virtualx-engine/servers/physics/body_pair_sw.cpp

533 lines
15 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* body_pair_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
2015-04-18 19:38:54 +02:00
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_pair_sw.h"
#include "collision_solver_sw.h"
#include "space_sw.h"
#include "os/os.h"
2014-02-10 02:10:30 +01:00
/*
#define NO_ACCUMULATE_IMPULSES
#define NO_SPLIT_IMPULSES
#define NO_FRICTION
*/
#define NO_TANGENTIALS
/* BODY PAIR */
//#define ALLOWED_PENETRATION 0.01
#define RELAXATION_TIMESTEPS 3
#define MIN_VELOCITY 0.0001
void BodyPairSW::_contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) {
BodyPairSW* pair = (BodyPairSW*)p_userdata;
pair->contact_added_callback(p_point_A,p_point_B);
}
void BodyPairSW::contact_added_callback(const Vector3& p_point_A,const Vector3& p_point_B) {
// check if we already have the contact
//Vector3 local_A = A->get_inv_transform().xform(p_point_A);
//Vector3 local_B = B->get_inv_transform().xform(p_point_B);
Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B-offset_B);
int new_index = contact_count;
ERR_FAIL_COND( new_index >= (MAX_CONTACTS+1) );
Contact contact;
contact.acc_normal_impulse=0;
contact.acc_bias_impulse=0;
contact.acc_tangent_impulse=Vector3();
contact.local_A=local_A;
contact.local_B=local_B;
contact.normal=(p_point_A-p_point_B).normalized();
// attempt to determine if the contact will be reused
real_t contact_recycle_radius=space->get_contact_recycle_radius();
for (int i=0;i<contact_count;i++) {
Contact& c = contacts[i];
if (
c.local_A.distance_squared_to( local_A ) < (contact_recycle_radius*contact_recycle_radius) &&
c.local_B.distance_squared_to( local_B ) < (contact_recycle_radius*contact_recycle_radius) ) {
contact.acc_normal_impulse=c.acc_normal_impulse;
contact.acc_bias_impulse=c.acc_bias_impulse;
contact.acc_tangent_impulse=c.acc_tangent_impulse;
new_index=i;
break;
}
}
// figure out if the contact amount must be reduced to fit the new contact
if (new_index == MAX_CONTACTS) {
// remove the contact with the minimum depth
int least_deep=-1;
float min_depth=1e10;
for (int i=0;i<=contact_count;i++) {
Contact& c = (i==contact_count)?contact:contacts[i];
Vector3 global_A = A->get_transform().basis.xform(c.local_A);
Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B;
Vector3 axis = global_A - global_B;
float depth = axis.dot( c.normal );
if (depth<min_depth) {
min_depth=depth;
least_deep=i;
}
}
ERR_FAIL_COND(least_deep==-1);
if (least_deep < contact_count) { //replace the last deep contact by the new one
contacts[least_deep]=contact;
}
return;
}
contacts[new_index]=contact;
if (new_index==contact_count) {
contact_count++;
}
}
void BodyPairSW::validate_contacts() {
//make sure to erase contacts that are no longer valid
real_t contact_max_separation=space->get_contact_max_separation();
for (int i=0;i<contact_count;i++) {
Contact& c = contacts[i];
Vector3 global_A = A->get_transform().basis.xform(c.local_A);
Vector3 global_B = B->get_transform().basis.xform(c.local_B)+offset_B;
Vector3 axis = global_A - global_B;
float depth = axis.dot( c.normal );
if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) {
// contact no longer needed, remove
if ((i+1) < contact_count) {
// swap with the last one
SWAP( contacts[i], contacts[ contact_count-1 ] );
}
i--;
contact_count--;
}
}
}
bool BodyPairSW::_test_ccd(float p_step,BodySW *p_A, int p_shape_A,const Transform& p_xform_A,BodySW *p_B, int p_shape_B,const Transform& p_xform_B) {
Vector3 motion = p_A->get_linear_velocity()*p_step;
real_t mlen = motion.length();
if (mlen<CMP_EPSILON)
return false;
Vector3 mnormal = motion / mlen;
real_t min,max;
p_A->get_shape(p_shape_A)->project_range(mnormal,p_xform_A,min,max);
bool fast_object = mlen > (max-min)*0.3; //going too fast in that direction
if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis
return false;
}
//cast a segment from support in motion normal, in the same direction of motion by motion length
//support is the worst case collision point, so real collision happened before
Vector3 s=p_A->get_shape(p_shape_A)->get_support(p_xform_A.basis.xform(mnormal).normalized());
Vector3 from = p_xform_A.xform(s);
Vector3 to = from + motion;
Transform from_inv = p_xform_B.affine_inverse();
Vector3 local_from = from_inv.xform(from-mnormal*mlen*0.1); //start from a little inside the bounding box
Vector3 local_to = from_inv.xform(to);
Vector3 rpos,rnorm;
if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from,local_to,rpos,rnorm)) {
return false;
}
//shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough
Vector3 hitpos = p_xform_B.xform(rpos);
float newlen = hitpos.distance_to(from)-(max-min)*0.01;
p_A->set_linear_velocity((mnormal*newlen)/p_step);
return true;
}
2014-02-10 02:10:30 +01:00
bool BodyPairSW::setup(float p_step) {
//cannot collide
if ((A->get_layer_mask()&B->get_layer_mask())==0 || A->has_exception(B->get_self()) || B->has_exception(A->get_self()) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && A->get_max_contacts_reported()==0 && B->get_max_contacts_reported()==0)) {
collided=false;
return false;
}
2014-02-10 02:10:30 +01:00
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
validate_contacts();
Vector3 offset_A = A->get_transform().get_origin();
Transform xform_Au = Transform(A->get_transform().basis,Vector3());
Transform xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform xform_Bu = B->get_transform();
xform_Bu.origin-=offset_A;
Transform xform_B = xform_Bu * B->get_shape_transform(shape_B);
ShapeSW *shape_A_ptr=A->get_shape(shape_A);
ShapeSW *shape_B_ptr=B->get_shape(shape_B);
bool collided = CollisionSolverSW::solve_static(shape_A_ptr,xform_A,shape_B_ptr,xform_B,_contact_added_callback,this,&sep_axis);
this->collided=collided;
if (!collided) {
//test ccd (currently just a raycast)
if (A->is_continuous_collision_detection_enabled() && A->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) {
_test_ccd(p_step,A,shape_A,xform_A,B,shape_B,xform_B);
}
if (B->is_continuous_collision_detection_enabled() && B->get_mode()>PhysicsServer::BODY_MODE_KINEMATIC && A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC) {
_test_ccd(p_step,B,shape_B,xform_B,A,shape_A,xform_A);
}
2014-02-10 02:10:30 +01:00
return false;
}
2014-02-10 02:10:30 +01:00
real_t max_penetration = space->get_contact_max_allowed_penetration();
float bias = 0.3f;
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
if (shape_A_ptr->get_custom_bias()==0)
bias=shape_B_ptr->get_custom_bias();
else if (shape_B_ptr->get_custom_bias()==0)
bias=shape_A_ptr->get_custom_bias();
else
bias=(shape_B_ptr->get_custom_bias()+shape_A_ptr->get_custom_bias())*0.5;
}
2014-02-10 02:10:30 +01:00
real_t inv_dt = 1.0/p_step;
for(int i=0;i<contact_count;i++) {
Contact &c = contacts[i];
c.active=false;
Vector3 global_A = xform_Au.xform(c.local_A);
Vector3 global_B = xform_Bu.xform(c.local_B);
2014-02-10 02:10:30 +01:00
real_t depth = c.normal.dot(global_A - global_B);
if (depth<=0) {
c.active=false;
continue;
}
c.active=true;
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A+offset_A);
space->add_debug_contact(global_B+offset_A);
}
#endif
2014-02-10 02:10:30 +01:00
int gather_A = A->can_report_contacts();
int gather_B = B->can_report_contacts();
c.rA = global_A;
c.rB = global_B-offset_B;
// contact query reporting...
#if 0
if (A->get_body_type() == PhysicsServer::BODY_CHARACTER)
static_cast<CharacterBodySW*>(A)->report_character_contact( global_A, global_B, B );
if (B->get_body_type() == PhysicsServer::BODY_CHARACTER)
static_cast<CharacterBodySW*>(B)->report_character_contact( global_B, global_A, A );
if (A->has_contact_query())
A->report_contact( global_A, global_B, B );
if (B->has_contact_query())
B->report_contact( global_B, global_A, A );
#endif
if (A->can_report_contacts()) {
Vector3 crB = A->get_angular_velocity().cross( c.rA ) + A->get_linear_velocity();
A->add_contact(global_A,-c.normal,depth,shape_A,global_B,shape_B,B->get_instance_id(),B->get_self(),crB);
}
if (B->can_report_contacts()) {
Vector3 crA = A->get_angular_velocity().cross( c.rB ) + A->get_linear_velocity();
B->add_contact(global_B,c.normal,depth,shape_B,global_A,shape_A,A->get_instance_id(),A->get_self(),crA);
}
if (A->is_shape_set_as_trigger(shape_A) || B->is_shape_set_as_trigger(shape_B) || (A->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC && B->get_mode()<=PhysicsServer::BODY_MODE_KINEMATIC)) {
c.active=false;
collided=false;
continue;
}
2014-02-10 02:10:30 +01:00
c.active=true;
// Precompute normal mass, tangent mass, and bias.
Vector3 inertia_A = A->get_inv_inertia_tensor().xform( c.rA.cross( c.normal ) );
Vector3 inertia_B = B->get_inv_inertia_tensor().xform( c.rB.cross( c.normal ) );
real_t kNormal = A->get_inv_mass() + B->get_inv_mass();
kNormal += c.normal.dot( inertia_A.cross(c.rA ) ) + c.normal.dot( inertia_B.cross( c.rB ));
c.mass_normal = 1.0f / kNormal;
#if 1
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
#else
if (depth > max_penetration) {
c.bias = (depth - max_penetration) * (1.0/(p_step*(1.0/RELAXATION_TIMESTEPS)));
} else {
float approach = -0.1f * (depth - max_penetration) / (CMP_EPSILON + max_penetration);
approach = CLAMP( approach, CMP_EPSILON, 1.0 );
c.bias = approach * (depth - max_penetration) * (1.0/p_step);
}
#endif
c.depth=depth;
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
A->apply_impulse( c.rA, -j_vec );
B->apply_impulse( c.rB, j_vec );
c.acc_bias_impulse=0;
Vector3 jb_vec = c.normal * c.acc_bias_impulse;
A->apply_bias_impulse( c.rA, -jb_vec );
B->apply_bias_impulse( c.rB, jb_vec );
c.bounce = MAX(A->get_bounce(),B->get_bounce());
if (c.bounce) {
Vector3 crA = A->get_angular_velocity().cross( c.rA );
Vector3 crB = B->get_angular_velocity().cross( c.rB );
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
//normal impule
c.bounce = c.bounce * dv.dot(c.normal);
}
2014-02-10 02:10:30 +01:00
}
return true;
}
void BodyPairSW::solve(float p_step) {
if (!collided)
return;
for(int i=0;i<contact_count;i++) {
Contact &c = contacts[i];
if (!c.active)
continue;
c.active=false; //try to deactivate, will activate itself if still needed
//bias impule
Vector3 crbA = A->get_biased_angular_velocity().cross( c.rA );
Vector3 crbB = B->get_biased_angular_velocity().cross( c.rB );
Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
real_t vbn = dbv.dot(c.normal);
if (Math::abs(-vbn+c.bias)>MIN_VELOCITY) {
real_t jbn = (-vbn + c.bias)*c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
A->apply_bias_impulse(c.rA,-jb);
B->apply_bias_impulse(c.rB, jb);
c.active=true;
}
Vector3 crA = A->get_angular_velocity().cross( c.rA );
Vector3 crB = B->get_angular_velocity().cross( c.rB );
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
//normal impule
real_t vn = dv.dot(c.normal);
if (Math::abs(vn)>MIN_VELOCITY) {
real_t jn = -(c.bounce + vn)*c.mass_normal;
2014-02-10 02:10:30 +01:00
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
Vector3 j =c.normal * (c.acc_normal_impulse - jnOld);
A->apply_impulse(c.rA,-j);
B->apply_impulse(c.rB, j);
c.active=true;
}
//friction impule
real_t friction = A->get_friction() * B->get_friction();
Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross( c.rA );
Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross( c.rB );
Vector3 dtv = lvB - lvA;
real_t tn = c.normal.dot(dtv);
// tangential velocity
Vector3 tv = dtv - c.normal * tn;
real_t tvl = tv.length();
if (tvl > MIN_VELOCITY) {
tv /= tvl;
Vector3 temp1 = A->get_inv_inertia_tensor().xform( c.rA.cross( tv ) );
Vector3 temp2 = B->get_inv_inertia_tensor().xform( c.rB.cross( tv ) );
real_t t = -tvl /
(A->get_inv_mass() + B->get_inv_mass() + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));
Vector3 jt = t * tv;
Vector3 jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse += jt;
real_t fi_len = c.acc_tangent_impulse.length();
real_t jtMax = c.acc_normal_impulse * friction;
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
c.acc_tangent_impulse*=jtMax / fi_len;
}
jt = c.acc_tangent_impulse - jtOld;
A->apply_impulse( c.rA, -jt );
B->apply_impulse( c.rB, jt );
c.active=true;
}
}
}
BodyPairSW::BodyPairSW(BodySW *p_A, int p_shape_A,BodySW *p_B, int p_shape_B) : ConstraintSW(_arr,2) {
A=p_A;
B=p_B;
shape_A=p_shape_A;
shape_B=p_shape_B;
space=A->get_space();
A->add_constraint(this,0);
B->add_constraint(this,1);
contact_count=0;
collided=false;
}
BodyPairSW::~BodyPairSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}