virtualx-engine/thirdparty/thekla_atlas/nvmath/Basis.cpp

271 lines
7.9 KiB
C++
Raw Normal View History

// This code is in the public domain -- Ignacio Casta<74>o <castano@gmail.com>
#include "Basis.h"
using namespace nv;
/// Normalize basis vectors.
void Basis::normalize(float epsilon /*= NV_EPSILON*/)
{
normal = ::normalizeSafe(normal, Vector3(0.0f), epsilon);
tangent = ::normalizeSafe(tangent, Vector3(0.0f), epsilon);
bitangent = ::normalizeSafe(bitangent, Vector3(0.0f), epsilon);
}
/// Gram-Schmidt orthogonalization.
/// @note Works only if the vectors are close to orthogonal.
void Basis::orthonormalize(float epsilon /*= NV_EPSILON*/)
{
// N' = |N|
// T' = |T - (N' dot T) N'|
// B' = |B - (N' dot B) N' - (T' dot B) T'|
normal = ::normalize(normal, epsilon);
tangent -= normal * dot(normal, tangent);
tangent = ::normalize(tangent, epsilon);
bitangent -= normal * dot(normal, bitangent);
bitangent -= tangent * dot(tangent, bitangent);
bitangent = ::normalize(bitangent, epsilon);
}
/// Robust orthonormalization.
/// Returns an orthonormal basis even when the original is degenerate.
void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
{
// Normalize all vectors.
normalize(epsilon);
if (lengthSquared(normal) < epsilon*epsilon)
{
// Build normal from tangent and bitangent.
normal = cross(tangent, bitangent);
if (lengthSquared(normal) < epsilon*epsilon)
{
// Arbitrary basis.
tangent = Vector3(1, 0, 0);
bitangent = Vector3(0, 1, 0);
normal = Vector3(0, 0, 1);
return;
}
normal = nv::normalize(normal, epsilon);
}
// Project tangents to normal plane.
tangent -= normal * dot(normal, tangent);
bitangent -= normal * dot(normal, bitangent);
if (lengthSquared(tangent) < epsilon*epsilon)
{
if (lengthSquared(bitangent) < epsilon*epsilon)
{
// Arbitrary basis.
buildFrameForDirection(normal);
}
else
{
// Build tangent from bitangent.
bitangent = nv::normalize(bitangent, epsilon);
tangent = cross(bitangent, normal);
nvDebugCheck(isNormalized(tangent, epsilon));
}
}
else
{
tangent = nv::normalize(tangent, epsilon);
#if 0
bitangent -= tangent * dot(tangent, bitangent);
if (lengthSquared(bitangent) < epsilon*epsilon)
{
bitangent = cross(tangent, normal);
nvDebugCheck(isNormalized(bitangent, epsilon));
}
else
{
bitangent = nv::normalize(bitangent, epsilon);
}
#else
if (lengthSquared(bitangent) < epsilon*epsilon)
{
// Build bitangent from tangent.
bitangent = cross(tangent, normal);
nvDebugCheck(isNormalized(bitangent, epsilon));
}
else
{
bitangent = nv::normalize(bitangent, epsilon);
// At this point tangent and bitangent are orthogonal to normal, but we don't know whether their orientation.
Vector3 bisector;
if (lengthSquared(tangent + bitangent) < epsilon*epsilon)
{
bisector = tangent;
}
else
{
bisector = nv::normalize(tangent + bitangent);
}
Vector3 axis = nv::normalize(cross(bisector, normal));
//nvDebugCheck(isNormalized(axis, epsilon));
nvDebugCheck(equal(dot(axis, tangent), -dot(axis, bitangent), epsilon));
if (dot(axis, tangent) > 0)
{
tangent = bisector + axis;
bitangent = bisector - axis;
}
else
{
tangent = bisector - axis;
bitangent = bisector + axis;
}
// Make sure the resulting tangents are still perpendicular to the normal.
tangent -= normal * dot(normal, tangent);
bitangent -= normal * dot(normal, bitangent);
// Double check.
nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
// Normalize.
tangent = nv::normalize(tangent);
bitangent = nv::normalize(bitangent);
// If tangent and bitangent are not orthogonal, then derive bitangent from tangent, just in case...
if (!equal(dot(tangent, bitangent), 0.0f, epsilon)) {
bitangent = cross(tangent, normal);
bitangent = nv::normalize(bitangent);
}
}
#endif
}
/*// Check vector lengths.
if (!isNormalized(normal, epsilon))
{
nvDebug("%f %f %f\n", normal.x, normal.y, normal.z);
nvDebug("%f %f %f\n", tangent.x, tangent.y, tangent.z);
nvDebug("%f %f %f\n", bitangent.x, bitangent.y, bitangent.z);
}*/
nvDebugCheck(isNormalized(normal, epsilon));
nvDebugCheck(isNormalized(tangent, epsilon));
nvDebugCheck(isNormalized(bitangent, epsilon));
// Check vector angles.
nvDebugCheck(equal(dot(normal, tangent), 0.0f, epsilon));
nvDebugCheck(equal(dot(normal, bitangent), 0.0f, epsilon));
nvDebugCheck(equal(dot(tangent, bitangent), 0.0f, epsilon));
// Check vector orientation.
const float det = dot(cross(normal, tangent), bitangent);
nvDebugCheck(equal(det, 1.0f, epsilon) || equal(det, -1.0f, epsilon));
}
/// Build an arbitrary frame for the given direction.
void Basis::buildFrameForDirection(Vector3::Arg d, float angle/*= 0*/)
{
nvCheck(isNormalized(d));
normal = d;
// Choose minimum axis.
if (fabsf(normal.x) < fabsf(normal.y) && fabsf(normal.x) < fabsf(normal.z))
{
tangent = Vector3(1, 0, 0);
}
else if (fabsf(normal.y) < fabsf(normal.z))
{
tangent = Vector3(0, 1, 0);
}
else
{
tangent = Vector3(0, 0, 1);
}
// Ortogonalize
tangent -= normal * dot(normal, tangent);
tangent = ::normalize(tangent);
bitangent = cross(normal, tangent);
// Rotate frame around normal according to angle.
if (angle != 0.0f) {
float c = cosf(angle);
float s = sinf(angle);
Vector3 tmp = c * tangent - s * bitangent;
bitangent = s * tangent + c * bitangent;
tangent = tmp;
}
}
bool Basis::isValid() const
{
if (equal(normal, Vector3(0.0f))) return false;
if (equal(tangent, Vector3(0.0f))) return false;
if (equal(bitangent, Vector3(0.0f))) return false;
if (equal(determinant(), 0.0f)) return false;
return true;
}
/// Transform by this basis. (From this basis to object space).
Vector3 Basis::transform(Vector3::Arg v) const
{
Vector3 o = tangent * v.x;
o += bitangent * v.y;
o += normal * v.z;
return o;
}
/// Transform by the transpose. (From object space to this basis).
Vector3 Basis::transformT(Vector3::Arg v)
{
return Vector3(dot(tangent, v), dot(bitangent, v), dot(normal, v));
}
/// Transform by the inverse. (From object space to this basis).
/// @note Uses Cramer's rule so the inverse is not accurate if the basis is ill-conditioned.
Vector3 Basis::transformI(Vector3::Arg v) const
{
const float det = determinant();
nvDebugCheck(!equal(det, 0.0f, 0.0f));
const float idet = 1.0f / det;
// Rows of the inverse matrix.
Vector3 r0(
(bitangent.y * normal.z - bitangent.z * normal.y),
-(bitangent.x * normal.z - bitangent.z * normal.x),
(bitangent.x * normal.y - bitangent.y * normal.x));
Vector3 r1(
-(tangent.y * normal.z - tangent.z * normal.y),
(tangent.x * normal.z - tangent.z * normal.x),
-(tangent.x * normal.y - tangent.y * normal.x));
Vector3 r2(
(tangent.y * bitangent.z - tangent.z * bitangent.y),
-(tangent.x * bitangent.z - tangent.z * bitangent.x),
(tangent.x * bitangent.y - tangent.y * bitangent.x));
return Vector3(dot(v, r0), dot(v, r1), dot(v, r2)) * idet;
}