2017-08-01 14:30:58 +02:00
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
2019-01-03 14:26:51 +01:00
static const char * solverUtilsCL =
" /* \n "
" Copyright (c) 2013 Advanced Micro Devices, Inc. \n "
" This software is provided 'as-is', without any express or implied warranty. \n "
" In no event will the authors be held liable for any damages arising from the use of this software. \n "
" Permission is granted to anyone to use this software for any purpose, \n "
" including commercial applications, and to alter it and redistribute it freely, \n "
" subject to the following restrictions: \n "
" 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. \n "
" 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. \n "
" 3. This notice may not be removed or altered from any source distribution. \n "
" */ \n "
" //Originally written by Erwin Coumans \n "
" #ifndef B3_CONTACT4DATA_H \n "
" #define B3_CONTACT4DATA_H \n "
" #ifndef B3_FLOAT4_H \n "
" #define B3_FLOAT4_H \n "
" #ifndef B3_PLATFORM_DEFINITIONS_H \n "
" #define B3_PLATFORM_DEFINITIONS_H \n "
" struct MyTest \n "
" { \n "
" int bla; \n "
" }; \n "
" #ifdef __cplusplus \n "
" #else \n "
" //keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX \n "
" #define B3_LARGE_FLOAT 1e18f \n "
" #define B3_INFINITY 1e18f \n "
" #define b3Assert(a) \n "
" #define b3ConstArray(a) __global const a* \n "
" #define b3AtomicInc atomic_inc \n "
" #define b3AtomicAdd atomic_add \n "
" #define b3Fabs fabs \n "
" #define b3Sqrt native_sqrt \n "
" #define b3Sin native_sin \n "
" #define b3Cos native_cos \n "
" #define B3_STATIC \n "
" #endif \n "
" #endif \n "
" #ifdef __cplusplus \n "
" #else \n "
" typedef float4 b3Float4; \n "
" #define b3Float4ConstArg const b3Float4 \n "
" #define b3MakeFloat4 (float4) \n "
" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1) \n "
" { \n "
" float4 a1 = b3MakeFloat4(v0.xyz,0.f); \n "
" float4 b1 = b3MakeFloat4(v1.xyz,0.f); \n "
" return dot(a1, b1); \n "
" } \n "
" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1) \n "
" { \n "
" float4 a1 = b3MakeFloat4(v0.xyz,0.f); \n "
" float4 b1 = b3MakeFloat4(v1.xyz,0.f); \n "
" return cross(a1, b1); \n "
" } \n "
" #define b3MinFloat4 min \n "
" #define b3MaxFloat4 max \n "
" #define b3Normalized(a) normalize(a) \n "
" #endif \n "
" \n "
" inline bool b3IsAlmostZero(b3Float4ConstArg v) \n "
" { \n "
" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n "
" return false; \n "
" return true; \n "
" } \n "
" inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut ) \n "
" { \n "
" float maxDot = -B3_INFINITY; \n "
" int i = 0; \n "
" int ptIndex = -1; \n "
" for( i = 0; i < vecLen; i++ ) \n "
" { \n "
" float dot = b3Dot3F4(vecArray[i],vec); \n "
" \n "
" if( dot > maxDot ) \n "
" { \n "
" maxDot = dot; \n "
" ptIndex = i; \n "
" } \n "
" } \n "
" b3Assert(ptIndex>=0); \n "
" if (ptIndex<0) \n "
" { \n "
" ptIndex = 0; \n "
" } \n "
" *dotOut = maxDot; \n "
" return ptIndex; \n "
" } \n "
" #endif //B3_FLOAT4_H \n "
" typedef struct b3Contact4Data b3Contact4Data_t; \n "
" struct b3Contact4Data \n "
" { \n "
" b3Float4 m_worldPosB[4]; \n "
" // b3Float4 m_localPosA[4]; \n "
" // b3Float4 m_localPosB[4]; \n "
" b3Float4 m_worldNormalOnB; // w: m_nPoints \n "
" unsigned short m_restituitionCoeffCmp; \n "
" unsigned short m_frictionCoeffCmp; \n "
" int m_batchIdx; \n "
" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr \n "
" int m_bodyBPtrAndSignBit; \n "
" int m_childIndexA; \n "
" int m_childIndexB; \n "
" int m_unused1; \n "
" int m_unused2; \n "
" }; \n "
" inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact) \n "
" { \n "
" return (int)contact->m_worldNormalOnB.w; \n "
" }; \n "
" inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints) \n "
" { \n "
" contact->m_worldNormalOnB.w = (float)numPoints; \n "
" }; \n "
" #endif //B3_CONTACT4DATA_H \n "
" #pragma OPENCL EXTENSION cl_amd_printf : enable \n "
" #pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable \n "
" #ifdef cl_ext_atomic_counters_32 \n "
" #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable \n "
" #else \n "
" #define counter32_t volatile global int* \n "
" #endif \n "
" typedef unsigned int u32; \n "
" typedef unsigned short u16; \n "
" typedef unsigned char u8; \n "
" #define GET_GROUP_IDX get_group_id(0) \n "
" #define GET_LOCAL_IDX get_local_id(0) \n "
" #define GET_GLOBAL_IDX get_global_id(0) \n "
" #define GET_GROUP_SIZE get_local_size(0) \n "
" #define GET_NUM_GROUPS get_num_groups(0) \n "
" #define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) \n "
" #define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) \n "
" #define AtomInc(x) atom_inc(&(x)) \n "
" #define AtomInc1(x, out) out = atom_inc(&(x)) \n "
" #define AppendInc(x, out) out = atomic_inc(x) \n "
" #define AtomAdd(x, value) atom_add(&(x), value) \n "
" #define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) \n "
" #define AtomXhg(x, value) atom_xchg ( &(x), value ) \n "
" #define SELECT_UINT4( b, a, condition ) select( b,a,condition ) \n "
" #define make_float4 (float4) \n "
" #define make_float2 (float2) \n "
" #define make_uint4 (uint4) \n "
" #define make_int4 (int4) \n "
" #define make_uint2 (uint2) \n "
" #define make_int2 (int2) \n "
" #define max2 max \n "
" #define min2 min \n "
" /////////////////////////////////////// \n "
" // Vector \n "
" /////////////////////////////////////// \n "
" __inline \n "
" float fastDiv(float numerator, float denominator) \n "
" { \n "
" return native_divide(numerator, denominator); \n "
" // return numerator/denominator; \n "
" } \n "
" __inline \n "
" float4 fastDiv4(float4 numerator, float4 denominator) \n "
" { \n "
" return native_divide(numerator, denominator); \n "
" } \n "
" __inline \n "
" float fastSqrtf(float f2) \n "
" { \n "
" return native_sqrt(f2); \n "
" // return sqrt(f2); \n "
" } \n "
" __inline \n "
" float fastRSqrt(float f2) \n "
" { \n "
" return native_rsqrt(f2); \n "
" } \n "
" __inline \n "
" float fastLength4(float4 v) \n "
" { \n "
" return fast_length(v); \n "
" } \n "
" __inline \n "
" float4 fastNormalize4(float4 v) \n "
" { \n "
" return fast_normalize(v); \n "
" } \n "
" __inline \n "
" float sqrtf(float a) \n "
" { \n "
" // return sqrt(a); \n "
" return native_sqrt(a); \n "
" } \n "
" __inline \n "
" float4 cross3(float4 a1, float4 b1) \n "
" { \n "
" float4 a=make_float4(a1.xyz,0.f); \n "
" float4 b=make_float4(b1.xyz,0.f); \n "
" //float4 a=a1; \n "
" //float4 b=b1; \n "
" return cross(a,b); \n "
" } \n "
" __inline \n "
" float dot3F4(float4 a, float4 b) \n "
" { \n "
" float4 a1 = make_float4(a.xyz,0.f); \n "
" float4 b1 = make_float4(b.xyz,0.f); \n "
" return dot(a1, b1); \n "
" } \n "
" __inline \n "
" float length3(const float4 a) \n "
" { \n "
" return sqrtf(dot3F4(a,a)); \n "
" } \n "
" __inline \n "
" float dot4(const float4 a, const float4 b) \n "
" { \n "
" return dot( a, b ); \n "
" } \n "
" // for height \n "
" __inline \n "
" float dot3w1(const float4 point, const float4 eqn) \n "
" { \n "
" return dot3F4(point,eqn) + eqn.w; \n "
" } \n "
" __inline \n "
" float4 normalize3(const float4 a) \n "
" { \n "
" float4 n = make_float4(a.x, a.y, a.z, 0.f); \n "
" return fastNormalize4( n ); \n "
" // float length = sqrtf(dot3F4(a, a)); \n "
" // return 1.f/length * a; \n "
" } \n "
" __inline \n "
" float4 normalize4(const float4 a) \n "
" { \n "
" float length = sqrtf(dot4(a, a)); \n "
" return 1.f/length * a; \n "
" } \n "
" __inline \n "
" float4 createEquation(const float4 a, const float4 b, const float4 c) \n "
" { \n "
" float4 eqn; \n "
" float4 ab = b-a; \n "
" float4 ac = c-a; \n "
" eqn = normalize3( cross3(ab, ac) ); \n "
" eqn.w = -dot3F4(eqn,a); \n "
" return eqn; \n "
" } \n "
" /////////////////////////////////////// \n "
" // Matrix3x3 \n "
" /////////////////////////////////////// \n "
" typedef struct \n "
" { \n "
" float4 m_row[3]; \n "
" }Matrix3x3; \n "
" __inline \n "
" Matrix3x3 mtZero(); \n "
" __inline \n "
" Matrix3x3 mtIdentity(); \n "
" __inline \n "
" Matrix3x3 mtTranspose(Matrix3x3 m); \n "
" __inline \n "
" Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b); \n "
" __inline \n "
" float4 mtMul1(Matrix3x3 a, float4 b); \n "
" __inline \n "
" float4 mtMul3(float4 a, Matrix3x3 b); \n "
" __inline \n "
" Matrix3x3 mtZero() \n "
" { \n "
" Matrix3x3 m; \n "
" m.m_row[0] = (float4)(0.f); \n "
" m.m_row[1] = (float4)(0.f); \n "
" m.m_row[2] = (float4)(0.f); \n "
" return m; \n "
" } \n "
" __inline \n "
" Matrix3x3 mtIdentity() \n "
" { \n "
" Matrix3x3 m; \n "
" m.m_row[0] = (float4)(1,0,0,0); \n "
" m.m_row[1] = (float4)(0,1,0,0); \n "
" m.m_row[2] = (float4)(0,0,1,0); \n "
" return m; \n "
" } \n "
" __inline \n "
" Matrix3x3 mtTranspose(Matrix3x3 m) \n "
" { \n "
" Matrix3x3 out; \n "
" out.m_row[0] = (float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f); \n "
" out.m_row[1] = (float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f); \n "
" out.m_row[2] = (float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f); \n "
" return out; \n "
" } \n "
" __inline \n "
" Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b) \n "
" { \n "
" Matrix3x3 transB; \n "
" transB = mtTranspose( b ); \n "
" Matrix3x3 ans; \n "
" // why this doesn't run when 0ing in the for{} \n "
" a.m_row[0].w = 0.f; \n "
" a.m_row[1].w = 0.f; \n "
" a.m_row[2].w = 0.f; \n "
" for(int i=0; i<3; i++) \n "
" { \n "
" // a.m_row[i].w = 0.f; \n "
" ans.m_row[i].x = dot3F4(a.m_row[i],transB.m_row[0]); \n "
" ans.m_row[i].y = dot3F4(a.m_row[i],transB.m_row[1]); \n "
" ans.m_row[i].z = dot3F4(a.m_row[i],transB.m_row[2]); \n "
" ans.m_row[i].w = 0.f; \n "
" } \n "
" return ans; \n "
" } \n "
" __inline \n "
" float4 mtMul1(Matrix3x3 a, float4 b) \n "
" { \n "
" float4 ans; \n "
" ans.x = dot3F4( a.m_row[0], b ); \n "
" ans.y = dot3F4( a.m_row[1], b ); \n "
" ans.z = dot3F4( a.m_row[2], b ); \n "
" ans.w = 0.f; \n "
" return ans; \n "
" } \n "
" __inline \n "
" float4 mtMul3(float4 a, Matrix3x3 b) \n "
" { \n "
" float4 colx = make_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0); \n "
" float4 coly = make_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0); \n "
" float4 colz = make_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0); \n "
" float4 ans; \n "
" ans.x = dot3F4( a, colx ); \n "
" ans.y = dot3F4( a, coly ); \n "
" ans.z = dot3F4( a, colz ); \n "
" return ans; \n "
" } \n "
" /////////////////////////////////////// \n "
" // Quaternion \n "
" /////////////////////////////////////// \n "
" typedef float4 Quaternion; \n "
" __inline \n "
" Quaternion qtMul(Quaternion a, Quaternion b); \n "
" __inline \n "
" Quaternion qtNormalize(Quaternion in); \n "
" __inline \n "
" float4 qtRotate(Quaternion q, float4 vec); \n "
" __inline \n "
" Quaternion qtInvert(Quaternion q); \n "
" __inline \n "
" Quaternion qtMul(Quaternion a, Quaternion b) \n "
" { \n "
" Quaternion ans; \n "
" ans = cross3( a, b ); \n "
" ans += a.w*b+b.w*a; \n "
" // ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); \n "
" ans.w = a.w*b.w - dot3F4(a, b); \n "
" return ans; \n "
" } \n "
" __inline \n "
" Quaternion qtNormalize(Quaternion in) \n "
" { \n "
" return fastNormalize4(in); \n "
" // in /= length( in ); \n "
" // return in; \n "
" } \n "
" __inline \n "
" float4 qtRotate(Quaternion q, float4 vec) \n "
" { \n "
" Quaternion qInv = qtInvert( q ); \n "
" float4 vcpy = vec; \n "
" vcpy.w = 0.f; \n "
" float4 out = qtMul(qtMul(q,vcpy),qInv); \n "
" return out; \n "
" } \n "
" __inline \n "
" Quaternion qtInvert(Quaternion q) \n "
" { \n "
" return (Quaternion)(-q.xyz, q.w); \n "
" } \n "
" __inline \n "
" float4 qtInvRotate(const Quaternion q, float4 vec) \n "
" { \n "
" return qtRotate( qtInvert( q ), vec ); \n "
" } \n "
" #define WG_SIZE 64 \n "
" typedef struct \n "
" { \n "
" float4 m_pos; \n "
" Quaternion m_quat; \n "
" float4 m_linVel; \n "
" float4 m_angVel; \n "
" u32 m_shapeIdx; \n "
" float m_invMass; \n "
" float m_restituitionCoeff; \n "
" float m_frictionCoeff; \n "
" } Body; \n "
" typedef struct \n "
" { \n "
" Matrix3x3 m_invInertia; \n "
" Matrix3x3 m_initInvInertia; \n "
" } Shape; \n "
" typedef struct \n "
" { \n "
" float4 m_linear; \n "
" float4 m_worldPos[4]; \n "
" float4 m_center; \n "
" float m_jacCoeffInv[4]; \n "
" float m_b[4]; \n "
" float m_appliedRambdaDt[4]; \n "
" float m_fJacCoeffInv[2]; \n "
" float m_fAppliedRambdaDt[2]; \n "
" u32 m_bodyA; \n "
" u32 m_bodyB; \n "
" int m_batchIdx; \n "
" u32 m_paddings; \n "
" } Constraint4; \n "
" __kernel void CountBodiesKernel(__global struct b3Contact4Data* manifoldPtr, __global unsigned int* bodyCount, __global int2* contactConstraintOffsets, int numContactManifolds, int fixedBodyIndex) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" \n "
" if( i < numContactManifolds) \n "
" { \n "
" int pa = manifoldPtr[i].m_bodyAPtrAndSignBit; \n "
" bool isFixedA = (pa <0) || (pa == fixedBodyIndex); \n "
" int bodyIndexA = abs(pa); \n "
" if (!isFixedA) \n "
" { \n "
" AtomInc1(bodyCount[bodyIndexA],contactConstraintOffsets[i].x); \n "
" } \n "
" barrier(CLK_GLOBAL_MEM_FENCE); \n "
" int pb = manifoldPtr[i].m_bodyBPtrAndSignBit; \n "
" bool isFixedB = (pb <0) || (pb == fixedBodyIndex); \n "
" int bodyIndexB = abs(pb); \n "
" if (!isFixedB) \n "
" { \n "
" AtomInc1(bodyCount[bodyIndexB],contactConstraintOffsets[i].y); \n "
" } \n "
" } \n "
" } \n "
" __kernel void ClearVelocitiesKernel(__global float4* linearVelocities,__global float4* angularVelocities, int numSplitBodies) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" \n "
" if( i < numSplitBodies) \n "
" { \n "
" linearVelocities[i] = make_float4(0); \n "
" angularVelocities[i] = make_float4(0); \n "
" } \n "
" } \n "
" __kernel void AverageVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount, \n "
" __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" if (i<numBodies) \n "
" { \n "
" if (gBodies[i].m_invMass) \n "
" { \n "
" int bodyOffset = offsetSplitBodies[i]; \n "
" int count = bodyCount[i]; \n "
" float factor = 1.f/((float)count); \n "
" float4 averageLinVel = make_float4(0.f); \n "
" float4 averageAngVel = make_float4(0.f); \n "
" \n "
" for (int j=0;j<count;j++) \n "
" { \n "
" averageLinVel += deltaLinearVelocities[bodyOffset+j]*factor; \n "
" averageAngVel += deltaAngularVelocities[bodyOffset+j]*factor; \n "
" } \n "
" \n "
" for (int j=0;j<count;j++) \n "
" { \n "
" deltaLinearVelocities[bodyOffset+j] = averageLinVel; \n "
" deltaAngularVelocities[bodyOffset+j] = averageAngVel; \n "
" } \n "
" \n "
" }//bodies[i].m_invMass \n "
" }//i<numBodies \n "
" } \n "
" void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1) \n "
" { \n "
" *linear = make_float4(n.xyz,0.f); \n "
" *angular0 = cross3(r0, n); \n "
" *angular1 = -cross3(r1, n); \n "
" } \n "
" float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 ) \n "
" { \n "
" return dot3F4(l0, linVel0) + dot3F4(a0, angVel0) + dot3F4(l1, linVel1) + dot3F4(a1, angVel1); \n "
" } \n "
" float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1, \n "
" float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1, float countA, float countB) \n "
" { \n "
" // linear0,1 are normlized \n "
" float jmj0 = invMass0;//dot3F4(linear0, linear0)*invMass0; \n "
" float jmj1 = dot3F4(mtMul3(angular0,*invInertia0), angular0); \n "
" float jmj2 = invMass1;//dot3F4(linear1, linear1)*invMass1; \n "
" float jmj3 = dot3F4(mtMul3(angular1,*invInertia1), angular1); \n "
" return -1.f/((jmj0+jmj1)*countA+(jmj2+jmj3)*countB); \n "
" } \n "
" void btPlaneSpace1 (float4 n, float4* p, float4* q); \n "
" void btPlaneSpace1 (float4 n, float4* p, float4* q) \n "
" { \n "
" if (fabs(n.z) > 0.70710678f) { \n "
" // choose p in y-z plane \n "
" float a = n.y*n.y + n.z*n.z; \n "
" float k = 1.f/sqrt(a); \n "
" p[0].x = 0; \n "
" p[0].y = -n.z*k; \n "
" p[0].z = n.y*k; \n "
" // set q = n x p \n "
" q[0].x = a*k; \n "
" q[0].y = -n.x*p[0].z; \n "
" q[0].z = n.x*p[0].y; \n "
" } \n "
" else { \n "
" // choose p in x-y plane \n "
" float a = n.x*n.x + n.y*n.y; \n "
" float k = 1.f/sqrt(a); \n "
" p[0].x = -n.y*k; \n "
" p[0].y = n.x*k; \n "
" p[0].z = 0; \n "
" // set q = n x p \n "
" q[0].x = -n.z*p[0].y; \n "
" q[0].y = n.z*p[0].x; \n "
" q[0].z = a*k; \n "
" } \n "
" } \n "
" void solveContact(__global Constraint4* cs, \n "
" float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA, \n "
" float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB, \n "
" float4* dLinVelA, float4* dAngVelA, float4* dLinVelB, float4* dAngVelB) \n "
" { \n "
" float minRambdaDt = 0; \n "
" float maxRambdaDt = FLT_MAX; \n "
" for(int ic=0; ic<4; ic++) \n "
" { \n "
" if( cs->m_jacCoeffInv[ic] == 0.f ) continue; \n "
" float4 angular0, angular1, linear; \n "
" float4 r0 = cs->m_worldPos[ic] - posA; \n "
" float4 r1 = cs->m_worldPos[ic] - posB; \n "
" setLinearAndAngular( cs->m_linear, r0, r1, &linear, &angular0, &angular1 ); \n "
" \n "
" float rambdaDt = calcRelVel( cs->m_linear, -cs->m_linear, angular0, angular1, \n "
" *linVelA+*dLinVelA, *angVelA+*dAngVelA, *linVelB+*dLinVelB, *angVelB+*dAngVelB ) + cs->m_b[ic]; \n "
" rambdaDt *= cs->m_jacCoeffInv[ic]; \n "
" \n "
" { \n "
" float prevSum = cs->m_appliedRambdaDt[ic]; \n "
" float updated = prevSum; \n "
" updated += rambdaDt; \n "
" updated = max2( updated, minRambdaDt ); \n "
" updated = min2( updated, maxRambdaDt ); \n "
" rambdaDt = updated - prevSum; \n "
" cs->m_appliedRambdaDt[ic] = updated; \n "
" } \n "
" \n "
" float4 linImp0 = invMassA*linear*rambdaDt; \n "
" float4 linImp1 = invMassB*(-linear)*rambdaDt; \n "
" float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt; \n "
" float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt; \n "
" \n "
" if (invMassA) \n "
" { \n "
" *dLinVelA += linImp0; \n "
" *dAngVelA += angImp0; \n "
" } \n "
" if (invMassB) \n "
" { \n "
" *dLinVelB += linImp1; \n "
" *dAngVelB += angImp1; \n "
" } \n "
" } \n "
" } \n "
" // solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,contactConstraintOffsets,offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); \n "
" void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs, \n "
" __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, \n "
" __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities) \n "
" { \n "
" //float frictionCoeff = ldsCs[0].m_linear.w; \n "
" int aIdx = ldsCs[0].m_bodyA; \n "
" int bIdx = ldsCs[0].m_bodyB; \n "
" float4 posA = gBodies[aIdx].m_pos; \n "
" float4 linVelA = gBodies[aIdx].m_linVel; \n "
" float4 angVelA = gBodies[aIdx].m_angVel; \n "
" float invMassA = gBodies[aIdx].m_invMass; \n "
" Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; \n "
" float4 posB = gBodies[bIdx].m_pos; \n "
" float4 linVelB = gBodies[bIdx].m_linVel; \n "
" float4 angVelB = gBodies[bIdx].m_angVel; \n "
" float invMassB = gBodies[bIdx].m_invMass; \n "
" Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; \n "
" \n "
" float4 dLinVelA = make_float4(0,0,0,0); \n "
" float4 dAngVelA = make_float4(0,0,0,0); \n "
" float4 dLinVelB = make_float4(0,0,0,0); \n "
" float4 dAngVelB = make_float4(0,0,0,0); \n "
" \n "
" int bodyOffsetA = offsetSplitBodies[aIdx]; \n "
" int constraintOffsetA = contactConstraintOffsets[0].x; \n "
" int splitIndexA = bodyOffsetA+constraintOffsetA; \n "
" \n "
" if (invMassA) \n "
" { \n "
" dLinVelA = deltaLinearVelocities[splitIndexA]; \n "
" dAngVelA = deltaAngularVelocities[splitIndexA]; \n "
" } \n "
" int bodyOffsetB = offsetSplitBodies[bIdx]; \n "
" int constraintOffsetB = contactConstraintOffsets[0].y; \n "
" int splitIndexB= bodyOffsetB+constraintOffsetB; \n "
" if (invMassB) \n "
" { \n "
" dLinVelB = deltaLinearVelocities[splitIndexB]; \n "
" dAngVelB = deltaAngularVelocities[splitIndexB]; \n "
" } \n "
" solveContact( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA, \n "
" posB, &linVelB, &angVelB, invMassB, invInertiaB ,&dLinVelA, &dAngVelA, &dLinVelB, &dAngVelB); \n "
" if (invMassA) \n "
" { \n "
" deltaLinearVelocities[splitIndexA] = dLinVelA; \n "
" deltaAngularVelocities[splitIndexA] = dAngVelA; \n "
" } \n "
" if (invMassB) \n "
" { \n "
" deltaLinearVelocities[splitIndexB] = dLinVelB; \n "
" deltaAngularVelocities[splitIndexB] = dAngVelB; \n "
" } \n "
" } \n "
" __kernel void SolveContactJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes , \n "
" __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, \n "
" float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds \n "
" ) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" if (i<numManifolds) \n "
" { \n "
" solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); \n "
" } \n "
" } \n "
" void solveFrictionConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs, \n "
" __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, \n "
" __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities) \n "
" { \n "
" float frictionCoeff = 0.7f;//ldsCs[0].m_linear.w; \n "
" int aIdx = ldsCs[0].m_bodyA; \n "
" int bIdx = ldsCs[0].m_bodyB; \n "
" float4 posA = gBodies[aIdx].m_pos; \n "
" float4 linVelA = gBodies[aIdx].m_linVel; \n "
" float4 angVelA = gBodies[aIdx].m_angVel; \n "
" float invMassA = gBodies[aIdx].m_invMass; \n "
" Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; \n "
" float4 posB = gBodies[bIdx].m_pos; \n "
" float4 linVelB = gBodies[bIdx].m_linVel; \n "
" float4 angVelB = gBodies[bIdx].m_angVel; \n "
" float invMassB = gBodies[bIdx].m_invMass; \n "
" Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; \n "
" \n "
" float4 dLinVelA = make_float4(0,0,0,0); \n "
" float4 dAngVelA = make_float4(0,0,0,0); \n "
" float4 dLinVelB = make_float4(0,0,0,0); \n "
" float4 dAngVelB = make_float4(0,0,0,0); \n "
" \n "
" int bodyOffsetA = offsetSplitBodies[aIdx]; \n "
" int constraintOffsetA = contactConstraintOffsets[0].x; \n "
" int splitIndexA = bodyOffsetA+constraintOffsetA; \n "
" \n "
" if (invMassA) \n "
" { \n "
" dLinVelA = deltaLinearVelocities[splitIndexA]; \n "
" dAngVelA = deltaAngularVelocities[splitIndexA]; \n "
" } \n "
" int bodyOffsetB = offsetSplitBodies[bIdx]; \n "
" int constraintOffsetB = contactConstraintOffsets[0].y; \n "
" int splitIndexB= bodyOffsetB+constraintOffsetB; \n "
" if (invMassB) \n "
" { \n "
" dLinVelB = deltaLinearVelocities[splitIndexB]; \n "
" dAngVelB = deltaAngularVelocities[splitIndexB]; \n "
" } \n "
" { \n "
" float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX}; \n "
" float minRambdaDt[4] = {0.f,0.f,0.f,0.f}; \n "
" float sum = 0; \n "
" for(int j=0; j<4; j++) \n "
" { \n "
" sum +=ldsCs[0].m_appliedRambdaDt[j]; \n "
" } \n "
" frictionCoeff = 0.7f; \n "
" for(int j=0; j<4; j++) \n "
" { \n "
" maxRambdaDt[j] = frictionCoeff*sum; \n "
" minRambdaDt[j] = -maxRambdaDt[j]; \n "
" } \n "
" \n "
" // solveFriction( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA, \n "
" // posB, &linVelB, &angVelB, invMassB, invInertiaB, maxRambdaDt, minRambdaDt ); \n "
" \n "
" \n "
" { \n "
" \n "
" __global Constraint4* cs = ldsCs; \n "
" \n "
" if( cs->m_fJacCoeffInv[0] == 0 && cs->m_fJacCoeffInv[0] == 0 ) return; \n "
" const float4 center = cs->m_center; \n "
" \n "
" float4 n = -cs->m_linear; \n "
" \n "
" float4 tangent[2]; \n "
" btPlaneSpace1(n,&tangent[0],&tangent[1]); \n "
" float4 angular0, angular1, linear; \n "
" float4 r0 = center - posA; \n "
" float4 r1 = center - posB; \n "
" for(int i=0; i<2; i++) \n "
" { \n "
" setLinearAndAngular( tangent[i], r0, r1, &linear, &angular0, &angular1 ); \n "
" float rambdaDt = calcRelVel(linear, -linear, angular0, angular1, \n "
" linVelA+dLinVelA, angVelA+dAngVelA, linVelB+dLinVelB, angVelB+dAngVelB ); \n "
" rambdaDt *= cs->m_fJacCoeffInv[i]; \n "
" \n "
" { \n "
" float prevSum = cs->m_fAppliedRambdaDt[i]; \n "
" float updated = prevSum; \n "
" updated += rambdaDt; \n "
" updated = max2( updated, minRambdaDt[i] ); \n "
" updated = min2( updated, maxRambdaDt[i] ); \n "
" rambdaDt = updated - prevSum; \n "
" cs->m_fAppliedRambdaDt[i] = updated; \n "
" } \n "
" \n "
" float4 linImp0 = invMassA*linear*rambdaDt; \n "
" float4 linImp1 = invMassB*(-linear)*rambdaDt; \n "
" float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt; \n "
" float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt; \n "
" \n "
" dLinVelA += linImp0; \n "
" dAngVelA += angImp0; \n "
" dLinVelB += linImp1; \n "
" dAngVelB += angImp1; \n "
" } \n "
" { // angular damping for point constraint \n "
" float4 ab = normalize3( posB - posA ); \n "
" float4 ac = normalize3( center - posA ); \n "
" if( dot3F4( ab, ac ) > 0.95f || (invMassA == 0.f || invMassB == 0.f)) \n "
" { \n "
" float angNA = dot3F4( n, angVelA ); \n "
" float angNB = dot3F4( n, angVelB ); \n "
" \n "
" dAngVelA -= (angNA*0.1f)*n; \n "
" dAngVelB -= (angNB*0.1f)*n; \n "
" } \n "
" } \n "
" } \n "
" \n "
" \n "
" } \n "
" if (invMassA) \n "
" { \n "
" deltaLinearVelocities[splitIndexA] = dLinVelA; \n "
" deltaAngularVelocities[splitIndexA] = dAngVelA; \n "
" } \n "
" if (invMassB) \n "
" { \n "
" deltaLinearVelocities[splitIndexB] = dLinVelB; \n "
" deltaAngularVelocities[splitIndexB] = dAngVelB; \n "
" } \n "
" \n "
" } \n "
" __kernel void SolveFrictionJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes , \n "
" __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, \n "
" __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, \n "
" float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds \n "
" ) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" if (i<numManifolds) \n "
" { \n "
" solveFrictionConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); \n "
" } \n "
" } \n "
" __kernel void UpdateBodyVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount, \n "
" __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies) \n "
" { \n "
" int i = GET_GLOBAL_IDX; \n "
" if (i<numBodies) \n "
" { \n "
" if (gBodies[i].m_invMass) \n "
" { \n "
" int bodyOffset = offsetSplitBodies[i]; \n "
" int count = bodyCount[i]; \n "
" if (count) \n "
" { \n "
" gBodies[i].m_linVel += deltaLinearVelocities[bodyOffset]; \n "
" gBodies[i].m_angVel += deltaAngularVelocities[bodyOffset]; \n "
" } \n "
" } \n "
" } \n "
" } \n "
" void setConstraint4( const float4 posA, const float4 linVelA, const float4 angVelA, float invMassA, const Matrix3x3 invInertiaA, \n "
" const float4 posB, const float4 linVelB, const float4 angVelB, float invMassB, const Matrix3x3 invInertiaB, \n "
" __global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,float countA, float countB, \n "
" Constraint4* dstC ) \n "
" { \n "
" dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit); \n "
" dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit); \n "
" float dtInv = 1.f/dt; \n "
" for(int ic=0; ic<4; ic++) \n "
" { \n "
" dstC->m_appliedRambdaDt[ic] = 0.f; \n "
" } \n "
" dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f; \n "
" dstC->m_linear = src->m_worldNormalOnB; \n "
" dstC->m_linear.w = 0.7f ;//src->getFrictionCoeff() ); \n "
" for(int ic=0; ic<4; ic++) \n "
" { \n "
" float4 r0 = src->m_worldPosB[ic] - posA; \n "
" float4 r1 = src->m_worldPosB[ic] - posB; \n "
" if( ic >= src->m_worldNormalOnB.w )//npoints \n "
" { \n "
" dstC->m_jacCoeffInv[ic] = 0.f; \n "
" continue; \n "
" } \n "
" float relVelN; \n "
" { \n "
" float4 linear, angular0, angular1; \n "
" setLinearAndAngular(src->m_worldNormalOnB, r0, r1, &linear, &angular0, &angular1); \n "
" dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1, \n "
" invMassA, &invInertiaA, invMassB, &invInertiaB , countA, countB); \n "
" relVelN = calcRelVel(linear, -linear, angular0, angular1, \n "
" linVelA, angVelA, linVelB, angVelB); \n "
" float e = 0.f;//src->getRestituitionCoeff(); \n "
" if( relVelN*relVelN < 0.004f ) e = 0.f; \n "
" dstC->m_b[ic] = e*relVelN; \n "
" //float penetration = src->m_worldPosB[ic].w; \n "
" dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift)*positionConstraintCoeff*dtInv; \n "
" dstC->m_appliedRambdaDt[ic] = 0.f; \n "
" } \n "
" } \n "
" if( src->m_worldNormalOnB.w > 0 )//npoints \n "
" { // prepare friction \n "
" float4 center = make_float4(0.f); \n "
" for(int i=0; i<src->m_worldNormalOnB.w; i++) \n "
" center += src->m_worldPosB[i]; \n "
" center /= (float)src->m_worldNormalOnB.w; \n "
" float4 tangent[2]; \n "
" btPlaneSpace1(-src->m_worldNormalOnB,&tangent[0],&tangent[1]); \n "
" \n "
" float4 r[2]; \n "
" r[0] = center - posA; \n "
" r[1] = center - posB; \n "
" for(int i=0; i<2; i++) \n "
" { \n "
" float4 linear, angular0, angular1; \n "
" setLinearAndAngular(tangent[i], r[0], r[1], &linear, &angular0, &angular1); \n "
" dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1, \n "
" invMassA, &invInertiaA, invMassB, &invInertiaB ,countA, countB); \n "
" dstC->m_fAppliedRambdaDt[i] = 0.f; \n "
" } \n "
" dstC->m_center = center; \n "
" } \n "
" for(int i=0; i<4; i++) \n "
" { \n "
" if( i<src->m_worldNormalOnB.w ) \n "
" { \n "
" dstC->m_worldPos[i] = src->m_worldPosB[i]; \n "
" } \n "
" else \n "
" { \n "
" dstC->m_worldPos[i] = make_float4(0.f); \n "
" } \n "
" } \n "
" } \n "
" __kernel \n "
" __attribute__((reqd_work_group_size(WG_SIZE,1,1))) \n "
" void ContactToConstraintSplitKernel(__global const struct b3Contact4Data* gContact, __global const Body* gBodies, __global const Shape* gShapes, __global Constraint4* gConstraintOut, \n "
" __global const unsigned int* bodyCount, \n "
" int nContacts, \n "
" float dt, \n "
" float positionDrift, \n "
" float positionConstraintCoeff \n "
" ) \n "
" { \n "
" int gIdx = GET_GLOBAL_IDX; \n "
" \n "
" if( gIdx < nContacts ) \n "
" { \n "
" int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit); \n "
" int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit); \n "
" float4 posA = gBodies[aIdx].m_pos; \n "
" float4 linVelA = gBodies[aIdx].m_linVel; \n "
" float4 angVelA = gBodies[aIdx].m_angVel; \n "
" float invMassA = gBodies[aIdx].m_invMass; \n "
" Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; \n "
" float4 posB = gBodies[bIdx].m_pos; \n "
" float4 linVelB = gBodies[bIdx].m_linVel; \n "
" float4 angVelB = gBodies[bIdx].m_angVel; \n "
" float invMassB = gBodies[bIdx].m_invMass; \n "
" Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; \n "
" Constraint4 cs; \n "
" float countA = invMassA != 0.f ? (float)bodyCount[aIdx] : 1; \n "
" float countB = invMassB != 0.f ? (float)bodyCount[bIdx] : 1; \n "
" setConstraint4( posA, linVelA, angVelA, invMassA, invInertiaA, posB, linVelB, angVelB, invMassB, invInertiaB, \n "
" &gContact[gIdx], dt, positionDrift, positionConstraintCoeff,countA,countB, \n "
" &cs ); \n "
" \n "
" cs.m_batchIdx = gContact[gIdx].m_batchIdx; \n "
" gConstraintOut[gIdx] = cs; \n "
" } \n "
" } \n " ;