654 lines
20 KiB
C++
654 lines
20 KiB
C++
|
/*
|
||
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#ifndef BT_VECTOR3_H
|
||
|
#define BT_VECTOR3_H
|
||
|
|
||
|
#include "btMinMax.h"
|
||
|
#include "btScalar.h"
|
||
|
|
||
|
#ifdef BT_USE_DOUBLE_PRECISION
|
||
|
#define btVector3Data btVector3DoubleData
|
||
|
#define btVector3DataName "btVector3DoubleData"
|
||
|
#else
|
||
|
#define btVector3Data btVector3FloatData
|
||
|
#define btVector3DataName "btVector3FloatData"
|
||
|
#endif //BT_USE_DOUBLE_PRECISION
|
||
|
|
||
|
/**@brief btVector3 can be used to represent 3D points and vectors.
|
||
|
* It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
|
||
|
* Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
|
||
|
*/
|
||
|
//GODOT ADDITION
|
||
|
namespace VHACD {
|
||
|
//
|
||
|
|
||
|
ATTRIBUTE_ALIGNED16(class)
|
||
|
btVector3 {
|
||
|
public:
|
||
|
#if defined(__SPU__) && defined(__CELLOS_LV2__)
|
||
|
btScalar m_floats[4];
|
||
|
|
||
|
public:
|
||
|
SIMD_FORCE_INLINE const vec_float4 &get128() const {
|
||
|
return *((const vec_float4 *)&m_floats[0]);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
#else //__CELLOS_LV2__ __SPU__
|
||
|
#ifdef BT_USE_SSE // _WIN32
|
||
|
union {
|
||
|
__m128 mVec128;
|
||
|
btScalar m_floats[4];
|
||
|
};
|
||
|
SIMD_FORCE_INLINE __m128 get128() const {
|
||
|
return mVec128;
|
||
|
}
|
||
|
SIMD_FORCE_INLINE void set128(__m128 v128) {
|
||
|
mVec128 = v128;
|
||
|
}
|
||
|
#else
|
||
|
btScalar m_floats[4];
|
||
|
#endif
|
||
|
#endif //__CELLOS_LV2__ __SPU__
|
||
|
|
||
|
public:
|
||
|
/**@brief No initialization constructor */
|
||
|
SIMD_FORCE_INLINE btVector3() {}
|
||
|
|
||
|
/**@brief Constructor from scalars
|
||
|
* @param x X value
|
||
|
* @param y Y value
|
||
|
* @param z Z value
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE btVector3(const btScalar &x, const btScalar &y, const btScalar &z) {
|
||
|
m_floats[0] = x;
|
||
|
m_floats[1] = y;
|
||
|
m_floats[2] = z;
|
||
|
m_floats[3] = btScalar(0.);
|
||
|
}
|
||
|
|
||
|
/**@brief Add a vector to this one
|
||
|
* @param The vector to add to this one */
|
||
|
SIMD_FORCE_INLINE btVector3 &operator+=(const btVector3 &v) {
|
||
|
|
||
|
m_floats[0] += v.m_floats[0];
|
||
|
m_floats[1] += v.m_floats[1];
|
||
|
m_floats[2] += v.m_floats[2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Subtract a vector from this one
|
||
|
* @param The vector to subtract */
|
||
|
SIMD_FORCE_INLINE btVector3 &operator-=(const btVector3 &v) {
|
||
|
m_floats[0] -= v.m_floats[0];
|
||
|
m_floats[1] -= v.m_floats[1];
|
||
|
m_floats[2] -= v.m_floats[2];
|
||
|
return *this;
|
||
|
}
|
||
|
/**@brief Scale the vector
|
||
|
* @param s Scale factor */
|
||
|
SIMD_FORCE_INLINE btVector3 &operator*=(const btScalar &s) {
|
||
|
m_floats[0] *= s;
|
||
|
m_floats[1] *= s;
|
||
|
m_floats[2] *= s;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Inversely scale the vector
|
||
|
* @param s Scale factor to divide by */
|
||
|
SIMD_FORCE_INLINE btVector3 &operator/=(const btScalar &s) {
|
||
|
btFullAssert(s != btScalar(0.0));
|
||
|
return *this *= btScalar(1.0) / s;
|
||
|
}
|
||
|
|
||
|
/**@brief Return the dot product
|
||
|
* @param v The other vector in the dot product */
|
||
|
SIMD_FORCE_INLINE btScalar dot(const btVector3 &v) const {
|
||
|
return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2];
|
||
|
}
|
||
|
|
||
|
/**@brief Return the length of the vector squared */
|
||
|
SIMD_FORCE_INLINE btScalar length2() const {
|
||
|
return dot(*this);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the length of the vector */
|
||
|
SIMD_FORCE_INLINE btScalar length() const {
|
||
|
return btSqrt(length2());
|
||
|
}
|
||
|
|
||
|
/**@brief Return the distance squared between the ends of this and another vector
|
||
|
* This is symantically treating the vector like a point */
|
||
|
SIMD_FORCE_INLINE btScalar distance2(const btVector3 &v) const;
|
||
|
|
||
|
/**@brief Return the distance between the ends of this and another vector
|
||
|
* This is symantically treating the vector like a point */
|
||
|
SIMD_FORCE_INLINE btScalar distance(const btVector3 &v) const;
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3 &safeNormalize() {
|
||
|
btVector3 absVec = this->absolute();
|
||
|
int32_t maxIndex = absVec.maxAxis();
|
||
|
if (absVec[maxIndex] > 0) {
|
||
|
*this /= absVec[maxIndex];
|
||
|
return *this /= length();
|
||
|
}
|
||
|
setValue(1, 0, 0);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Normalize this vector
|
||
|
* x^2 + y^2 + z^2 = 1 */
|
||
|
SIMD_FORCE_INLINE btVector3 &normalize() {
|
||
|
return *this /= length();
|
||
|
}
|
||
|
|
||
|
/**@brief Return a normalized version of this vector */
|
||
|
SIMD_FORCE_INLINE btVector3 normalized() const;
|
||
|
|
||
|
/**@brief Return a rotated version of this vector
|
||
|
* @param wAxis The axis to rotate about
|
||
|
* @param angle The angle to rotate by */
|
||
|
SIMD_FORCE_INLINE btVector3 rotate(const btVector3 &wAxis, const btScalar angle) const;
|
||
|
|
||
|
/**@brief Return the angle between this and another vector
|
||
|
* @param v The other vector */
|
||
|
SIMD_FORCE_INLINE btScalar angle(const btVector3 &v) const {
|
||
|
btScalar s = btSqrt(length2() * v.length2());
|
||
|
btFullAssert(s != btScalar(0.0));
|
||
|
return btAcos(dot(v) / s);
|
||
|
}
|
||
|
/**@brief Return a vector will the absolute values of each element */
|
||
|
SIMD_FORCE_INLINE btVector3 absolute() const {
|
||
|
return btVector3(
|
||
|
btFabs(m_floats[0]),
|
||
|
btFabs(m_floats[1]),
|
||
|
btFabs(m_floats[2]));
|
||
|
}
|
||
|
/**@brief Return the cross product between this and another vector
|
||
|
* @param v The other vector */
|
||
|
SIMD_FORCE_INLINE btVector3 cross(const btVector3 &v) const {
|
||
|
return btVector3(
|
||
|
m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
|
||
|
m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
|
||
|
m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar triple(const btVector3 &v1, const btVector3 &v2) const {
|
||
|
return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the axis with the smallest value
|
||
|
* Note return values are 0,1,2 for x, y, or z */
|
||
|
SIMD_FORCE_INLINE int32_t minAxis() const {
|
||
|
return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the axis with the largest value
|
||
|
* Note return values are 0,1,2 for x, y, or z */
|
||
|
SIMD_FORCE_INLINE int32_t maxAxis() const {
|
||
|
return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE int32_t furthestAxis() const {
|
||
|
return absolute().minAxis();
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE int32_t closestAxis() const {
|
||
|
return absolute().maxAxis();
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void setInterpolate3(const btVector3 &v0, const btVector3 &v1, btScalar rt) {
|
||
|
btScalar s = btScalar(1.0) - rt;
|
||
|
m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
|
||
|
m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
|
||
|
m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
|
||
|
//don't do the unused w component
|
||
|
// m_co[3] = s * v0[3] + rt * v1[3];
|
||
|
}
|
||
|
|
||
|
/**@brief Return the linear interpolation between this and another vector
|
||
|
* @param v The other vector
|
||
|
* @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
|
||
|
SIMD_FORCE_INLINE btVector3 lerp(const btVector3 &v, const btScalar &t) const {
|
||
|
return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
|
||
|
m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
|
||
|
m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
|
||
|
}
|
||
|
|
||
|
/**@brief Elementwise multiply this vector by the other
|
||
|
* @param v The other vector */
|
||
|
SIMD_FORCE_INLINE btVector3 &operator*=(const btVector3 &v) {
|
||
|
m_floats[0] *= v.m_floats[0];
|
||
|
m_floats[1] *= v.m_floats[1];
|
||
|
m_floats[2] *= v.m_floats[2];
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/**@brief Return the x value */
|
||
|
SIMD_FORCE_INLINE const btScalar &getX() const { return m_floats[0]; }
|
||
|
/**@brief Return the y value */
|
||
|
SIMD_FORCE_INLINE const btScalar &getY() const { return m_floats[1]; }
|
||
|
/**@brief Return the z value */
|
||
|
SIMD_FORCE_INLINE const btScalar &getZ() const { return m_floats[2]; }
|
||
|
/**@brief Set the x value */
|
||
|
SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; };
|
||
|
/**@brief Set the y value */
|
||
|
SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; };
|
||
|
/**@brief Set the z value */
|
||
|
SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; };
|
||
|
/**@brief Set the w value */
|
||
|
SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; };
|
||
|
/**@brief Return the x value */
|
||
|
SIMD_FORCE_INLINE const btScalar &x() const { return m_floats[0]; }
|
||
|
/**@brief Return the y value */
|
||
|
SIMD_FORCE_INLINE const btScalar &y() const { return m_floats[1]; }
|
||
|
/**@brief Return the z value */
|
||
|
SIMD_FORCE_INLINE const btScalar &z() const { return m_floats[2]; }
|
||
|
/**@brief Return the w value */
|
||
|
SIMD_FORCE_INLINE const btScalar &w() const { return m_floats[3]; }
|
||
|
|
||
|
//SIMD_FORCE_INLINE btScalar& operator[](int32_t i) { return (&m_floats[0])[i]; }
|
||
|
//SIMD_FORCE_INLINE const btScalar& operator[](int32_t i) const { return (&m_floats[0])[i]; }
|
||
|
///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
|
||
|
SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
|
||
|
SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
|
||
|
|
||
|
SIMD_FORCE_INLINE bool operator==(const btVector3 &other) const {
|
||
|
return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0]));
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE bool operator!=(const btVector3 &other) const {
|
||
|
return !(*this == other);
|
||
|
}
|
||
|
|
||
|
/**@brief Set each element to the max of the current values and the values of another btVector3
|
||
|
* @param other The other btVector3 to compare with
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE void setMax(const btVector3 &other) {
|
||
|
btSetMax(m_floats[0], other.m_floats[0]);
|
||
|
btSetMax(m_floats[1], other.m_floats[1]);
|
||
|
btSetMax(m_floats[2], other.m_floats[2]);
|
||
|
btSetMax(m_floats[3], other.w());
|
||
|
}
|
||
|
/**@brief Set each element to the min of the current values and the values of another btVector3
|
||
|
* @param other The other btVector3 to compare with
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE void setMin(const btVector3 &other) {
|
||
|
btSetMin(m_floats[0], other.m_floats[0]);
|
||
|
btSetMin(m_floats[1], other.m_floats[1]);
|
||
|
btSetMin(m_floats[2], other.m_floats[2]);
|
||
|
btSetMin(m_floats[3], other.w());
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void setValue(const btScalar &x, const btScalar &y, const btScalar &z) {
|
||
|
m_floats[0] = x;
|
||
|
m_floats[1] = y;
|
||
|
m_floats[2] = z;
|
||
|
m_floats[3] = btScalar(0.);
|
||
|
}
|
||
|
|
||
|
void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const {
|
||
|
v0->setValue(0., -z(), y());
|
||
|
v1->setValue(z(), 0., -x());
|
||
|
v2->setValue(-y(), x(), 0.);
|
||
|
}
|
||
|
|
||
|
void setZero() {
|
||
|
setValue(btScalar(0.), btScalar(0.), btScalar(0.));
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE bool isZero() const {
|
||
|
return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE bool fuzzyZero() const {
|
||
|
return length2() < SIMD_EPSILON;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const;
|
||
|
|
||
|
SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data &dataIn);
|
||
|
|
||
|
SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const;
|
||
|
|
||
|
SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData &dataIn);
|
||
|
|
||
|
SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const;
|
||
|
|
||
|
SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData &dataIn);
|
||
|
};
|
||
|
|
||
|
/**@brief Return the sum of two vectors (Point symantics)*/
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator+(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the elementwise product of two vectors */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator*(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the difference between two vectors */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator-(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
|
||
|
}
|
||
|
/**@brief Return the negative of the vector */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator-(const btVector3 &v) {
|
||
|
return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the vector scaled by s */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator*(const btVector3 &v, const btScalar &s) {
|
||
|
return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the vector scaled by s */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator*(const btScalar &s, const btVector3 &v) {
|
||
|
return v * s;
|
||
|
}
|
||
|
|
||
|
/**@brief Return the vector inversely scaled by s */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator/(const btVector3 &v, const btScalar &s) {
|
||
|
btFullAssert(s != btScalar(0.0));
|
||
|
return v * (btScalar(1.0) / s);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the vector inversely scaled by s */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
operator/(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the dot product between two vectors */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btDot(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return v1.dot(v2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the distance squared between two vectors */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btDistance2(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return v1.distance2(v2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the distance between two vectors */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btDistance(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return v1.distance(v2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the angle between two vectors */
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btAngle(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return v1.angle(v2);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the cross product of two vectors */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
btCross(const btVector3 &v1, const btVector3 &v2) {
|
||
|
return v1.cross(v2);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar
|
||
|
btTriple(const btVector3 &v1, const btVector3 &v2, const btVector3 &v3) {
|
||
|
return v1.triple(v2, v3);
|
||
|
}
|
||
|
|
||
|
/**@brief Return the linear interpolation between two vectors
|
||
|
* @param v1 One vector
|
||
|
* @param v2 The other vector
|
||
|
* @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
|
||
|
SIMD_FORCE_INLINE btVector3
|
||
|
lerp(const btVector3 &v1, const btVector3 &v2, const btScalar &t) {
|
||
|
return v1.lerp(v2, t);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3 &v) const {
|
||
|
return (v - *this).length2();
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3 &v) const {
|
||
|
return (v - *this).length();
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3 btVector3::normalized() const {
|
||
|
return *this / length();
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3 &wAxis, const btScalar angle) const {
|
||
|
// wAxis must be a unit lenght vector
|
||
|
|
||
|
btVector3 o = wAxis * wAxis.dot(*this);
|
||
|
btVector3 x = *this - o;
|
||
|
btVector3 y;
|
||
|
|
||
|
y = wAxis.cross(*this);
|
||
|
|
||
|
return (o + x * btCos(angle) + y * btSin(angle));
|
||
|
}
|
||
|
|
||
|
class btVector4 : public btVector3 {
|
||
|
public:
|
||
|
SIMD_FORCE_INLINE btVector4() {}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector4(const btScalar &x, const btScalar &y, const btScalar &z, const btScalar &w) :
|
||
|
btVector3(x, y, z) {
|
||
|
m_floats[3] = w;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE btVector4 absolute4() const {
|
||
|
return btVector4(
|
||
|
btFabs(m_floats[0]),
|
||
|
btFabs(m_floats[1]),
|
||
|
btFabs(m_floats[2]),
|
||
|
btFabs(m_floats[3]));
|
||
|
}
|
||
|
|
||
|
btScalar getW() const { return m_floats[3]; }
|
||
|
|
||
|
SIMD_FORCE_INLINE int32_t maxAxis4() const {
|
||
|
int32_t maxIndex = -1;
|
||
|
btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
|
||
|
if (m_floats[0] > maxVal) {
|
||
|
maxIndex = 0;
|
||
|
maxVal = m_floats[0];
|
||
|
}
|
||
|
if (m_floats[1] > maxVal) {
|
||
|
maxIndex = 1;
|
||
|
maxVal = m_floats[1];
|
||
|
}
|
||
|
if (m_floats[2] > maxVal) {
|
||
|
maxIndex = 2;
|
||
|
maxVal = m_floats[2];
|
||
|
}
|
||
|
if (m_floats[3] > maxVal) {
|
||
|
maxIndex = 3;
|
||
|
}
|
||
|
return maxIndex;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE int32_t minAxis4() const {
|
||
|
int32_t minIndex = -1;
|
||
|
btScalar minVal = btScalar(BT_LARGE_FLOAT);
|
||
|
if (m_floats[0] < minVal) {
|
||
|
minIndex = 0;
|
||
|
minVal = m_floats[0];
|
||
|
}
|
||
|
if (m_floats[1] < minVal) {
|
||
|
minIndex = 1;
|
||
|
minVal = m_floats[1];
|
||
|
}
|
||
|
if (m_floats[2] < minVal) {
|
||
|
minIndex = 2;
|
||
|
minVal = m_floats[2];
|
||
|
}
|
||
|
if (m_floats[3] < minVal) {
|
||
|
minIndex = 3;
|
||
|
}
|
||
|
|
||
|
return minIndex;
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE int32_t closestAxis4() const {
|
||
|
return absolute4().maxAxis4();
|
||
|
}
|
||
|
|
||
|
/**@brief Set x,y,z and zero w
|
||
|
* @param x Value of x
|
||
|
* @param y Value of y
|
||
|
* @param z Value of z
|
||
|
*/
|
||
|
|
||
|
/* void getValue(btScalar *m) const
|
||
|
{
|
||
|
m[0] = m_floats[0];
|
||
|
m[1] = m_floats[1];
|
||
|
m[2] =m_floats[2];
|
||
|
}
|
||
|
*/
|
||
|
/**@brief Set the values
|
||
|
* @param x Value of x
|
||
|
* @param y Value of y
|
||
|
* @param z Value of z
|
||
|
* @param w Value of w
|
||
|
*/
|
||
|
SIMD_FORCE_INLINE void setValue(const btScalar &x, const btScalar &y, const btScalar &z, const btScalar &w) {
|
||
|
m_floats[0] = x;
|
||
|
m_floats[1] = y;
|
||
|
m_floats[2] = z;
|
||
|
m_floats[3] = w;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
||
|
SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar &sourceVal, btScalar &destVal) {
|
||
|
#ifdef BT_USE_DOUBLE_PRECISION
|
||
|
unsigned char *dest = (unsigned char *)&destVal;
|
||
|
unsigned char *src = (unsigned char *)&sourceVal;
|
||
|
dest[0] = src[7];
|
||
|
dest[1] = src[6];
|
||
|
dest[2] = src[5];
|
||
|
dest[3] = src[4];
|
||
|
dest[4] = src[3];
|
||
|
dest[5] = src[2];
|
||
|
dest[6] = src[1];
|
||
|
dest[7] = src[0];
|
||
|
#else
|
||
|
unsigned char *dest = (unsigned char *)&destVal;
|
||
|
unsigned char *src = (unsigned char *)&sourceVal;
|
||
|
dest[0] = src[3];
|
||
|
dest[1] = src[2];
|
||
|
dest[2] = src[1];
|
||
|
dest[3] = src[0];
|
||
|
#endif //BT_USE_DOUBLE_PRECISION
|
||
|
}
|
||
|
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
||
|
SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3 &sourceVec, btVector3 &destVec) {
|
||
|
for (int32_t i = 0; i < 4; i++) {
|
||
|
btSwapScalarEndian(sourceVec[i], destVec[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
||
|
SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3 &vector) {
|
||
|
|
||
|
btVector3 swappedVec;
|
||
|
for (int32_t i = 0; i < 4; i++) {
|
||
|
btSwapScalarEndian(vector[i], swappedVec[i]);
|
||
|
}
|
||
|
vector = swappedVec;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
SIMD_FORCE_INLINE void btPlaneSpace1(const T &n, T &p, T &q) {
|
||
|
if (btFabs(n[2]) > SIMDSQRT12) {
|
||
|
// choose p in y-z plane
|
||
|
btScalar a = n[1] * n[1] + n[2] * n[2];
|
||
|
btScalar k = btRecipSqrt(a);
|
||
|
p[0] = 0;
|
||
|
p[1] = -n[2] * k;
|
||
|
p[2] = n[1] * k;
|
||
|
// set q = n x p
|
||
|
q[0] = a * k;
|
||
|
q[1] = -n[0] * p[2];
|
||
|
q[2] = n[0] * p[1];
|
||
|
} else {
|
||
|
// choose p in x-y plane
|
||
|
btScalar a = n[0] * n[0] + n[1] * n[1];
|
||
|
btScalar k = btRecipSqrt(a);
|
||
|
p[0] = -n[1] * k;
|
||
|
p[1] = n[0] * k;
|
||
|
p[2] = 0;
|
||
|
// set q = n x p
|
||
|
q[0] = -n[2] * p[1];
|
||
|
q[1] = n[2] * p[0];
|
||
|
q[2] = a * k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct btVector3FloatData {
|
||
|
float m_floats[4];
|
||
|
};
|
||
|
|
||
|
struct btVector3DoubleData {
|
||
|
double m_floats[4];
|
||
|
};
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData &dataOut) const {
|
||
|
///could also do a memcpy, check if it is worth it
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
dataOut.m_floats[i] = float(m_floats[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData &dataIn) {
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
m_floats[i] = btScalar(dataIn.m_floats[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData &dataOut) const {
|
||
|
///could also do a memcpy, check if it is worth it
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
dataOut.m_floats[i] = double(m_floats[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData &dataIn) {
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
m_floats[i] = btScalar(dataIn.m_floats[i]);
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data &dataOut) const {
|
||
|
///could also do a memcpy, check if it is worth it
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
dataOut.m_floats[i] = m_floats[i];
|
||
|
}
|
||
|
|
||
|
SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data &dataIn) {
|
||
|
for (int32_t i = 0; i < 4; i++)
|
||
|
m_floats[i] = dataIn.m_floats[i];
|
||
|
}
|
||
|
|
||
|
//GODOT ADDITION
|
||
|
}; // namespace VHACD
|
||
|
//
|
||
|
|
||
|
#endif //BT_VECTOR3_H
|