virtualx-engine/thirdparty/bullet/BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBody.cpp

792 lines
24 KiB
C++
Raw Normal View History

#include "btReducedDeformableBody.h"
#include "../btSoftBodyInternals.h"
#include "btReducedDeformableBodyHelpers.h"
#include "LinearMath/btTransformUtil.h"
#include <iostream>
#include <fstream>
btReducedDeformableBody::btReducedDeformableBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btVector3* x, const btScalar* m)
: btSoftBody(worldInfo, node_count, x, m), m_rigidOnly(false)
{
// reduced deformable
m_reducedModel = true;
m_nReduced = 0;
m_nFull = 0;
m_nodeIndexOffset = 0;
m_transform_lock = false;
m_ksScale = 1.0;
m_rhoScale = 1.0;
// rigid motion
m_linearVelocity.setZero();
m_angularVelocity.setZero();
m_internalDeltaLinearVelocity.setZero();
m_internalDeltaAngularVelocity.setZero();
m_angularVelocityFromReduced.setZero();
m_internalDeltaAngularVelocityFromReduced.setZero();
m_angularFactor.setValue(1, 1, 1);
m_linearFactor.setValue(1, 1, 1);
// m_invInertiaLocal.setValue(1, 1, 1);
m_invInertiaLocal.setIdentity();
m_mass = 0.0;
m_inverseMass = 0.0;
m_linearDamping = 0;
m_angularDamping = 0;
// Rayleigh damping
m_dampingAlpha = 0;
m_dampingBeta = 0;
m_rigidTransformWorld.setIdentity();
}
void btReducedDeformableBody::setReducedModes(int num_modes, int full_size)
{
m_nReduced = num_modes;
m_nFull = full_size;
m_reducedDofs.resize(m_nReduced, 0);
m_reducedDofsBuffer.resize(m_nReduced, 0);
m_reducedVelocity.resize(m_nReduced, 0);
m_reducedVelocityBuffer.resize(m_nReduced, 0);
m_reducedForceElastic.resize(m_nReduced, 0);
m_reducedForceDamping.resize(m_nReduced, 0);
m_reducedForceExternal.resize(m_nReduced, 0);
m_internalDeltaReducedVelocity.resize(m_nReduced, 0);
m_nodalMass.resize(full_size, 0);
m_localMomentArm.resize(m_nFull);
}
void btReducedDeformableBody::setMassProps(const tDenseArray& mass_array)
{
btScalar total_mass = 0;
btVector3 CoM(0, 0, 0);
for (int i = 0; i < m_nFull; ++i)
{
m_nodalMass[i] = m_rhoScale * mass_array[i];
m_nodes[i].m_im = mass_array[i] > 0 ? 1.0 / (m_rhoScale * mass_array[i]) : 0;
total_mass += m_rhoScale * mass_array[i];
CoM += m_nodalMass[i] * m_nodes[i].m_x;
}
// total rigid body mass
m_mass = total_mass;
m_inverseMass = total_mass > 0 ? 1.0 / total_mass : 0;
// original CoM
m_initialCoM = CoM / total_mass;
}
void btReducedDeformableBody::setInertiaProps()
{
// make sure the initial CoM is at the origin (0,0,0)
// for (int i = 0; i < m_nFull; ++i)
// {
// m_nodes[i].m_x -= m_initialCoM;
// }
// m_initialCoM.setZero();
m_rigidTransformWorld.setOrigin(m_initialCoM);
m_interpolationWorldTransform = m_rigidTransformWorld;
updateLocalInertiaTensorFromNodes();
// update world inertia tensor
btMatrix3x3 rotation;
rotation.setIdentity();
updateInitialInertiaTensor(rotation);
updateInertiaTensor();
m_interpolateInvInertiaTensorWorld = m_invInertiaTensorWorld;
}
void btReducedDeformableBody::setRigidVelocity(const btVector3& v)
{
m_linearVelocity = v;
}
void btReducedDeformableBody::setRigidAngularVelocity(const btVector3& omega)
{
m_angularVelocity = omega;
}
void btReducedDeformableBody::setStiffnessScale(const btScalar ks)
{
m_ksScale = ks;
}
void btReducedDeformableBody::setMassScale(const btScalar rho)
{
m_rhoScale = rho;
}
void btReducedDeformableBody::setFixedNodes(const int n_node)
{
m_fixedNodes.push_back(n_node);
m_nodes[n_node].m_im = 0; // set inverse mass to be zero for the constraint solver.
}
void btReducedDeformableBody::setDamping(const btScalar alpha, const btScalar beta)
{
m_dampingAlpha = alpha;
m_dampingBeta = beta;
}
void btReducedDeformableBody::internalInitialization()
{
// zeroing
endOfTimeStepZeroing();
// initialize rest position
updateRestNodalPositions();
// initialize local nodal moment arm form the CoM
updateLocalMomentArm();
// initialize projection matrix
updateExternalForceProjectMatrix(false);
}
void btReducedDeformableBody::updateLocalMomentArm()
{
TVStack delta_x;
delta_x.resize(m_nFull);
for (int i = 0; i < m_nFull; ++i)
{
for (int k = 0; k < 3; ++k)
{
// compute displacement
delta_x[i][k] = 0;
for (int j = 0; j < m_nReduced; ++j)
{
delta_x[i][k] += m_modes[j][3 * i + k] * m_reducedDofs[j];
}
}
// get new moment arm Sq + x0
m_localMomentArm[i] = m_x0[i] - m_initialCoM + delta_x[i];
}
}
void btReducedDeformableBody::updateExternalForceProjectMatrix(bool initialized)
{
// if not initialized, need to compute both P_A and Cq
// otherwise, only need to udpate Cq
if (!initialized)
{
// resize
m_projPA.resize(m_nReduced);
m_projCq.resize(m_nReduced);
m_STP.resize(m_nReduced);
m_MrInvSTP.resize(m_nReduced);
// P_A
for (int r = 0; r < m_nReduced; ++r)
{
m_projPA[r].resize(3 * m_nFull, 0);
for (int i = 0; i < m_nFull; ++i)
{
btMatrix3x3 mass_scaled_i = Diagonal(1) - Diagonal(m_nodalMass[i] / m_mass);
btVector3 s_ri(m_modes[r][3 * i], m_modes[r][3 * i + 1], m_modes[r][3 * i + 2]);
btVector3 prod_i = mass_scaled_i * s_ri;
for (int k = 0; k < 3; ++k)
m_projPA[r][3 * i + k] = prod_i[k];
// btScalar ratio = m_nodalMass[i] / m_mass;
// m_projPA[r] += btVector3(- m_modes[r][3 * i] * ratio,
// - m_modes[r][3 * i + 1] * ratio,
// - m_modes[r][3 * i + 2] * ratio);
}
}
}
// C(q) is updated once per position update
for (int r = 0; r < m_nReduced; ++r)
{
m_projCq[r].resize(3 * m_nFull, 0);
for (int i = 0; i < m_nFull; ++i)
{
btMatrix3x3 r_star = Cross(m_localMomentArm[i]);
btVector3 s_ri(m_modes[r][3 * i], m_modes[r][3 * i + 1], m_modes[r][3 * i + 2]);
btVector3 prod_i = r_star * m_invInertiaTensorWorld * r_star * s_ri;
for (int k = 0; k < 3; ++k)
m_projCq[r][3 * i + k] = m_nodalMass[i] * prod_i[k];
// btVector3 si(m_modes[r][3 * i], m_modes[r][3 * i + 1], m_modes[r][3 * i + 2]);
// m_projCq[r] += m_nodalMass[i] * si.cross(m_localMomentArm[i]);
}
}
}
void btReducedDeformableBody::endOfTimeStepZeroing()
{
for (int i = 0; i < m_nReduced; ++i)
{
m_reducedForceElastic[i] = 0;
m_reducedForceDamping[i] = 0;
m_reducedForceExternal[i] = 0;
m_internalDeltaReducedVelocity[i] = 0;
m_reducedDofsBuffer[i] = m_reducedDofs[i];
m_reducedVelocityBuffer[i] = m_reducedVelocity[i];
}
// std::cout << "zeroed!\n";
}
void btReducedDeformableBody::applyInternalVelocityChanges()
{
m_linearVelocity += m_internalDeltaLinearVelocity;
m_angularVelocity += m_internalDeltaAngularVelocity;
m_internalDeltaLinearVelocity.setZero();
m_internalDeltaAngularVelocity.setZero();
for (int r = 0; r < m_nReduced; ++r)
{
m_reducedVelocity[r] += m_internalDeltaReducedVelocity[r];
m_internalDeltaReducedVelocity[r] = 0;
}
}
void btReducedDeformableBody::predictIntegratedTransform(btScalar dt, btTransform& predictedTransform)
{
btTransformUtil::integrateTransform(m_rigidTransformWorld, m_linearVelocity, m_angularVelocity, dt, predictedTransform);
}
void btReducedDeformableBody::updateReducedDofs(btScalar solverdt)
{
for (int r = 0; r < m_nReduced; ++r)
{
m_reducedDofs[r] = m_reducedDofsBuffer[r] + solverdt * m_reducedVelocity[r];
}
}
void btReducedDeformableBody::mapToFullPosition(const btTransform& ref_trans)
{
btVector3 origin = ref_trans.getOrigin();
btMatrix3x3 rotation = ref_trans.getBasis();
for (int i = 0; i < m_nFull; ++i)
{
m_nodes[i].m_x = rotation * m_localMomentArm[i] + origin;
m_nodes[i].m_q = m_nodes[i].m_x;
}
}
void btReducedDeformableBody::updateReducedVelocity(btScalar solverdt)
{
// update reduced velocity
for (int r = 0; r < m_nReduced; ++r)
{
// the reduced mass is always identity!
btScalar delta_v = 0;
delta_v = solverdt * (m_reducedForceElastic[r] + m_reducedForceDamping[r]);
// delta_v = solverdt * (m_reducedForceElastic[r] + m_reducedForceDamping[r] + m_reducedForceExternal[r]);
m_reducedVelocity[r] = m_reducedVelocityBuffer[r] + delta_v;
}
}
void btReducedDeformableBody::mapToFullVelocity(const btTransform& ref_trans)
{
// compute the reduced contribution to the angular velocity
// btVector3 sum_linear(0, 0, 0);
// btVector3 sum_angular(0, 0, 0);
// m_linearVelocityFromReduced.setZero();
// m_angularVelocityFromReduced.setZero();
// for (int i = 0; i < m_nFull; ++i)
// {
// btVector3 r_com = ref_trans.getBasis() * m_localMomentArm[i];
// btMatrix3x3 r_star = Cross(r_com);
// btVector3 v_from_reduced(0, 0, 0);
// for (int k = 0; k < 3; ++k)
// {
// for (int r = 0; r < m_nReduced; ++r)
// {
// v_from_reduced[k] += m_modes[r][3 * i + k] * m_reducedVelocity[r];
// }
// }
// btVector3 delta_linear = m_nodalMass[i] * v_from_reduced;
// btVector3 delta_angular = m_nodalMass[i] * (r_star * ref_trans.getBasis() * v_from_reduced);
// sum_linear += delta_linear;
// sum_angular += delta_angular;
// // std::cout << "delta_linear: " << delta_linear[0] << "\t" << delta_linear[1] << "\t" << delta_linear[2] << "\n";
// // std::cout << "delta_angular: " << delta_angular[0] << "\t" << delta_angular[1] << "\t" << delta_angular[2] << "\n";
// // std::cout << "sum_linear: " << sum_linear[0] << "\t" << sum_linear[1] << "\t" << sum_linear[2] << "\n";
// // std::cout << "sum_angular: " << sum_angular[0] << "\t" << sum_angular[1] << "\t" << sum_angular[2] << "\n";
// }
// m_linearVelocityFromReduced = 1.0 / m_mass * (ref_trans.getBasis() * sum_linear);
// m_angularVelocityFromReduced = m_interpolateInvInertiaTensorWorld * sum_angular;
// m_linearVelocity -= m_linearVelocityFromReduced;
// m_angularVelocity -= m_angularVelocityFromReduced;
for (int i = 0; i < m_nFull; ++i)
{
m_nodes[i].m_v = computeNodeFullVelocity(ref_trans, i);
}
}
const btVector3 btReducedDeformableBody::computeTotalAngularMomentum() const
{
btVector3 L_rigid = m_invInertiaTensorWorld.inverse() * m_angularVelocity;
btVector3 L_reduced(0, 0, 0);
btMatrix3x3 omega_prime_star = Cross(m_angularVelocityFromReduced);
for (int i = 0; i < m_nFull; ++i)
{
btVector3 r_com = m_rigidTransformWorld.getBasis() * m_localMomentArm[i];
btMatrix3x3 r_star = Cross(r_com);
btVector3 v_from_reduced(0, 0, 0);
for (int k = 0; k < 3; ++k)
{
for (int r = 0; r < m_nReduced; ++r)
{
v_from_reduced[k] += m_modes[r][3 * i + k] * m_reducedVelocity[r];
}
}
L_reduced += m_nodalMass[i] * (r_star * (m_rigidTransformWorld.getBasis() * v_from_reduced - omega_prime_star * r_com));
// L_reduced += m_nodalMass[i] * (r_star * (m_rigidTransformWorld.getBasis() * v_from_reduced));
}
return L_rigid + L_reduced;
}
const btVector3 btReducedDeformableBody::computeNodeFullVelocity(const btTransform& ref_trans, int n_node) const
{
btVector3 v_from_reduced(0, 0, 0);
btVector3 r_com = ref_trans.getBasis() * m_localMomentArm[n_node];
// compute velocity contributed by the reduced velocity
for (int k = 0; k < 3; ++k)
{
for (int r = 0; r < m_nReduced; ++r)
{
v_from_reduced[k] += m_modes[r][3 * n_node + k] * m_reducedVelocity[r];
}
}
// get new velocity
btVector3 vel = m_angularVelocity.cross(r_com) +
ref_trans.getBasis() * v_from_reduced +
m_linearVelocity;
return vel;
}
const btVector3 btReducedDeformableBody::internalComputeNodeDeltaVelocity(const btTransform& ref_trans, int n_node) const
{
btVector3 deltaV_from_reduced(0, 0, 0);
btVector3 r_com = ref_trans.getBasis() * m_localMomentArm[n_node];
// compute velocity contributed by the reduced velocity
for (int k = 0; k < 3; ++k)
{
for (int r = 0; r < m_nReduced; ++r)
{
deltaV_from_reduced[k] += m_modes[r][3 * n_node + k] * m_internalDeltaReducedVelocity[r];
}
}
// get delta velocity
btVector3 deltaV = m_internalDeltaAngularVelocity.cross(r_com) +
ref_trans.getBasis() * deltaV_from_reduced +
m_internalDeltaLinearVelocity;
return deltaV;
}
void btReducedDeformableBody::proceedToTransform(btScalar dt, bool end_of_time_step)
{
btTransformUtil::integrateTransform(m_rigidTransformWorld, m_linearVelocity, m_angularVelocity, dt, m_interpolationWorldTransform);
updateInertiaTensor();
// m_interpolateInvInertiaTensorWorld = m_interpolationWorldTransform.getBasis().scaled(m_invInertiaLocal) * m_interpolationWorldTransform.getBasis().transpose();
m_rigidTransformWorld = m_interpolationWorldTransform;
m_invInertiaTensorWorld = m_interpolateInvInertiaTensorWorld;
}
void btReducedDeformableBody::transformTo(const btTransform& trs)
{
btTransform current_transform = getRigidTransform();
btTransform new_transform(trs.getBasis() * current_transform.getBasis().transpose(),
trs.getOrigin() - current_transform.getOrigin());
transform(new_transform);
}
void btReducedDeformableBody::transform(const btTransform& trs)
{
m_transform_lock = true;
// transform mesh
{
const btScalar margin = getCollisionShape()->getMargin();
ATTRIBUTE_ALIGNED16(btDbvtVolume)
vol;
btVector3 CoM = m_rigidTransformWorld.getOrigin();
btVector3 translation = trs.getOrigin();
btMatrix3x3 rotation = trs.getBasis();
for (int i = 0; i < m_nodes.size(); ++i)
{
Node& n = m_nodes[i];
n.m_x = rotation * (n.m_x - CoM) + CoM + translation;
n.m_q = rotation * (n.m_q - CoM) + CoM + translation;
n.m_n = rotation * n.m_n;
vol = btDbvtVolume::FromCR(n.m_x, margin);
m_ndbvt.update(n.m_leaf, vol);
}
updateNormals();
updateBounds();
updateConstants();
}
// update modes
updateModesByRotation(trs.getBasis());
// update inertia tensor
updateInitialInertiaTensor(trs.getBasis());
updateInertiaTensor();
m_interpolateInvInertiaTensorWorld = m_invInertiaTensorWorld;
// update rigid frame (No need to update the rotation. Nodes have already been updated.)
m_rigidTransformWorld.setOrigin(m_initialCoM + trs.getOrigin());
m_interpolationWorldTransform = m_rigidTransformWorld;
m_initialCoM = m_rigidTransformWorld.getOrigin();
internalInitialization();
}
void btReducedDeformableBody::scale(const btVector3& scl)
{
// Scaling the mesh after transform is applied is not allowed
btAssert(!m_transform_lock);
// scale the mesh
{
const btScalar margin = getCollisionShape()->getMargin();
ATTRIBUTE_ALIGNED16(btDbvtVolume)
vol;
btVector3 CoM = m_rigidTransformWorld.getOrigin();
for (int i = 0; i < m_nodes.size(); ++i)
{
Node& n = m_nodes[i];
n.m_x = (n.m_x - CoM) * scl + CoM;
n.m_q = (n.m_q - CoM) * scl + CoM;
vol = btDbvtVolume::FromCR(n.m_x, margin);
m_ndbvt.update(n.m_leaf, vol);
}
updateNormals();
updateBounds();
updateConstants();
initializeDmInverse();
}
// update inertia tensor
updateLocalInertiaTensorFromNodes();
btMatrix3x3 id;
id.setIdentity();
updateInitialInertiaTensor(id); // there is no rotation, but the local inertia tensor has changed
updateInertiaTensor();
m_interpolateInvInertiaTensorWorld = m_invInertiaTensorWorld;
internalInitialization();
}
void btReducedDeformableBody::setTotalMass(btScalar mass, bool fromfaces)
{
// Changing the total mass after transform is applied is not allowed
btAssert(!m_transform_lock);
btScalar scale_ratio = mass / m_mass;
// update nodal mass
for (int i = 0; i < m_nFull; ++i)
{
m_nodalMass[i] *= scale_ratio;
}
m_mass = mass;
m_inverseMass = mass > 0 ? 1.0 / mass : 0;
// update inertia tensors
updateLocalInertiaTensorFromNodes();
btMatrix3x3 id;
id.setIdentity();
updateInitialInertiaTensor(id); // there is no rotation, but the local inertia tensor has changed
updateInertiaTensor();
m_interpolateInvInertiaTensorWorld = m_invInertiaTensorWorld;
internalInitialization();
}
void btReducedDeformableBody::updateRestNodalPositions()
{
// update reset nodal position
m_x0.resize(m_nFull);
for (int i = 0; i < m_nFull; ++i)
{
m_x0[i] = m_nodes[i].m_x;
}
}
// reference notes:
// https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf
void btReducedDeformableBody::updateLocalInertiaTensorFromNodes()
{
btMatrix3x3 inertia_tensor;
inertia_tensor.setZero();
for (int p = 0; p < m_nFull; ++p)
{
btMatrix3x3 particle_inertia;
particle_inertia.setZero();
btVector3 r = m_nodes[p].m_x - m_initialCoM;
particle_inertia[0][0] = m_nodalMass[p] * (r[1] * r[1] + r[2] * r[2]);
particle_inertia[1][1] = m_nodalMass[p] * (r[0] * r[0] + r[2] * r[2]);
particle_inertia[2][2] = m_nodalMass[p] * (r[0] * r[0] + r[1] * r[1]);
particle_inertia[0][1] = - m_nodalMass[p] * (r[0] * r[1]);
particle_inertia[0][2] = - m_nodalMass[p] * (r[0] * r[2]);
particle_inertia[1][2] = - m_nodalMass[p] * (r[1] * r[2]);
particle_inertia[1][0] = particle_inertia[0][1];
particle_inertia[2][0] = particle_inertia[0][2];
particle_inertia[2][1] = particle_inertia[1][2];
inertia_tensor += particle_inertia;
}
m_invInertiaLocal = inertia_tensor.inverse();
}
void btReducedDeformableBody::updateInitialInertiaTensor(const btMatrix3x3& rotation)
{
// m_invInertiaTensorWorldInitial = rotation.scaled(m_invInertiaLocal) * rotation.transpose();
m_invInertiaTensorWorldInitial = rotation * m_invInertiaLocal * rotation.transpose();
}
void btReducedDeformableBody::updateModesByRotation(const btMatrix3x3& rotation)
{
for (int r = 0; r < m_nReduced; ++r)
{
for (int i = 0; i < m_nFull; ++i)
{
btVector3 nodal_disp(m_modes[r][3 * i], m_modes[r][3 * i + 1], m_modes[r][3 * i + 2]);
nodal_disp = rotation * nodal_disp;
for (int k = 0; k < 3; ++k)
{
m_modes[r][3 * i + k] = nodal_disp[k];
}
}
}
}
void btReducedDeformableBody::updateInertiaTensor()
{
m_invInertiaTensorWorld = m_rigidTransformWorld.getBasis() * m_invInertiaTensorWorldInitial * m_rigidTransformWorld.getBasis().transpose();
}
void btReducedDeformableBody::applyDamping(btScalar timeStep)
{
m_linearVelocity *= btScalar(1) - m_linearDamping;
m_angularDamping *= btScalar(1) - m_angularDamping;
}
void btReducedDeformableBody::applyCentralImpulse(const btVector3& impulse)
{
m_linearVelocity += impulse * m_linearFactor * m_inverseMass;
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
clampVelocity(m_linearVelocity);
#endif
}
void btReducedDeformableBody::applyTorqueImpulse(const btVector3& torque)
{
m_angularVelocity += m_interpolateInvInertiaTensorWorld * torque * m_angularFactor;
#if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
clampVelocity(m_angularVelocity);
#endif
}
void btReducedDeformableBody::internalApplyRigidImpulse(const btVector3& impulse, const btVector3& rel_pos)
{
if (m_inverseMass == btScalar(0.))
{
std::cout << "something went wrong...probably didn't initialize?\n";
btAssert(false);
}
// delta linear velocity
m_internalDeltaLinearVelocity += impulse * m_linearFactor * m_inverseMass;
// delta angular velocity
btVector3 torque = rel_pos.cross(impulse * m_linearFactor);
m_internalDeltaAngularVelocity += m_interpolateInvInertiaTensorWorld * torque * m_angularFactor;
}
btVector3 btReducedDeformableBody::getRelativePos(int n_node)
{
btMatrix3x3 rotation = m_interpolationWorldTransform.getBasis();
btVector3 ri = rotation * m_localMomentArm[n_node];
return ri;
}
btMatrix3x3 btReducedDeformableBody::getImpulseFactor(int n_node)
{
// relative position
btMatrix3x3 rotation = m_interpolationWorldTransform.getBasis();
btVector3 ri = rotation * m_localMomentArm[n_node];
btMatrix3x3 ri_skew = Cross(ri);
// calculate impulse factor
// rigid part
btScalar inv_mass = m_nodalMass[n_node] > btScalar(0) ? btScalar(1) / m_mass : btScalar(0);
btMatrix3x3 K1 = Diagonal(inv_mass);
K1 -= ri_skew * m_interpolateInvInertiaTensorWorld * ri_skew;
// reduced deformable part
btMatrix3x3 SA;
SA.setZero();
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
for (int r = 0; r < m_nReduced; ++r)
{
SA[i][j] += m_modes[r][3 * n_node + i] * (m_projPA[r][3 * n_node + j] + m_projCq[r][3 * n_node + j]);
}
}
}
btMatrix3x3 RSARinv = rotation * SA * rotation.transpose();
TVStack omega_helper; // Sum_i m_i r*_i R S_i
omega_helper.resize(m_nReduced);
for (int r = 0; r < m_nReduced; ++r)
{
omega_helper[r].setZero();
for (int i = 0; i < m_nFull; ++i)
{
btMatrix3x3 mi_rstar_i = rotation * Cross(m_localMomentArm[i]) * m_nodalMass[i];
btVector3 s_ri(m_modes[r][3 * i], m_modes[r][3 * i + 1], m_modes[r][3 * i + 2]);
omega_helper[r] += mi_rstar_i * rotation * s_ri;
}
}
btMatrix3x3 sum_multiply_A;
sum_multiply_A.setZero();
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
for (int r = 0; r < m_nReduced; ++r)
{
sum_multiply_A[i][j] += omega_helper[r][i] * (m_projPA[r][3 * n_node + j] + m_projCq[r][3 * n_node + j]);
}
}
}
btMatrix3x3 K2 = RSARinv + ri_skew * m_interpolateInvInertiaTensorWorld * sum_multiply_A * rotation.transpose();
return m_rigidOnly ? K1 : K1 + K2;
}
void btReducedDeformableBody::internalApplyFullSpaceImpulse(const btVector3& impulse, const btVector3& rel_pos, int n_node, btScalar dt)
{
if (!m_rigidOnly)
{
// apply impulse force
applyFullSpaceNodalForce(impulse / dt, n_node);
// update delta damping force
tDenseArray reduced_vel_tmp;
reduced_vel_tmp.resize(m_nReduced);
for (int r = 0; r < m_nReduced; ++r)
{
reduced_vel_tmp[r] = m_reducedVelocity[r] + m_internalDeltaReducedVelocity[r];
}
applyReducedDampingForce(reduced_vel_tmp);
// applyReducedDampingForce(m_internalDeltaReducedVelocity);
// delta reduced velocity
for (int r = 0; r < m_nReduced; ++r)
{
// The reduced mass is always identity!
m_internalDeltaReducedVelocity[r] += dt * (m_reducedForceDamping[r] + m_reducedForceExternal[r]);
}
}
internalApplyRigidImpulse(impulse, rel_pos);
}
void btReducedDeformableBody::applyFullSpaceNodalForce(const btVector3& f_ext, int n_node)
{
// f_local = R^-1 * f_ext //TODO: interpoalted transfrom
// btVector3 f_local = m_rigidTransformWorld.getBasis().transpose() * f_ext;
btVector3 f_local = m_interpolationWorldTransform.getBasis().transpose() * f_ext;
// f_ext_r = [S^T * P]_{n_node} * f_local
tDenseArray f_ext_r;
f_ext_r.resize(m_nReduced, 0);
for (int r = 0; r < m_nReduced; ++r)
{
m_reducedForceExternal[r] = 0;
for (int k = 0; k < 3; ++k)
{
f_ext_r[r] += (m_projPA[r][3 * n_node + k] + m_projCq[r][3 * n_node + k]) * f_local[k];
}
m_reducedForceExternal[r] += f_ext_r[r];
}
}
void btReducedDeformableBody::applyRigidGravity(const btVector3& gravity, btScalar dt)
{
// update rigid frame velocity
m_linearVelocity += dt * gravity;
}
void btReducedDeformableBody::applyReducedElasticForce(const tDenseArray& reduce_dofs)
{
for (int r = 0; r < m_nReduced; ++r)
{
m_reducedForceElastic[r] = - m_ksScale * m_Kr[r] * reduce_dofs[r];
}
}
void btReducedDeformableBody::applyReducedDampingForce(const tDenseArray& reduce_vel)
{
for (int r = 0; r < m_nReduced; ++r)
{
m_reducedForceDamping[r] = - m_dampingBeta * m_ksScale * m_Kr[r] * reduce_vel[r];
}
}
btScalar btReducedDeformableBody::getTotalMass() const
{
return m_mass;
}
btTransform& btReducedDeformableBody::getRigidTransform()
{
return m_rigidTransformWorld;
}
const btVector3& btReducedDeformableBody::getLinearVelocity() const
{
return m_linearVelocity;
}
const btVector3& btReducedDeformableBody::getAngularVelocity() const
{
return m_angularVelocity;
}
void btReducedDeformableBody::disableReducedModes(const bool rigid_only)
{
m_rigidOnly = rigid_only;
}
bool btReducedDeformableBody::isReducedModesOFF() const
{
return m_rigidOnly;
}