rlRange->fNext) {
if (rlRange->fNum == category) {
retVal = rlRange->fStartChar;
break;
}
}
return retVal;
}
//------------------------------------------------------------------------
//
// printRanges A debugging function.
// dump out all of the range definitions.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printRanges() {
RangeDescriptor *rlRange;
int i;
RBBIDebugPrintf("\n\n Nonoverlapping Ranges ...\n");
for (rlRange = fRangeList; rlRange!=nullptr; rlRange=rlRange->fNext) {
RBBIDebugPrintf("%4x-%4x ", rlRange->fStartChar, rlRange->fEndChar);
for (i=0; i<rlRange->fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)rlRange->fIncludesSets->elementAt(i);
UnicodeString setName {u"anon"};
RBBINode *setRef = usetNode->fParent;
if (setRef != nullptr) {
RBBINode *varRef = setRef->fParent;
if (varRef != nullptr && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName); RBBIDebugPrintf(" ");
}
RBBIDebugPrintf("\n");
}
}
#endif
//------------------------------------------------------------------------
//
// printRangeGroups A debugging function.
// dump out all of the range groups.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printRangeGroups() {
int i;
RBBIDebugPrintf("\nRanges grouped by Unicode Set Membership...\n");
for (RangeDescriptor *rlRange = fRangeList; rlRange!=nullptr; rlRange=rlRange->fNext) {
if (rlRange->fFirstInGroup) {
int groupNum = rlRange->fNum;
RBBIDebugPrintf("%2i ", groupNum);
if (groupNum >= fDictCategoriesStart) { RBBIDebugPrintf(" <DICT> ");}
for (i=0; i<rlRange->fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)rlRange->fIncludesSets->elementAt(i);
UnicodeString setName = UNICODE_STRING("anon", 4);
RBBINode *setRef = usetNode->fParent;
if (setRef != NULL) {
RBBINode *varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName); RBBIDebugPrintf(" ");
}
i = 0;
for (RangeDescriptor *tRange = rlRange; tRange != nullptr; tRange = tRange->fNext) {
if (tRange->fNum == rlRange->fNum) {
if (i++ % 5 == 0) {
RBBIDebugPrintf("\n ");
}
RBBIDebugPrintf(" %05x-%05x", tRange->fStartChar, tRange->fEndChar);
}
}
RBBIDebugPrintf("\n");
}
}
RBBIDebugPrintf("\n");
}
#endif
//------------------------------------------------------------------------
//
// printSets A debugging function.
// dump out all of the set definitions.
//
//------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBISetBuilder::printSets() {
int i;
RBBIDebugPrintf("\n\nUnicode Sets List\n------------------\n");
for (i=0; ; i++) {
RBBINode *usetNode;
RBBINode *setRef;
RBBINode *varRef;
UnicodeString setName;
usetNode = (RBBINode *)fRB->fUSetNodes->elementAt(i);
if (usetNode == NULL) {
break;
}
RBBIDebugPrintf("%3d ", i);
setName = UNICODE_STRING("anonymous", 9);
setRef = usetNode->fParent;
if (setRef != NULL) {
varRef = setRef->fParent;
if (varRef != NULL && varRef->fType == RBBINode::varRef) {
setName = varRef->fText;
}
}
RBBI_DEBUG_printUnicodeString(setName);
RBBIDebugPrintf(" ");
RBBI_DEBUG_printUnicodeString(usetNode->fText);
RBBIDebugPrintf("\n");
if (usetNode->fLeftChild != NULL) {
2022-10-28 08:11:55 +02:00
RBBINode::printTree(usetNode->fLeftChild, true);
}
}
RBBIDebugPrintf("\n");
}
#endif
//-------------------------------------------------------------------------------------
//
// RangeDescriptor copy constructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::RangeDescriptor(const RangeDescriptor &other, UErrorCode &status) :
fStartChar(other.fStartChar), fEndChar {other.fEndChar}, fNum {other.fNum},
fIncludesDict{other.fIncludesDict}, fFirstInGroup{other.fFirstInGroup} {
if (U_FAILURE(status)) {
return;
}
fIncludesSets = new UVector(status);
if (this->fIncludesSets == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(status)) {
return;
}
for (int32_t i=0; i<other.fIncludesSets->size(); i++) {
this->fIncludesSets->addElement(other.fIncludesSets->elementAt(i), status);
}
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor default constructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::RangeDescriptor(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
fIncludesSets = new UVector(status);
if (fIncludesSets == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor Destructor
//
//-------------------------------------------------------------------------------------
RangeDescriptor::~RangeDescriptor() {
delete fIncludesSets;
fIncludesSets = nullptr;
}
//-------------------------------------------------------------------------------------
//
// RangeDesriptor::split()
//
//-------------------------------------------------------------------------------------
void RangeDescriptor::split(UChar32 where, UErrorCode &status) {
U_ASSERT(where>fStartChar && where<=fEndChar);
RangeDescriptor *nr = new RangeDescriptor(*this, status);
if(nr == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (U_FAILURE(status)) {
delete nr;
return;
}
// RangeDescriptor copy constructor copies all fields.
// Only need to update those that are different after the split.
nr->fStartChar = where;
this->fEndChar = where-1;
nr->fNext = this->fNext;
this->fNext = nr;
}
//-------------------------------------------------------------------------------------
//
// RangeDescriptor::isDictionaryRange
//
// Test whether this range includes characters from
// the original Unicode Set named "dictionary".
//
// This function looks through the Unicode Sets that
// the range includes, checking for one named "dictionary"
//
// TODO: a faster way would be to find the set node for
// "dictionary" just once, rather than looking it
// up by name every time.
//
//-------------------------------------------------------------------------------------
bool RangeDescriptor::isDictionaryRange() {
static const char16_t *dictionary = u"dictionary";
for (int32_t i=0; i<fIncludesSets->size(); i++) {
RBBINode *usetNode = (RBBINode *)fIncludesSets->elementAt(i);
RBBINode *setRef = usetNode->fParent;
if (setRef != nullptr) {
RBBINode *varRef = setRef->fParent;
if (varRef && varRef->fType == RBBINode::varRef) {
const UnicodeString *setName = &varRef->fText;
if (setName->compare(dictionary, -1) == 0) {
return true;
}
}
}
}
return false;
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */