2017-08-01 14:30:58 +02:00
|
|
|
/*
|
|
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
|
|
subject to the following restrictions:
|
|
|
|
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "btContinuousConvexCollision.h"
|
|
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
|
|
|
|
#include "LinearMath/btTransformUtil.h"
|
|
|
|
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
|
|
|
|
|
|
|
#include "btGjkPairDetector.h"
|
|
|
|
#include "btPointCollector.h"
|
|
|
|
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
btContinuousConvexCollision::btContinuousConvexCollision ( const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
|
|
|
|
:m_simplexSolver(simplexSolver),
|
|
|
|
m_penetrationDepthSolver(penetrationDepthSolver),
|
|
|
|
m_convexA(convexA),m_convexB1(convexB),m_planeShape(0)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
btContinuousConvexCollision::btContinuousConvexCollision( const btConvexShape* convexA,const btStaticPlaneShape* plane)
|
|
|
|
:m_simplexSolver(0),
|
|
|
|
m_penetrationDepthSolver(0),
|
|
|
|
m_convexA(convexA),m_convexB1(0),m_planeShape(plane)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
|
|
|
|
/// You don't want your game ever to lock-up.
|
|
|
|
#define MAX_ITERATIONS 64
|
|
|
|
|
|
|
|
void btContinuousConvexCollision::computeClosestPoints( const btTransform& transA, const btTransform& transB,btPointCollector& pointCollector)
|
|
|
|
{
|
|
|
|
if (m_convexB1)
|
|
|
|
{
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
btGjkPairDetector gjk(m_convexA,m_convexB1,m_convexA->getShapeType(),m_convexB1->getShapeType(),m_convexA->getMargin(),m_convexB1->getMargin(),m_simplexSolver,m_penetrationDepthSolver);
|
|
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
|
|
input.m_transformA = transA;
|
|
|
|
input.m_transformB = transB;
|
|
|
|
gjk.getClosestPoints(input,pointCollector,0);
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
//convex versus plane
|
|
|
|
const btConvexShape* convexShape = m_convexA;
|
|
|
|
const btStaticPlaneShape* planeShape = m_planeShape;
|
|
|
|
|
|
|
|
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
|
|
|
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
|
|
|
|
|
|
|
btTransform convexWorldTransform = transA;
|
|
|
|
btTransform convexInPlaneTrans;
|
|
|
|
convexInPlaneTrans= transB.inverse() * convexWorldTransform;
|
|
|
|
btTransform planeInConvex;
|
|
|
|
planeInConvex= convexWorldTransform.inverse() * transB;
|
|
|
|
|
|
|
|
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal);
|
|
|
|
|
|
|
|
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
|
|
|
|
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
|
|
|
|
|
|
|
|
btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal;
|
|
|
|
btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
|
|
|
|
btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal;
|
|
|
|
|
|
|
|
pointCollector.addContactPoint(
|
|
|
|
normalOnSurfaceB,
|
|
|
|
vtxInPlaneWorld,
|
|
|
|
distance);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool btContinuousConvexCollision::calcTimeOfImpact(
|
|
|
|
const btTransform& fromA,
|
|
|
|
const btTransform& toA,
|
|
|
|
const btTransform& fromB,
|
|
|
|
const btTransform& toB,
|
|
|
|
CastResult& result)
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
/// compute linear and angular velocity for this interval, to interpolate
|
|
|
|
btVector3 linVelA,angVelA,linVelB,angVelB;
|
|
|
|
btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
|
|
|
|
btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
|
|
|
|
|
|
|
|
|
|
|
|
btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
|
|
|
|
btScalar boundingRadiusB = m_convexB1?m_convexB1->getAngularMotionDisc():0.f;
|
|
|
|
|
|
|
|
btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
|
|
|
|
btVector3 relLinVel = (linVelB-linVelA);
|
|
|
|
|
|
|
|
btScalar relLinVelocLength = (linVelB-linVelA).length();
|
|
|
|
|
|
|
|
if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
btScalar lambda = btScalar(0.);
|
|
|
|
|
|
|
|
btVector3 n;
|
|
|
|
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
|
|
|
|
bool hasResult = false;
|
|
|
|
btVector3 c;
|
|
|
|
|
|
|
|
btScalar lastLambda = lambda;
|
|
|
|
//btScalar epsilon = btScalar(0.001);
|
|
|
|
|
|
|
|
int numIter = 0;
|
|
|
|
//first solution, using GJK
|
|
|
|
|
|
|
|
|
|
|
|
btScalar radius = 0.001f;
|
|
|
|
// result.drawCoordSystem(sphereTr);
|
|
|
|
|
|
|
|
btPointCollector pointCollector1;
|
|
|
|
|
2018-09-07 16:11:04 +02:00
|
|
|
{
|
2017-08-01 14:30:58 +02:00
|
|
|
computeClosestPoints(fromA,fromB,pointCollector1);
|
|
|
|
|
|
|
|
hasResult = pointCollector1.m_hasResult;
|
|
|
|
c = pointCollector1.m_pointInWorld;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hasResult)
|
|
|
|
{
|
|
|
|
btScalar dist;
|
|
|
|
dist = pointCollector1.m_distance + result.m_allowedPenetration;
|
|
|
|
n = pointCollector1.m_normalOnBInWorld;
|
|
|
|
btScalar projectedLinearVelocity = relLinVel.dot(n);
|
|
|
|
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
//not close enough
|
|
|
|
while (dist > radius)
|
|
|
|
{
|
|
|
|
if (result.m_debugDrawer)
|
|
|
|
{
|
|
|
|
result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1));
|
|
|
|
}
|
|
|
|
btScalar dLambda = btScalar(0.);
|
|
|
|
|
|
|
|
projectedLinearVelocity = relLinVel.dot(n);
|
|
|
|
|
|
|
|
|
|
|
|
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
|
|
|
|
if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
|
|
|
|
|
2018-09-07 16:11:04 +02:00
|
|
|
lambda += dLambda;
|
2017-08-01 14:30:58 +02:00
|
|
|
|
2018-09-07 16:11:04 +02:00
|
|
|
if (lambda > btScalar(1.) || lambda < btScalar(0.))
|
2017-08-01 14:30:58 +02:00
|
|
|
return false;
|
|
|
|
|
|
|
|
//todo: next check with relative epsilon
|
|
|
|
if (lambda <= lastLambda)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
//n.setValue(0,0,0);
|
2018-09-07 16:11:04 +02:00
|
|
|
//break;
|
2017-08-01 14:30:58 +02:00
|
|
|
}
|
|
|
|
lastLambda = lambda;
|
|
|
|
|
|
|
|
//interpolate to next lambda
|
|
|
|
btTransform interpolatedTransA,interpolatedTransB,relativeTrans;
|
|
|
|
|
|
|
|
btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
|
|
|
|
btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
|
|
|
|
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
|
|
|
|
|
|
|
|
if (result.m_debugDrawer)
|
|
|
|
{
|
|
|
|
result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0));
|
|
|
|
}
|
|
|
|
|
|
|
|
result.DebugDraw( lambda );
|
|
|
|
|
|
|
|
btPointCollector pointCollector;
|
|
|
|
computeClosestPoints(interpolatedTransA,interpolatedTransB,pointCollector);
|
|
|
|
|
|
|
|
if (pointCollector.m_hasResult)
|
|
|
|
{
|
|
|
|
dist = pointCollector.m_distance+result.m_allowedPenetration;
|
|
|
|
c = pointCollector.m_pointInWorld;
|
|
|
|
n = pointCollector.m_normalOnBInWorld;
|
|
|
|
} else
|
|
|
|
{
|
|
|
|
result.reportFailure(-1, numIter);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
numIter++;
|
2018-09-07 16:11:04 +02:00
|
|
|
if (numIter > MAX_ITERATIONS)
|
2017-08-01 14:30:58 +02:00
|
|
|
{
|
|
|
|
result.reportFailure(-2, numIter);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result.m_fraction = lambda;
|
|
|
|
result.m_normal = n;
|
|
|
|
result.m_hitPoint = c;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|