virtualx-engine/thirdparty/libvpx/vp8/decoder/decodeframe.c

1398 lines
46 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/reconinter.h"
#include "detokenize.h"
#include "vp8/common/common.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/setupintrarecon.h"
#include "decodemv.h"
#include "vp8/common/extend.h"
#if CONFIG_ERROR_CONCEALMENT
#include "error_concealment.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/threading.h"
#include "decoderthreading.h"
#include "dboolhuff.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include <assert.h>
#include <stdio.h>
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
pc->Y1dequant[Q][1] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][1] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][1] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
}
}
void vp8_mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i;
int QIndex;
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
VP8_COMMON *const pc = & pbi->common;
/* Decide whether to use the default or alternate baseline Q value. */
if (xd->segmentation_enabled)
{
/* Abs Value */
if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA)
QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id];
/* Delta Value */
else
QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id];
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
}
else
QIndex = pc->base_qindex;
/* Set up the macroblock dequant constants */
xd->dequant_y1_dc[0] = 1;
xd->dequant_y1[0] = pc->Y1dequant[QIndex][0];
xd->dequant_y2[0] = pc->Y2dequant[QIndex][0];
xd->dequant_uv[0] = pc->UVdequant[QIndex][0];
for (i = 1; i < 16; i++)
{
xd->dequant_y1_dc[i] =
xd->dequant_y1[i] = pc->Y1dequant[QIndex][1];
xd->dequant_y2[i] = pc->Y2dequant[QIndex][1];
xd->dequant_uv[i] = pc->UVdequant[QIndex][1];
}
}
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
unsigned int mb_idx)
{
MB_PREDICTION_MODE mode;
int i;
#if CONFIG_ERROR_CONCEALMENT
int corruption_detected = 0;
#else
(void)mb_idx;
#endif
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else if (!vp8dx_bool_error(xd->current_bc))
{
int eobtotal;
eobtotal = vp8_decode_mb_tokens(pbi, xd);
/* Special case: Force the loopfilter to skip when eobtotal is zero */
xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal==0);
}
mode = xd->mode_info_context->mbmi.mode;
if (xd->segmentation_enabled)
vp8_mb_init_dequantizer(pbi, xd);
#if CONFIG_ERROR_CONCEALMENT
if(pbi->ec_active)
{
int throw_residual;
/* When we have independent partitions we can apply residual even
* though other partitions within the frame are corrupt.
*/
throw_residual = (!pbi->independent_partitions &&
pbi->frame_corrupt_residual);
throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc));
if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual))
{
/* MB with corrupt residuals or corrupt mode/motion vectors.
* Better to use the predictor as reconstruction.
*/
pbi->frame_corrupt_residual = 1;
memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
corruption_detected = 1;
/* force idct to be skipped for B_PRED and use the
* prediction only for reconstruction
* */
memset(xd->eobs, 0, 25);
}
}
#endif
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv_s(xd,
xd->recon_above[1],
xd->recon_above[2],
xd->recon_left[1],
xd->recon_left[2],
xd->recon_left_stride[1],
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride);
if (mode != B_PRED)
{
vp8_build_intra_predictors_mby_s(xd,
xd->recon_above[0],
xd->recon_left[0],
xd->recon_left_stride[0],
xd->dst.y_buffer,
xd->dst.y_stride);
}
else
{
short *DQC = xd->dequant_y1;
int dst_stride = xd->dst.y_stride;
/* clear out residual eob info */
if(xd->mode_info_context->mbmi.mb_skip_coeff)
memset(xd->eobs, 0, 25);
intra_prediction_down_copy(xd, xd->recon_above[0] + 16);
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
unsigned char *dst = xd->dst.y_buffer + b->offset;
B_PREDICTION_MODE b_mode =
xd->mode_info_context->bmi[i].as_mode;
unsigned char *Above = dst - dst_stride;
unsigned char *yleft = dst - 1;
int left_stride = dst_stride;
unsigned char top_left = Above[-1];
vp8_intra4x4_predict(Above, yleft, left_stride, b_mode,
dst, dst_stride, top_left);
if (xd->eobs[i])
{
if (xd->eobs[i] > 1)
{
vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride);
}
else
{
vp8_dc_only_idct_add
(b->qcoeff[0] * DQC[0],
dst, dst_stride,
dst, dst_stride);
memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0]));
}
}
}
}
}
else
{
vp8_build_inter_predictors_mb(xd);
}
#if CONFIG_ERROR_CONCEALMENT
if (corruption_detected)
{
return;
}
#endif
if(!xd->mode_info_context->mbmi.mb_skip_coeff)
{
/* dequantization and idct */
if (mode != B_PRED)
{
short *DQC = xd->dequant_y1;
if (mode != SPLITMV)
{
BLOCKD *b = &xd->block[24];
/* do 2nd order transform on the dc block */
if (xd->eobs[24] > 1)
{
vp8_dequantize_b(b, xd->dequant_y2);
vp8_short_inv_walsh4x4(&b->dqcoeff[0],
xd->qcoeff);
memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0]));
}
else
{
b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0];
vp8_short_inv_walsh4x4_1(&b->dqcoeff[0],
xd->qcoeff);
memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0]));
}
/* override the dc dequant constant in order to preserve the
* dc components
*/
DQC = xd->dequant_y1_dc;
}
vp8_dequant_idct_add_y_block
(xd->qcoeff, DQC,
xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
vp8_dequant_idct_add_uv_block
(xd->qcoeff+16*16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
}
static int get_delta_q(vp8_reader *bc, int prev, int *q_update)
{
int ret_val = 0;
if (vp8_read_bit(bc))
{
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void yv12_extend_frame_top_c(YV12_BUFFER_CONFIG *ybf)
{
int i;
unsigned char *src_ptr1;
unsigned char *dest_ptr1;
unsigned int Border;
int plane_stride;
/***********/
/* Y Plane */
/***********/
Border = ybf->border;
plane_stride = ybf->y_stride;
src_ptr1 = ybf->y_buffer - Border;
dest_ptr1 = src_ptr1 - (Border * plane_stride);
for (i = 0; i < (int)Border; i++)
{
memcpy(dest_ptr1, src_ptr1, plane_stride);
dest_ptr1 += plane_stride;
}
/***********/
/* U Plane */
/***********/
plane_stride = ybf->uv_stride;
Border /= 2;
src_ptr1 = ybf->u_buffer - Border;
dest_ptr1 = src_ptr1 - (Border * plane_stride);
for (i = 0; i < (int)(Border); i++)
{
memcpy(dest_ptr1, src_ptr1, plane_stride);
dest_ptr1 += plane_stride;
}
/***********/
/* V Plane */
/***********/
src_ptr1 = ybf->v_buffer - Border;
dest_ptr1 = src_ptr1 - (Border * plane_stride);
for (i = 0; i < (int)(Border); i++)
{
memcpy(dest_ptr1, src_ptr1, plane_stride);
dest_ptr1 += plane_stride;
}
}
static void yv12_extend_frame_bottom_c(YV12_BUFFER_CONFIG *ybf)
{
int i;
unsigned char *src_ptr1, *src_ptr2;
unsigned char *dest_ptr2;
unsigned int Border;
int plane_stride;
int plane_height;
/***********/
/* Y Plane */
/***********/
Border = ybf->border;
plane_stride = ybf->y_stride;
plane_height = ybf->y_height;
src_ptr1 = ybf->y_buffer - Border;
src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride;
dest_ptr2 = src_ptr2 + plane_stride;
for (i = 0; i < (int)Border; i++)
{
memcpy(dest_ptr2, src_ptr2, plane_stride);
dest_ptr2 += plane_stride;
}
/***********/
/* U Plane */
/***********/
plane_stride = ybf->uv_stride;
plane_height = ybf->uv_height;
Border /= 2;
src_ptr1 = ybf->u_buffer - Border;
src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride;
dest_ptr2 = src_ptr2 + plane_stride;
for (i = 0; i < (int)(Border); i++)
{
memcpy(dest_ptr2, src_ptr2, plane_stride);
dest_ptr2 += plane_stride;
}
/***********/
/* V Plane */
/***********/
src_ptr1 = ybf->v_buffer - Border;
src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride;
dest_ptr2 = src_ptr2 + plane_stride;
for (i = 0; i < (int)(Border); i++)
{
memcpy(dest_ptr2, src_ptr2, plane_stride);
dest_ptr2 += plane_stride;
}
}
static void yv12_extend_frame_left_right_c(YV12_BUFFER_CONFIG *ybf,
unsigned char *y_src,
unsigned char *u_src,
unsigned char *v_src)
{
int i;
unsigned char *src_ptr1, *src_ptr2;
unsigned char *dest_ptr1, *dest_ptr2;
unsigned int Border;
int plane_stride;
int plane_height;
int plane_width;
/***********/
/* Y Plane */
/***********/
Border = ybf->border;
plane_stride = ybf->y_stride;
plane_height = 16;
plane_width = ybf->y_width;
/* copy the left and right most columns out */
src_ptr1 = y_src;
src_ptr2 = src_ptr1 + plane_width - 1;
dest_ptr1 = src_ptr1 - Border;
dest_ptr2 = src_ptr2 + 1;
for (i = 0; i < plane_height; i++)
{
memset(dest_ptr1, src_ptr1[0], Border);
memset(dest_ptr2, src_ptr2[0], Border);
src_ptr1 += plane_stride;
src_ptr2 += plane_stride;
dest_ptr1 += plane_stride;
dest_ptr2 += plane_stride;
}
/***********/
/* U Plane */
/***********/
plane_stride = ybf->uv_stride;
plane_height = 8;
plane_width = ybf->uv_width;
Border /= 2;
/* copy the left and right most columns out */
src_ptr1 = u_src;
src_ptr2 = src_ptr1 + plane_width - 1;
dest_ptr1 = src_ptr1 - Border;
dest_ptr2 = src_ptr2 + 1;
for (i = 0; i < plane_height; i++)
{
memset(dest_ptr1, src_ptr1[0], Border);
memset(dest_ptr2, src_ptr2[0], Border);
src_ptr1 += plane_stride;
src_ptr2 += plane_stride;
dest_ptr1 += plane_stride;
dest_ptr2 += plane_stride;
}
/***********/
/* V Plane */
/***********/
/* copy the left and right most columns out */
src_ptr1 = v_src;
src_ptr2 = src_ptr1 + plane_width - 1;
dest_ptr1 = src_ptr1 - Border;
dest_ptr2 = src_ptr2 + 1;
for (i = 0; i < plane_height; i++)
{
memset(dest_ptr1, src_ptr1[0], Border);
memset(dest_ptr2, src_ptr2[0], Border);
src_ptr1 += plane_stride;
src_ptr2 += plane_stride;
dest_ptr1 += plane_stride;
dest_ptr2 += plane_stride;
}
}
static void decode_mb_rows(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
MODE_INFO *lf_mic = xd->mode_info_context;
int ibc = 0;
int num_part = 1 << pc->multi_token_partition;
int recon_yoffset, recon_uvoffset;
int mb_row, mb_col;
int mb_idx = 0;
YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME];
int recon_y_stride = yv12_fb_new->y_stride;
int recon_uv_stride = yv12_fb_new->uv_stride;
unsigned char *ref_buffer[MAX_REF_FRAMES][3];
unsigned char *dst_buffer[3];
unsigned char *lf_dst[3];
unsigned char *eb_dst[3];
int i;
int ref_fb_corrupted[MAX_REF_FRAMES];
ref_fb_corrupted[INTRA_FRAME] = 0;
for(i = 1; i < MAX_REF_FRAMES; i++)
{
YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i];
ref_buffer[i][0] = this_fb->y_buffer;
ref_buffer[i][1] = this_fb->u_buffer;
ref_buffer[i][2] = this_fb->v_buffer;
ref_fb_corrupted[i] = this_fb->corrupted;
}
/* Set up the buffer pointers */
eb_dst[0] = lf_dst[0] = dst_buffer[0] = yv12_fb_new->y_buffer;
eb_dst[1] = lf_dst[1] = dst_buffer[1] = yv12_fb_new->u_buffer;
eb_dst[2] = lf_dst[2] = dst_buffer[2] = yv12_fb_new->v_buffer;
xd->up_available = 0;
/* Initialize the loop filter for this frame. */
if(pc->filter_level)
vp8_loop_filter_frame_init(pc, xd, pc->filter_level);
vp8_setup_intra_recon_top_line(yv12_fb_new);
/* Decode the individual macro block */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row++)
{
if (num_part > 1)
{
xd->current_bc = & pbi->mbc[ibc];
ibc++;
if (ibc == num_part)
ibc = 0;
}
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
/* reset contexts */
xd->above_context = pc->above_context;
memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES));
xd->left_available = 0;
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->recon_above[0] = dst_buffer[0] + recon_yoffset;
xd->recon_above[1] = dst_buffer[1] + recon_uvoffset;
xd->recon_above[2] = dst_buffer[2] + recon_uvoffset;
xd->recon_left[0] = xd->recon_above[0] - 1;
xd->recon_left[1] = xd->recon_above[1] - 1;
xd->recon_left[2] = xd->recon_above[2] - 1;
xd->recon_above[0] -= xd->dst.y_stride;
xd->recon_above[1] -= xd->dst.uv_stride;
xd->recon_above[2] -= xd->dst.uv_stride;
/* TODO: move to outside row loop */
xd->recon_left_stride[0] = xd->dst.y_stride;
xd->recon_left_stride[1] = xd->dst.uv_stride;
setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1],
xd->recon_left[2], xd->dst.y_stride,
xd->dst.uv_stride);
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to values
* that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_ERROR_CONCEALMENT
{
int corrupt_residual = (!pbi->independent_partitions &&
pbi->frame_corrupt_residual) ||
vp8dx_bool_error(xd->current_bc);
if (pbi->ec_active &&
xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME &&
corrupt_residual)
{
/* We have an intra block with corrupt coefficients, better to
* conceal with an inter block. Interpolate MVs from neighboring
* MBs.
*
* Note that for the first mb with corrupt residual in a frame,
* we might not discover that before decoding the residual. That
* happens after this check, and therefore no inter concealment
* will be done.
*/
vp8_interpolate_motion(xd,
mb_row, mb_col,
pc->mb_rows, pc->mb_cols);
}
}
#endif
xd->dst.y_buffer = dst_buffer[0] + recon_yoffset;
xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset;
xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset;
if (xd->mode_info_context->mbmi.ref_frame >= LAST_FRAME) {
const MV_REFERENCE_FRAME ref = xd->mode_info_context->mbmi.ref_frame;
xd->pre.y_buffer = ref_buffer[ref][0] + recon_yoffset;
xd->pre.u_buffer = ref_buffer[ref][1] + recon_uvoffset;
xd->pre.v_buffer = ref_buffer[ref][2] + recon_uvoffset;
} else {
// ref_frame is INTRA_FRAME, pre buffer should not be used.
xd->pre.y_buffer = 0;
xd->pre.u_buffer = 0;
xd->pre.v_buffer = 0;
}
/* propagate errors from reference frames */
xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame];
decode_macroblock(pbi, xd, mb_idx);
mb_idx++;
xd->left_available = 1;
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
xd->recon_above[0] += 16;
xd->recon_above[1] += 8;
xd->recon_above[2] += 8;
xd->recon_left[0] += 16;
xd->recon_left[1] += 8;
xd->recon_left[2] += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
}
/* adjust to the next row of mbs */
vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
++xd->mode_info_context; /* skip prediction column */
xd->up_available = 1;
if(pc->filter_level)
{
if(mb_row > 0)
{
if (pc->filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_row_normal(pc, lf_mic, mb_row-1,
recon_y_stride, recon_uv_stride,
lf_dst[0], lf_dst[1], lf_dst[2]);
else
vp8_loop_filter_row_simple(pc, lf_mic, mb_row-1,
recon_y_stride, recon_uv_stride,
lf_dst[0], lf_dst[1], lf_dst[2]);
if(mb_row > 1)
{
yv12_extend_frame_left_right_c(yv12_fb_new,
eb_dst[0],
eb_dst[1],
eb_dst[2]);
eb_dst[0] += recon_y_stride * 16;
eb_dst[1] += recon_uv_stride * 8;
eb_dst[2] += recon_uv_stride * 8;
}
lf_dst[0] += recon_y_stride * 16;
lf_dst[1] += recon_uv_stride * 8;
lf_dst[2] += recon_uv_stride * 8;
lf_mic += pc->mb_cols;
lf_mic++; /* Skip border mb */
}
}
else
{
if(mb_row > 0)
{
/**/
yv12_extend_frame_left_right_c(yv12_fb_new,
eb_dst[0],
eb_dst[1],
eb_dst[2]);
eb_dst[0] += recon_y_stride * 16;
eb_dst[1] += recon_uv_stride * 8;
eb_dst[2] += recon_uv_stride * 8;
}
}
}
if(pc->filter_level)
{
if (pc->filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_row_normal(pc, lf_mic, mb_row-1, recon_y_stride,
recon_uv_stride, lf_dst[0], lf_dst[1],
lf_dst[2]);
else
vp8_loop_filter_row_simple(pc, lf_mic, mb_row-1, recon_y_stride,
recon_uv_stride, lf_dst[0], lf_dst[1],
lf_dst[2]);
yv12_extend_frame_left_right_c(yv12_fb_new,
eb_dst[0],
eb_dst[1],
eb_dst[2]);
eb_dst[0] += recon_y_stride * 16;
eb_dst[1] += recon_uv_stride * 8;
eb_dst[2] += recon_uv_stride * 8;
}
yv12_extend_frame_left_right_c(yv12_fb_new,
eb_dst[0],
eb_dst[1],
eb_dst[2]);
yv12_extend_frame_top_c(yv12_fb_new);
yv12_extend_frame_bottom_c(yv12_fb_new);
}
static unsigned int read_partition_size(VP8D_COMP *pbi,
const unsigned char *cx_size)
{
unsigned char temp[3];
if (pbi->decrypt_cb)
{
pbi->decrypt_cb(pbi->decrypt_state, cx_size, temp, 3);
cx_size = temp;
}
return cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end)
{
return (start + len > start && start + len <= end);
}
static unsigned int read_available_partition_size(
VP8D_COMP *pbi,
const unsigned char *token_part_sizes,
const unsigned char *fragment_start,
const unsigned char *first_fragment_end,
const unsigned char *fragment_end,
int i,
int num_part)
{
VP8_COMMON* pc = &pbi->common;
const unsigned char *partition_size_ptr = token_part_sizes + i * 3;
unsigned int partition_size = 0;
ptrdiff_t bytes_left = fragment_end - fragment_start;
/* Calculate the length of this partition. The last partition
* size is implicit. If the partition size can't be read, then
* either use the remaining data in the buffer (for EC mode)
* or throw an error.
*/
if (i < num_part - 1)
{
if (read_is_valid(partition_size_ptr, 3, first_fragment_end))
partition_size = read_partition_size(pbi, partition_size_ptr);
else if (pbi->ec_active)
partition_size = (unsigned int)bytes_left;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated partition size data");
}
else
partition_size = (unsigned int)bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(fragment_start, partition_size, fragment_end))
{
if (pbi->ec_active)
partition_size = (unsigned int)bytes_left;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", i + 1);
}
return partition_size;
}
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char* token_part_sizes)
{
vp8_reader *bool_decoder = &pbi->mbc[0];
unsigned int partition_idx;
unsigned int fragment_idx;
unsigned int num_token_partitions;
const unsigned char *first_fragment_end = pbi->fragments.ptrs[0] +
pbi->fragments.sizes[0];
TOKEN_PARTITION multi_token_partition =
(TOKEN_PARTITION)vp8_read_literal(&pbi->mbc[8], 2);
if (!vp8dx_bool_error(&pbi->mbc[8]))
pbi->common.multi_token_partition = multi_token_partition;
num_token_partitions = 1 << pbi->common.multi_token_partition;
/* Check for partitions within the fragments and unpack the fragments
* so that each fragment pointer points to its corresponding partition. */
for (fragment_idx = 0; fragment_idx < pbi->fragments.count; ++fragment_idx)
{
unsigned int fragment_size = pbi->fragments.sizes[fragment_idx];
const unsigned char *fragment_end = pbi->fragments.ptrs[fragment_idx] +
fragment_size;
/* Special case for handling the first partition since we have already
* read its size. */
if (fragment_idx == 0)
{
/* Size of first partition + token partition sizes element */
ptrdiff_t ext_first_part_size = token_part_sizes -
pbi->fragments.ptrs[0] + 3 * (num_token_partitions - 1);
fragment_size -= (unsigned int)ext_first_part_size;
if (fragment_size > 0)
{
pbi->fragments.sizes[0] = (unsigned int)ext_first_part_size;
/* The fragment contains an additional partition. Move to
* next. */
fragment_idx++;
pbi->fragments.ptrs[fragment_idx] = pbi->fragments.ptrs[0] +
pbi->fragments.sizes[0];
}
}
/* Split the chunk into partitions read from the bitstream */
while (fragment_size > 0)
{
ptrdiff_t partition_size = read_available_partition_size(
pbi,
token_part_sizes,
pbi->fragments.ptrs[fragment_idx],
first_fragment_end,
fragment_end,
fragment_idx - 1,
num_token_partitions);
pbi->fragments.sizes[fragment_idx] = (unsigned int)partition_size;
fragment_size -= (unsigned int)partition_size;
assert(fragment_idx <= num_token_partitions);
if (fragment_size > 0)
{
/* The fragment contains an additional partition.
* Move to next. */
fragment_idx++;
pbi->fragments.ptrs[fragment_idx] =
pbi->fragments.ptrs[fragment_idx - 1] + partition_size;
}
}
}
pbi->fragments.count = num_token_partitions + 1;
for (partition_idx = 1; partition_idx < pbi->fragments.count; ++partition_idx)
{
if (vp8dx_start_decode(bool_decoder,
pbi->fragments.ptrs[partition_idx],
pbi->fragments.sizes[partition_idx],
pbi->decrypt_cb, pbi->decrypt_state))
vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d",
partition_idx);
bool_decoder++;
}
#if CONFIG_MULTITHREAD
/* Clamp number of decoder threads */
if (pbi->decoding_thread_count > num_token_partitions - 1)
pbi->decoding_thread_count = num_token_partitions - 1;
#endif
}
static void init_frame(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME)
{
/* Various keyframe initializations */
memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_init_mbmode_probs(pc);
vp8_default_coef_probs(pc);
/* reset the segment feature data to 0 with delta coding (Default state). */
memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data));
xd->mb_segement_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
}
else
{
/* To enable choice of different interploation filters */
if (!pc->use_bilinear_mc_filter)
{
xd->subpixel_predict = vp8_sixtap_predict4x4;
xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
}
else
{
xd->subpixel_predict = vp8_bilinear_predict4x4;
xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
}
if (pbi->decoded_key_frame && pbi->ec_enabled && !pbi->ec_active)
pbi->ec_active = 1;
}
xd->left_context = &pc->left_context;
xd->mode_info_context = pc->mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if(pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = &pbi->mbc[8];
VP8_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const unsigned char *data = pbi->fragments.ptrs[0];
const unsigned int data_sz = pbi->fragments.sizes[0];
const unsigned char *data_end = data + data_sz;
ptrdiff_t first_partition_length_in_bytes;
int i, j, k, l;
const int *const mb_feature_data_bits = vp8_mb_feature_data_bits;
int corrupt_tokens = 0;
int prev_independent_partitions = pbi->independent_partitions;
YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME];
/* start with no corruption of current frame */
xd->corrupted = 0;
yv12_fb_new->corrupted = 0;
if (data_end - data < 3)
{
if (!pbi->ec_active)
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
}
/* Declare the missing frame as an inter frame since it will
be handled as an inter frame when we have estimated its
motion vectors. */
pc->frame_type = INTER_FRAME;
pc->version = 0;
pc->show_frame = 1;
first_partition_length_in_bytes = 0;
}
else
{
unsigned char clear_buffer[10];
const unsigned char *clear = data;
if (pbi->decrypt_cb)
{
int n = (int)VPXMIN(sizeof(clear_buffer), data_sz);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_buffer, n);
clear = clear_buffer;
}
pc->frame_type = (FRAME_TYPE)(clear[0] & 1);
pc->version = (clear[0] >> 1) & 7;
pc->show_frame = (clear[0] >> 4) & 1;
first_partition_length_in_bytes =
(clear[0] | (clear[1] << 8) | (clear[2] << 16)) >> 5;
if (!pbi->ec_active &&
(data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
clear += 3;
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (!pbi->ec_active || data + 3 < data_end)
{
if (clear[0] != 0x9d || clear[1] != 0x01 || clear[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (!pbi->ec_active || data + 6 < data_end)
{
pc->Width = (clear[3] | (clear[4] << 8)) & 0x3fff;
pc->horiz_scale = clear[4] >> 6;
pc->Height = (clear[5] | (clear[6] << 8)) & 0x3fff;
pc->vert_scale = clear[6] >> 6;
}
data += 7;
}
else
{
memcpy(&xd->pre, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG));
memcpy(&xd->dst, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG));
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME))
{
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(bc, data, (unsigned int)(data_end - data),
pbi->decrypt_cb, pbi->decrypt_state))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
(void)vp8_read_bit(bc); // colorspace
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc);
}
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->segmentation_enabled)
{
/* Signal whether or not the segmentation map is being explicitly updated this frame. */
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc);
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc);
if (xd->update_mb_segmentation_data)
{
xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc);
memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data));
/* For each segmentation feature (Quant and loop filter level) */
for (i = 0; i < MB_LVL_MAX; i++)
{
for (j = 0; j < MAX_MB_SEGMENTS; j++)
{
/* Frame level data */
if (vp8_read_bit(bc))
{
xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]);
if (vp8_read_bit(bc))
xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j];
}
else
xd->segment_feature_data[i][j] = 0;
}
}
}
if (xd->update_mb_segmentation_map)
{
/* Which macro block level features are enabled */
memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
/* Read the probs used to decode the segment id for each macro block. */
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
/* If not explicitly set value is defaulted to 255 by memset above */
if (vp8_read_bit(bc))
xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
else
{
/* No segmentation updates on this frame */
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
}
/* Read the loop filter level and type */
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc);
pc->filter_level = vp8_read_literal(bc, 6);
pc->sharpness_level = vp8_read_literal(bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_enabled)
{
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_update)
{
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
setup_token_decoder(pbi, data + first_partition_length_in_bytes);
xd->current_bc = &pbi->mbc[0];
/* Read the default quantizers. */
{
int Q, q_update;
Q = vp8_read_literal(bc, 7); /* AC 1st order Q = default */
pc->base_qindex = Q;
q_update = 0;
pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
/* MB level dequantizer setup */
vp8_mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type != KEY_FRAME)
{
/* Should the GF or ARF be updated from the current frame */
pc->refresh_golden_frame = vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't refresh golden if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_golden_frame = 0;
#endif
pc->refresh_alt_ref_frame = vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't refresh altref if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_alt_ref_frame = 0;
#endif
/* Buffer to buffer copy flags. */
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't copy to the golden if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->copy_buffer_to_gf = 0;
#endif
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(bc, 2);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't copy to the alt-ref if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->copy_buffer_to_arf = 0;
#endif
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc);
}
pc->refresh_entropy_probs = vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we shouldn't refresh the probabilities if the bit is
* missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_entropy_probs = 0;
#endif
if (pc->refresh_entropy_probs == 0)
{
memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
#if CONFIG_ERROR_CONCEALMENT
/* Assume we should refresh the last frame if the bit is missing */
xd->corrupted |= vp8dx_bool_error(bc);
if (pbi->ec_active && xd->corrupted)
pc->refresh_last_frame = 1;
#endif
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
{
pbi->independent_partitions = 1;
/* read coef probability tree */
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < ENTROPY_NODES; l++)
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
if (k > 0 && *p != pc->fc.coef_probs[i][j][k-1][l])
pbi->independent_partitions = 0;
}
}
/* clear out the coeff buffer */
memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
vp8_decode_mode_mvs(pbi);
#if CONFIG_ERROR_CONCEALMENT
if (pbi->ec_active &&
pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows)
{
/* Motion vectors are missing in this frame. We will try to estimate
* them and then continue decoding the frame as usual */
vp8_estimate_missing_mvs(pbi);
}
#endif
memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
pbi->frame_corrupt_residual = 0;
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION)
{
unsigned int thread;
vp8mt_decode_mb_rows(pbi, xd);
vp8_yv12_extend_frame_borders(yv12_fb_new);
for (thread = 0; thread < pbi->decoding_thread_count; ++thread)
corrupt_tokens |= pbi->mb_row_di[thread].mbd.corrupted;
}
else
#endif
{
decode_mb_rows(pbi);
corrupt_tokens |= xd->corrupted;
}
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
yv12_fb_new->corrupted = vp8dx_bool_error(bc);
/* 2. Check the macroblock information */
yv12_fb_new->corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame)
{
if (pc->frame_type == KEY_FRAME &&
!yv12_fb_new->corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
/* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */
if (pc->refresh_entropy_probs == 0)
{
memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
pbi->independent_partitions = prev_independent_partitions;
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
return 0;
}