virtualx-engine/core/math/vertex_cache_optimizer.cpp

305 lines
11 KiB
C++
Raw Normal View History

/**************************************************************************/
/* vertex_cache_optimizer.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "vertex_cache_optimizer.h"
#include "core/math/math_funcs.h"
// Precalculate the tables.
void VertexCacheOptimizer::init() {
for (int i = 0; i < Constants::CACHE_SCORE_TABLE_SIZE; i++) {
float score = 0;
if (i < 3) {
// This vertex was used in the last triangle,
// so it has a fixed score, which ever of the three
// it's in. Otherwise, you can get very different
// answers depending on whether you add
// the triangle 1,2,3 or 3,1,2 - which is silly.
score = Constants::LAST_TRI_SCORE;
} else {
// Points for being high in the cache.
const float scaler = 1.0f / (Constants::CACHE_FUNCTION_LENGTH - 3);
score = 1.0f - (i - 3) * scaler;
score = Math::pow(score, Constants::CACHE_DECAY_POWER);
}
_cache_position_score[i] = (SCORE_TYPE)(Constants::SCORE_SCALING * score);
}
for (int i = 1; i < Constants::VALENCE_SCORE_TABLE_SIZE; i++) {
// Bonus points for having a low number of tris still to
// use the vert, so we get rid of lone verts quickly.
float valence_boost = Math::pow(i, -Constants::VALENCE_BOOST_POWER);
float score = Constants::VALENCE_BOOST_SCALE * valence_boost;
_valence_score[i] = (SCORE_TYPE)(Constants::SCORE_SCALING * score);
}
}
VertexCacheOptimizer::SCORE_TYPE VertexCacheOptimizer::find_vertex_score(int p_num_active_tris, int p_cache_position) {
if (p_num_active_tris == 0) {
// No triangles need this vertex!
return 0;
}
SCORE_TYPE score = 0;
if (p_cache_position < 0) {
// Vertex is not in LRU cache - no score.
} else {
score = _cache_position_score[p_cache_position];
}
if (p_num_active_tris < Constants::VALENCE_SCORE_TABLE_SIZE) {
score += _valence_score[p_num_active_tris];
}
return score;
}
VertexCacheOptimizer::VERTEX_INDEX_TYPE *VertexCacheOptimizer::_reorder_indices(VERTEX_INDEX_TYPE *r_dest_indices, const VERTEX_INDEX_TYPE *p_source_indices, int p_num_triangles, int p_num_vertices) {
ADJACENCY_TYPE *num_active_tris = (ADJACENCY_TYPE *)memalloc(sizeof(ADJACENCY_TYPE) * p_num_vertices);
memset(num_active_tris, 0, sizeof(ADJACENCY_TYPE) * p_num_vertices);
// First scan over the vertex data, count the total number of
// occurrances of each vertex.
for (int i = 0; i < 3 * p_num_triangles; i++) {
if (num_active_tris[p_source_indices[i]] == Constants::MAX_ADJACENCY) {
// Unsupported mesh,
// vertex shared by too many triangles.
memfree(num_active_tris);
return nullptr;
}
num_active_tris[p_source_indices[i]]++;
}
// Allocate the rest of the arrays.
ARRAY_INDEX_TYPE *offsets = (ARRAY_INDEX_TYPE *)memalloc(sizeof(ARRAY_INDEX_TYPE) * p_num_vertices);
SCORE_TYPE *last_score = (SCORE_TYPE *)memalloc(sizeof(SCORE_TYPE) * p_num_vertices);
CACHE_POS_TYPE *cache_tag = (CACHE_POS_TYPE *)memalloc(sizeof(CACHE_POS_TYPE) * p_num_vertices);
uint8_t *triangle_added = (uint8_t *)memalloc((p_num_triangles + 7) / 8);
SCORE_TYPE *triangle_score = (SCORE_TYPE *)memalloc(sizeof(SCORE_TYPE) * p_num_triangles);
TRIANGLE_INDEX_TYPE *triangle_indices = (TRIANGLE_INDEX_TYPE *)memalloc(sizeof(TRIANGLE_INDEX_TYPE) * 3 * p_num_triangles);
memset(triangle_added, 0, sizeof(uint8_t) * ((p_num_triangles + 7) / 8));
memset(triangle_score, 0, sizeof(SCORE_TYPE) * p_num_triangles);
memset(triangle_indices, 0, sizeof(TRIANGLE_INDEX_TYPE) * 3 * p_num_triangles);
// Count the triangle array offset for each vertex,
// initialize the rest of the data.
int sum = 0;
for (int i = 0; i < p_num_vertices; i++) {
offsets[i] = sum;
sum += num_active_tris[i];
num_active_tris[i] = 0;
cache_tag[i] = -1;
}
// Fill the vertex data structures with indices to the triangles
// using each vertex.
for (int i = 0; i < p_num_triangles; i++) {
for (int j = 0; j < 3; j++) {
int v = p_source_indices[3 * i + j];
triangle_indices[offsets[v] + num_active_tris[v]] = i;
num_active_tris[v]++;
}
}
// Initialize the score for all vertices.
for (int i = 0; i < p_num_vertices; i++) {
last_score[i] = find_vertex_score(num_active_tris[i], cache_tag[i]);
for (int j = 0; j < num_active_tris[i]; j++) {
triangle_score[triangle_indices[offsets[i] + j]] += last_score[i];
}
}
// Find the best triangle.
int best_triangle = -1;
int best_score = -1;
for (int i = 0; i < p_num_triangles; i++) {
if (triangle_score[i] > best_score) {
best_score = triangle_score[i];
best_triangle = i;
}
}
// Allocate the output array.
TRIANGLE_INDEX_TYPE *out_triangles = (TRIANGLE_INDEX_TYPE *)memalloc(sizeof(TRIANGLE_INDEX_TYPE) * p_num_triangles);
int out_pos = 0;
// Initialize the cache.
int cache[Constants::VERTEX_CACHE_SIZE + 3];
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE + 3; i++) {
cache[i] = -1;
}
int scan_pos = 0;
// Output the currently best triangle, as long as there
// are triangles left to output.
while (best_triangle >= 0) {
// Mark the triangle as added.
set_added(triangle_added, best_triangle);
// Output this triangle.
out_triangles[out_pos++] = best_triangle;
for (int i = 0; i < 3; i++) {
// Update this vertex.
int v = p_source_indices[3 * best_triangle + i];
// Check the current cache position, if it
// is in the cache.
int endpos = cache_tag[v];
if (endpos < 0) {
endpos = Constants::VERTEX_CACHE_SIZE + i;
}
if (endpos > i) {
// Move all cache entries from the previous position
// in the cache to the new target position (i) one
// step backwards.
for (int j = endpos; j > i; j--) {
cache[j] = cache[j - 1];
// If this cache slot contains a real
// vertex, update its cache tag.
if (cache[j] >= 0) {
cache_tag[cache[j]]++;
}
}
// Insert the current vertex into its new target
// slot.
cache[i] = v;
cache_tag[v] = i;
}
// Find the current triangle in the list of active
// triangles and remove it (moving the last
// triangle in the list to the slot of this triangle).
for (int j = 0; j < num_active_tris[v]; j++) {
if (triangle_indices[offsets[v] + j] == best_triangle) {
triangle_indices[offsets[v] + j] = triangle_indices[offsets[v] + num_active_tris[v] - 1];
break;
}
}
// Shorten the list.
num_active_tris[v]--;
}
// Update the scores of all triangles in the cache.
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE + 3; i++) {
int v = cache[i];
if (v < 0) {
break;
}
// This vertex has been pushed outside of the
// actual cache.
if (i >= Constants::VERTEX_CACHE_SIZE) {
cache_tag[v] = -1;
cache[i] = -1;
}
SCORE_TYPE newScore = find_vertex_score(num_active_tris[v], cache_tag[v]);
SCORE_TYPE diff = newScore - last_score[v];
for (int j = 0; j < num_active_tris[v]; j++) {
triangle_score[triangle_indices[offsets[v] + j]] += diff;
}
last_score[v] = newScore;
}
// Find the best triangle referenced by vertices in the cache.
best_triangle = -1;
best_score = -1;
for (int i = 0; i < Constants::VERTEX_CACHE_SIZE; i++) {
if (cache[i] < 0) {
break;
}
int v = cache[i];
for (int j = 0; j < num_active_tris[v]; j++) {
int t = triangle_indices[offsets[v] + j];
if (triangle_score[t] > best_score) {
best_triangle = t;
best_score = triangle_score[t];
}
}
}
// If no active triangle was found at all, continue
// scanning the whole list of triangles.
if (best_triangle < 0) {
for (; scan_pos < p_num_triangles; scan_pos++) {
if (!is_added(triangle_added, scan_pos)) {
best_triangle = scan_pos;
break;
}
}
}
}
// Convert the triangle index array into a full triangle list.
out_pos = 0;
for (int i = 0; i < p_num_triangles; i++) {
int t = out_triangles[i];
for (int j = 0; j < 3; j++) {
int v = p_source_indices[3 * t + j];
r_dest_indices[out_pos++] = v;
}
}
// Clean up.
memfree(triangle_indices);
memfree(offsets);
memfree(last_score);
memfree(num_active_tris);
memfree(cache_tag);
memfree(triangle_added);
memfree(triangle_score);
memfree(out_triangles);
return r_dest_indices;
}
bool VertexCacheOptimizer::reorder_indices_pool(PoolVector<int> &r_indices, uint32_t p_num_triangles, uint32_t p_num_verts) {
LocalVector<int> temp;
temp = r_indices;
if (reorder_indices(temp, p_num_triangles, p_num_verts)) {
r_indices = temp;
return true;
}
return false;
}
bool VertexCacheOptimizer::reorder_indices(LocalVector<int> &r_indices, uint32_t p_num_triangles, uint32_t p_num_verts) {
LocalVector<int> temp;
temp.resize(r_indices.size());
if (_reorder_indices((VERTEX_INDEX_TYPE *)temp.ptr(), (VERTEX_INDEX_TYPE *)r_indices.ptr(), p_num_triangles, p_num_verts)) {
#if 0
uint32_t show = MIN(r_indices.size(), 16);
for (uint32_t n = 0; n < show; n++) {
print_line(itos(n) + " : " + itos(r_indices[n]) + " to " + itos(temp[n]));
}
#endif
r_indices = temp;
return true;
}
return false;
}