virtualx-engine/core/math/vector2.cpp

251 lines
6.5 KiB
C++
Raw Normal View History

/*************************************************************************/
/* vector2.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector2.h"
real_t Vector2::angle() const {
return Math::atan2(y, x);
}
real_t Vector2::length() const {
return Math::sqrt(x * x + y * y);
}
real_t Vector2::length_squared() const {
return x * x + y * y;
}
void Vector2::normalize() {
real_t l = x * x + y * y;
if (l != 0) {
l = Math::sqrt(l);
x /= l;
y /= l;
}
}
Vector2 Vector2::normalized() const {
Vector2 v = *this;
v.normalize();
return v;
}
bool Vector2::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
}
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
}
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
}
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
return Math::atan2(cross(p_vector2), dot(p_vector2));
}
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
return Math::atan2(y - p_vector2.y, x - p_vector2.x);
}
real_t Vector2::dot(const Vector2 &p_other) const {
return x * p_other.x + y * p_other.y;
}
real_t Vector2::cross(const Vector2 &p_other) const {
return x * p_other.y - y * p_other.x;
}
Vector2 Vector2::floor() const {
return Vector2(Math::floor(x), Math::floor(y));
}
Vector2 Vector2::ceil() const {
return Vector2(Math::ceil(x), Math::ceil(y));
}
Vector2 Vector2::round() const {
return Vector2(Math::round(x), Math::round(y));
}
Vector2 Vector2::rotated(real_t p_by) const {
Vector2 v;
v.set_rotation(angle() + p_by);
v *= length();
return v;
}
2018-08-16 12:52:38 +02:00
Vector2 Vector2::project(const Vector2 &p_b) const {
2018-08-22 19:27:35 +02:00
return p_b * (dot(p_b) / p_b.length_squared());
}
Vector2 Vector2::snapped(const Vector2 &p_by) const {
return Vector2(
Math::stepify(x, p_by.x),
Math::stepify(y, p_by.y));
}
Vector2 Vector2::clamped(real_t p_len) const {
real_t l = length();
Vector2 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
Vector2 p0 = p_pre_a;
Vector2 p1 = *this;
Vector2 p2 = p_b;
Vector2 p3 = p_post_b;
real_t t = p_t;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector2 out;
out = 0.5 * ((p1 * 2.0) +
(-p0 + p2) * t +
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
return out;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
return -reflect(p_normal);
}
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2());
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
/* Vector2i */
Vector2i Vector2i::operator+(const Vector2i &p_v) const {
return Vector2i(x + p_v.x, y + p_v.y);
}
void Vector2i::operator+=(const Vector2i &p_v) {
x += p_v.x;
y += p_v.y;
}
Vector2i Vector2i::operator-(const Vector2i &p_v) const {
return Vector2i(x - p_v.x, y - p_v.y);
}
void Vector2i::operator-=(const Vector2i &p_v) {
x -= p_v.x;
y -= p_v.y;
}
Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
return Vector2i(x * p_v1.x, y * p_v1.y);
};
Vector2i Vector2i::operator*(const int &rvalue) const {
return Vector2i(x * rvalue, y * rvalue);
};
void Vector2i::operator*=(const int &rvalue) {
x *= rvalue;
y *= rvalue;
};
Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
return Vector2i(x / p_v1.x, y / p_v1.y);
};
Vector2i Vector2i::operator/(const int &rvalue) const {
return Vector2i(x / rvalue, y / rvalue);
};
void Vector2i::operator/=(const int &rvalue) {
x /= rvalue;
y /= rvalue;
};
Vector2i Vector2i::operator-() const {
return Vector2i(-x, -y);
}
bool Vector2i::operator==(const Vector2i &p_vec2) const {
return x == p_vec2.x && y == p_vec2.y;
}
bool Vector2i::operator!=(const Vector2i &p_vec2) const {
return x != p_vec2.x || y != p_vec2.y;
}