virtualx-engine/core/math/triangulate.cpp

169 lines
5.1 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* triangulate.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "triangulate.h"
float Triangulate::get_area(const Vector<Vector2> &contour)
{
int n = contour.size();
const Vector2 *c=&contour[0];
float A=0.0f;
for(int p=n-1,q=0; q<n; p=q++)
{
A+= c[p].cross(c[q]);
}
return A*0.5f;
}
/*
is_inside_triangle decides if a point P is Inside of the triangle
defined by A, B, C.
*/
bool Triangulate::is_inside_triangle(float Ax, float Ay,
float Bx, float By,
float Cx, float Cy,
float Px, float Py)
{
float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
float cCROSSap, bCROSScp, aCROSSbp;
ax = Cx - Bx; ay = Cy - By;
bx = Ax - Cx; by = Ay - Cy;
cx = Bx - Ax; cy = By - Ay;
apx= Px - Ax; apy= Py - Ay;
bpx= Px - Bx; bpy= Py - By;
cpx= Px - Cx; cpy= Py - Cy;
aCROSSbp = ax*bpy - ay*bpx;
cCROSSap = cx*apy - cy*apx;
bCROSScp = bx*cpy - by*cpx;
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
};
bool Triangulate::snip(const Vector<Vector2> &p_contour,int u,int v,int w,int n,int *V)
{
int p;
float Ax, Ay, Bx, By, Cx, Cy, Px, Py;
const Vector2 *contour=&p_contour[0];
Ax = contour[V[u]].x;
Ay = contour[V[u]].y;
Bx = contour[V[v]].x;
By = contour[V[v]].y;
Cx = contour[V[w]].x;
Cy = contour[V[w]].y;
if ( CMP_EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;
for (p=0;p<n;p++)
{
if( (p == u) || (p == v) || (p == w) ) continue;
Px = contour[V[p]].x;
Py = contour[V[p]].y;
if (is_inside_triangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
}
return true;
}
bool Triangulate::triangulate(const Vector<Vector2> &contour,Vector<int> &result)
{
/* allocate and initialize list of Vertices in polygon */
int n = contour.size();
if ( n < 3 ) return false;
int *V = (int*)alloca(sizeof(int)*n);
/* we want a counter-clockwise polygon in V */
if ( 0.0f < get_area(contour) )
for (int v=0; v<n; v++) V[v] = v;
else
for(int v=0; v<n; v++) V[v] = (n-1)-v;
int nv = n;
/* remove nv-2 Vertices, creating 1 triangle every time */
int count = 2*nv; /* error detection */
for(int m=0, v=nv-1; nv>2; )
{
/* if we loop, it is probably a non-simple polygon */
if (0 >= (count--))
{
//** Triangulate: ERROR - probable bad polygon!
return false;
}
/* three consecutive vertices in current polygon, <u,v,w> */
int u = v ; if (nv <= u) u = 0; /* previous */
v = u+1; if (nv <= v) v = 0; /* new v */
int w = v+1; if (nv <= w) w = 0; /* next */
if ( snip(contour,u,v,w,nv,V) )
{
int a,b,c,s,t;
/* true names of the vertices */
a = V[u]; b = V[v]; c = V[w];
/* output Triangle */
/*
result.push_back( contour[a] );
result.push_back( contour[b] );
result.push_back( contour[c] );
*/
result.push_back( a );
result.push_back( b );
result.push_back( c );
m++;
/* remove v from remaining polygon */
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t]; nv--;
/* resest error detection counter */
count = 2*nv;
}
}
return true;
}