virtualx-engine/servers/physics/shape_sw.cpp

1684 lines
33 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* shape_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
2015-04-18 19:38:54 +02:00
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "shape_sw.h"
#include "geometry.h"
#include "sort.h"
#include "quick_hull.h"
#define _POINT_SNAP 0.001953125
#define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.0002
#define _FACE_IS_VALID_SUPPORT_TRESHOLD 0.9998
void ShapeSW::configure(const AABB& p_aabb) {
aabb=p_aabb;
configured=true;
for (Map<ShapeOwnerSW*,int>::Element *E=owners.front();E;E=E->next()) {
ShapeOwnerSW* co=(ShapeOwnerSW*)E->key();
co->_shape_changed();
}
}
Vector3 ShapeSW::get_support(const Vector3& p_normal) const {
Vector3 res;
int amnt;
get_supports(p_normal,1,&res,amnt);
return res;
}
void ShapeSW::add_owner(ShapeOwnerSW *p_owner) {
Map<ShapeOwnerSW*,int>::Element *E=owners.find(p_owner);
if (E) {
E->get()++;
} else {
owners[p_owner]=1;
}
}
void ShapeSW::remove_owner(ShapeOwnerSW *p_owner){
Map<ShapeOwnerSW*,int>::Element *E=owners.find(p_owner);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get()==0) {
owners.erase(E);
}
}
bool ShapeSW::is_owner(ShapeOwnerSW *p_owner) const{
return owners.has(p_owner);
}
const Map<ShapeOwnerSW*,int>& ShapeSW::get_owners() const{
return owners;
}
ShapeSW::ShapeSW() {
custom_bias=0;
configured=false;
}
ShapeSW::~ShapeSW() {
ERR_FAIL_COND(owners.size());
}
Plane PlaneShapeSW::get_plane() const {
return plane;
}
void PlaneShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
// gibberish, a plane is infinity
r_min=-1e7;
r_max=1e7;
}
Vector3 PlaneShapeSW::get_support(const Vector3& p_normal) const {
return p_normal*1e15;
}
bool PlaneShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
bool inters=plane.intersects_segment(p_begin,p_end,&r_result);
if(inters)
r_normal=plane.normal;
return inters;
}
Vector3 PlaneShapeSW::get_moment_of_inertia(float p_mass) const {
return Vector3(); //wtf
}
void PlaneShapeSW::_setup(const Plane& p_plane) {
plane=p_plane;
configure(AABB(Vector3(-1e4,-1e4,-1e4),Vector3(1e4*2,1e4*2,1e4*2)));
}
void PlaneShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant PlaneShapeSW::get_data() const {
return plane;
}
PlaneShapeSW::PlaneShapeSW() {
}
//
float RayShapeSW::get_length() const {
return length;
}
void RayShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
// don't think this will be even used
r_min=0;
r_max=1;
}
Vector3 RayShapeSW::get_support(const Vector3& p_normal) const {
if (p_normal.z>0)
return Vector3(0,0,length);
else
return Vector3(0,0,0);
}
void RayShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_TRESHOLD) {
r_amount=2;
r_supports[0]=Vector3(0,0,0);
r_supports[1]=Vector3(0,0,length);
} if (p_normal.z>0) {
r_amount=1;
*r_supports=Vector3(0,0,length);
} else {
r_amount=1;
*r_supports=Vector3(0,0,0);
}
}
bool RayShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
return false; //simply not possible
}
Vector3 RayShapeSW::get_moment_of_inertia(float p_mass) const {
return Vector3();
}
void RayShapeSW::_setup(float p_length) {
length=p_length;
configure(AABB(Vector3(0,0,0),Vector3(0.1,0.1,length)));
}
void RayShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant RayShapeSW::get_data() const {
return length;
}
RayShapeSW::RayShapeSW() {
length=1;
}
/********** SPHERE *************/
real_t SphereShapeSW::get_radius() const {
return radius;
}
void SphereShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
float d = p_normal.dot( p_transform.origin );
// figure out scale at point
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
float scale = local_normal.length();
r_min = d - (radius) * scale;
r_max = d + (radius) * scale;
}
Vector3 SphereShapeSW::get_support(const Vector3& p_normal) const {
return p_normal*radius;
}
void SphereShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
*r_supports=p_normal*radius;
r_amount=1;
}
bool SphereShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
return Geometry::segment_intersects_sphere(p_begin,p_end,Vector3(),radius,&r_result,&r_normal);
}
Vector3 SphereShapeSW::get_moment_of_inertia(float p_mass) const {
float s = 0.4 * p_mass * radius * radius;
return Vector3(s,s,s);
}
void SphereShapeSW::_setup(real_t p_radius) {
radius=p_radius;
configure(AABB( Vector3(-radius,-radius,-radius), Vector3(radius*2.0,radius*2.0,radius*2.0)));
}
void SphereShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant SphereShapeSW::get_data() const {
return radius;
}
SphereShapeSW::SphereShapeSW() {
radius=0;
}
/********** BOX *************/
void BoxShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
// no matter the angle, the box is mirrored anyway
Vector3 local_normal=p_transform.basis.xform_inv(p_normal);
float length = local_normal.abs().dot(half_extents);
float distance = p_normal.dot( p_transform.origin );
r_min = distance - length;
r_max = distance + length;
}
Vector3 BoxShapeSW::get_support(const Vector3& p_normal) const {
Vector3 point(
(p_normal.x<0) ? -half_extents.x : half_extents.x,
(p_normal.y<0) ? -half_extents.y : half_extents.y,
(p_normal.z<0) ? -half_extents.z : half_extents.z
);
return point;
}
void BoxShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
static const int next[3]={1,2,0};
static const int next2[3]={2,0,1};
for (int i=0;i<3;i++) {
Vector3 axis;
axis[i]=1.0;
float dot = p_normal.dot( axis );
if ( Math::abs( dot ) > _FACE_IS_VALID_SUPPORT_TRESHOLD ) {
//Vector3 axis_b;
bool neg = dot<0;
r_amount = 4;
Vector3 point;
point[i]=half_extents[i];
int i_n=next[i];
int i_n2=next2[i];
static const float sign[4][2]={
{-1.0, 1.0},
{ 1.0, 1.0},
{ 1.0,-1.0},
{-1.0,-1.0},
};
for (int j=0;j<4;j++) {
point[i_n]=sign[j][0]*half_extents[i_n];
point[i_n2]=sign[j][1]*half_extents[i_n2];
r_supports[j]=neg?-point:point;
}
if (neg) {
SWAP( r_supports[1], r_supports[2] );
SWAP( r_supports[0], r_supports[3] );
}
return;
}
r_amount=0;
}
for (int i=0;i<3;i++) {
Vector3 axis;
axis[i]=1.0;
if (Math::abs(p_normal.dot(axis))<_EDGE_IS_VALID_SUPPORT_TRESHOLD) {
r_amount= 2;
int i_n=next[i];
int i_n2=next2[i];
Vector3 point=half_extents;
if (p_normal[i_n]<0) {
point[i_n]=-point[i_n];
}
if (p_normal[i_n2]<0) {
point[i_n2]=-point[i_n2];
}
r_supports[0] = point;
point[i]=-point[i];
r_supports[1] = point;
return;
}
}
/* USE POINT */
Vector3 point(
(p_normal.x<0) ? -half_extents.x : half_extents.x,
(p_normal.y<0) ? -half_extents.y : half_extents.y,
(p_normal.z<0) ? -half_extents.z : half_extents.z
);
r_amount=1;
r_supports[0]=point;
}
bool BoxShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
AABB aabb(-half_extents,half_extents*2.0);
return aabb.intersects_segment(p_begin,p_end,&r_result,&r_normal);
}
Vector3 BoxShapeSW::get_moment_of_inertia(float p_mass) const {
float lx=half_extents.x;
float ly=half_extents.y;
float lz=half_extents.z;
return Vector3( (p_mass/3.0) * (ly*ly + lz*lz), (p_mass/3.0) * (lx*lx + lz*lz), (p_mass/3.0) * (lx*lx + ly*ly) );
}
void BoxShapeSW::_setup(const Vector3& p_half_extents) {
half_extents=p_half_extents.abs();
configure(AABB(-half_extents,half_extents*2));
}
void BoxShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant BoxShapeSW::get_data() const {
return half_extents;
}
BoxShapeSW::BoxShapeSW() {
}
/********** CAPSULE *************/
void CapsuleShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
Vector3 n=p_transform.basis.xform_inv(p_normal).normalized();
float h = (n.z > 0) ? height : -height;
n *= radius;
n.z += h * 0.5;
r_max=p_normal.dot(p_transform.xform(n));
r_min=p_normal.dot(p_transform.xform(-n));
return;
n = p_transform.basis.xform(n);
float distance = p_normal.dot( p_transform.origin );
float length = Math::abs(p_normal.dot(n));
r_min = distance - length;
r_max = distance + length;
ERR_FAIL_COND( r_max < r_min );
}
Vector3 CapsuleShapeSW::get_support(const Vector3& p_normal) const {
Vector3 n=p_normal;
float h = (n.z > 0) ? height : -height;
n*=radius;
n.z += h*0.5;
return n;
}
void CapsuleShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
Vector3 n=p_normal;
float d = n.z;
if (Math::abs( d )<_EDGE_IS_VALID_SUPPORT_TRESHOLD ) {
// make it flat
n.z=0.0;
n.normalize();
n*=radius;
r_amount=2;
r_supports[0]=n;
r_supports[0].z+=height*0.5;
r_supports[1]=n;
r_supports[1].z-=height*0.5;
} else {
float h = (d > 0) ? height : -height;
n*=radius;
n.z += h*0.5;
r_amount=1;
*r_supports=n;
}
}
bool CapsuleShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
Vector3 norm=(p_end-p_begin).normalized();
float min_d=1e20;
Vector3 res,n;
bool collision=false;
Vector3 auxres,auxn;
bool collided;
// test against cylinder and spheres :-|
collided = Geometry::segment_intersects_cylinder(p_begin,p_end,height,radius,&auxres,&auxn);
if (collided) {
float d=norm.dot(auxres);
if (d<min_d) {
min_d=d;
res=auxres;
n=auxn;
collision=true;
}
}
collided = Geometry::segment_intersects_sphere(p_begin,p_end,Vector3(0,0,height*0.5),radius,&auxres,&auxn);
if (collided) {
float d=norm.dot(auxres);
if (d<min_d) {
min_d=d;
res=auxres;
n=auxn;
collision=true;
}
}
collided = Geometry::segment_intersects_sphere(p_begin,p_end,Vector3(0,0,height*-0.5),radius,&auxres,&auxn);
if (collided) {
float d=norm.dot(auxres);
if (d<min_d) {
min_d=d;
res=auxres;
n=auxn;
collision=true;
}
}
if (collision) {
r_result=res;
r_normal=n;
}
return collision;
}
Vector3 CapsuleShapeSW::get_moment_of_inertia(float p_mass) const {
// use crappy AABB approximation
Vector3 extents=get_aabb().size*0.5;
return Vector3(
(p_mass/3.0) * (extents.y*extents.y + extents.z*extents.z),
(p_mass/3.0) * (extents.x*extents.x + extents.z*extents.z),
(p_mass/3.0) * (extents.y*extents.y + extents.y*extents.y)
);
}
void CapsuleShapeSW::_setup(real_t p_height,real_t p_radius) {
height=p_height;
radius=p_radius;
configure(AABB(Vector3(-radius,-radius,-height*0.5-radius),Vector3(radius*2,radius*2,height+radius*2.0)));
}
void CapsuleShapeSW::set_data(const Variant& p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
_setup(d["height"],d["radius"]);
}
Variant CapsuleShapeSW::get_data() const {
Dictionary d;
d["radius"]=radius;
d["height"]=height;
return d;
}
CapsuleShapeSW::CapsuleShapeSW() {
height=radius=0;
}
/********** CONVEX POLYGON *************/
void ConvexPolygonShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
int vertex_count=mesh.vertices.size();
if (vertex_count==0)
return;
const Vector3 *vrts=&mesh.vertices[0];
for (int i=0;i<vertex_count;i++) {
float d=p_normal.dot( p_transform.xform( vrts[i] ) );
if (i==0 || d > r_max)
r_max=d;
if (i==0 || d < r_min)
r_min=d;
}
}
Vector3 ConvexPolygonShapeSW::get_support(const Vector3& p_normal) const {
Vector3 n=p_normal;
int vert_support_idx=-1;
float support_max;
int vertex_count=mesh.vertices.size();
if (vertex_count==0)
return Vector3();
const Vector3 *vrts=&mesh.vertices[0];
for (int i=0;i<vertex_count;i++) {
float d=n.dot(vrts[i]);
if (i==0 || d > support_max) {
support_max=d;
vert_support_idx=i;
}
}
return vrts[vert_support_idx];
}
void ConvexPolygonShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int ec = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vc = mesh.vertices.size();
//find vertex first
real_t max;
int vtx;
for (int i=0;i<vc;i++) {
float d=p_normal.dot(vertices[i]);
if (i==0 || d > max) {
max=d;
vtx=i;
}
}
for(int i=0;i<fc;i++) {
if (faces[i].plane.normal.dot(p_normal)>_FACE_IS_VALID_SUPPORT_TRESHOLD) {
int ic = faces[i].indices.size();
const int *ind=faces[i].indices.ptr();
bool valid=false;
for(int j=0;j<ic;j++) {
if (ind[j]==vtx) {
valid=true;
break;
}
}
if (!valid)
continue;
int m = MIN(p_max,ic);
for(int j=0;j<m;j++) {
r_supports[j]=vertices[ind[j]];
}
r_amount=m;
return;
}
}
for(int i=0;i<ec;i++) {
float dot=(vertices[edges[i].a]-vertices[edges[i].b]).normalized().dot(p_normal);
dot=ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_TRESHOLD && (edges[i].a==vtx || edges[i].b==vtx)) {
r_amount=2;
r_supports[0]=vertices[edges[i].a];
r_supports[1]=vertices[edges[i].b];
return;
}
}
r_supports[0]=vertices[vtx];
r_amount=1;
}
bool ConvexPolygonShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vc = mesh.vertices.size();
Vector3 n = p_end-p_begin;
float min = 1e20;
bool col=false;
for(int i=0;i<fc;i++) {
if (faces[i].plane.normal.dot(n) > 0)
continue; //opposing face
int ic = faces[i].indices.size();
const int *ind=faces[i].indices.ptr();
for(int j=1;j<ic-1;j++) {
Face3 f(vertices[ind[0]],vertices[ind[j]],vertices[ind[j+1]]);
Vector3 result;
if (f.intersects_segment(p_begin,p_end,&result)) {
float d = n.dot(result);
if (d<min) {
min=d;
r_result=result;
r_normal=faces[i].plane.normal;
col=true;
}
break;
}
}
}
return col;
}
Vector3 ConvexPolygonShapeSW::get_moment_of_inertia(float p_mass) const {
// use crappy AABB approximation
Vector3 extents=get_aabb().size*0.5;
return Vector3(
(p_mass/3.0) * (extents.y*extents.y + extents.z*extents.z),
(p_mass/3.0) * (extents.x*extents.x + extents.z*extents.z),
(p_mass/3.0) * (extents.y*extents.y + extents.y*extents.y)
);
}
void ConvexPolygonShapeSW::_setup(const Vector<Vector3>& p_vertices) {
Error err = QuickHull::build(p_vertices,mesh);
AABB _aabb;
for(int i=0;i<mesh.vertices.size();i++) {
if (i==0)
_aabb.pos=mesh.vertices[i];
else
_aabb.expand_to(mesh.vertices[i]);
}
configure(_aabb);
}
void ConvexPolygonShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant ConvexPolygonShapeSW::get_data() const {
return mesh.vertices;
}
ConvexPolygonShapeSW::ConvexPolygonShapeSW() {
}
/********** FACE POLYGON *************/
void FaceShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
for (int i=0;i<3;i++) {
Vector3 v=p_transform.xform(vertex[i]);
float d=p_normal.dot(v);
if (i==0 || d > r_max)
r_max=d;
if (i==0 || d < r_min)
r_min=d;
}
}
Vector3 FaceShapeSW::get_support(const Vector3& p_normal) const {
Vector3 n=p_normal;
int vert_support_idx=-1;
float support_max;
for (int i=0;i<3;i++) {
//float d=n.dot(vertex[i]);
float d=p_normal.dot(vertex[i]);
if (i==0 || d > support_max) {
support_max=d;
vert_support_idx=i;
}
}
return vertex[vert_support_idx];
}
void FaceShapeSW::get_supports(const Vector3& p_normal,int p_max,Vector3 *r_supports,int & r_amount) const {
Vector3 n=p_normal;
/** TEST FACE AS SUPPORT **/
if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_TRESHOLD) {
r_amount=3;
for (int i=0;i<3;i++) {
r_supports[i]=vertex[i];
}
return;
}
/** FIND SUPPORT VERTEX **/
int vert_support_idx=-1;
float support_max;
for (int i=0;i<3;i++) {
float d=n.dot(vertex[i]);
if (i==0 || d > support_max) {
support_max=d;
vert_support_idx=i;
}
}
/** TEST EDGES AS SUPPORT **/
for (int i=0;i<3;i++) {
int nx=(i+1)%3;
if (i!=vert_support_idx && nx!=vert_support_idx)
continue;
// check if edge is valid as a support
float dot=(vertex[i]-vertex[nx]).normalized().dot(n);
dot=ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_TRESHOLD) {
r_amount=2;
r_supports[0]=vertex[i];
r_supports[1]=vertex[nx];
return;
}
}
r_amount=1;
r_supports[0]=vertex[vert_support_idx];
}
bool FaceShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
bool c=Geometry::segment_intersects_triangle(p_begin,p_end,vertex[0],vertex[1],vertex[2],&r_result);
if (c) {
r_normal=Plane(vertex[0],vertex[1],vertex[2]).normal;
if (r_normal.dot(p_end-p_begin)>0) {
r_normal=-r_normal;
}
}
return c;
}
Vector3 FaceShapeSW::get_moment_of_inertia(float p_mass) const {
return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
}
FaceShapeSW::FaceShapeSW() {
configure(AABB());
}
DVector<Vector3> ConcavePolygonShapeSW::get_faces() const {
DVector<Vector3> rfaces;
rfaces.resize(faces.size()*3);
for(int i=0;i<faces.size();i++) {
Face f=faces.get(i);
for(int j=0;j<3;j++) {
rfaces.set(i*3+j, vertices.get( f.indices[j] ) );
}
}
return rfaces;
}
void ConcavePolygonShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
int count=vertices.size();
if (count==0) {
r_min=0;
r_max=0;
return;
}
DVector<Vector3>::Read r=vertices.read();
const Vector3 *vptr=r.ptr();
for (int i=0;i<count;i++) {
float d=p_normal.dot( p_transform.xform( vptr[i] ) );
if (i==0 || d > r_max)
r_max=d;
if (i==0 || d < r_min)
r_min=d;
}
}
Vector3 ConcavePolygonShapeSW::get_support(const Vector3& p_normal) const {
int count=vertices.size();
if (count==0)
return Vector3();
DVector<Vector3>::Read r=vertices.read();
const Vector3 *vptr=r.ptr();
Vector3 n=p_normal;
int vert_support_idx=-1;
float support_max;
for (int i=0;i<count;i++) {
float d=n.dot(vptr[i]);
if (i==0 || d > support_max) {
support_max=d;
vert_support_idx=i;
}
}
return vptr[vert_support_idx];
}
void ConcavePolygonShapeSW::_cull_segment(int p_idx,_SegmentCullParams *p_params) const {
const BVH *bvh=&p_params->bvh[p_idx];
//if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
// return; //test against whole AABB, which isn't very costly
//printf("addr: %p\n",bvh);
if (!bvh->aabb.intersects_segment(p_params->from,p_params->to)) {
return;
}
if (bvh->face_index>=0) {
Vector3 res;
Vector3 vertices[3]={
p_params->vertices[ p_params->faces[ bvh->face_index ].indices[0] ],
p_params->vertices[ p_params->faces[ bvh->face_index ].indices[1] ],
p_params->vertices[ p_params->faces[ bvh->face_index ].indices[2] ]
};
if (Geometry::segment_intersects_triangle(
p_params->from,
p_params->to,
vertices[0],
vertices[1],
vertices[2],
&res)) {
float d=p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
//TODO, seems segmen/triangle intersection is broken :(
if (d>0 && d<p_params->min_d) {
p_params->min_d=d;
p_params->result=res;
p_params->normal=Plane(vertices[0],vertices[1],vertices[2]).normal;
if (p_params->normal.dot(p_params->dir)>0)
p_params->normal=-p_params->normal;
p_params->collisions++;
}
}
} else {
if (bvh->left>=0)
_cull_segment(bvh->left,p_params);
if (bvh->right>=0)
_cull_segment(bvh->right,p_params);
}
}
bool ConcavePolygonShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_result, Vector3 &r_normal) const {
if (faces.size()==0)
return false;
// unlock data
DVector<Face>::Read fr=faces.read();
DVector<Vector3>::Read vr=vertices.read();
DVector<BVH>::Read br=bvh.read();
_SegmentCullParams params;
params.from=p_begin;
params.to=p_end;
params.collisions=0;
params.dir=(p_end-p_begin).normalized();
params.faces=fr.ptr();
params.vertices=vr.ptr();
params.bvh=br.ptr();
params.min_d=1e20;
// cull
_cull_segment(0,&params);
if (params.collisions>0) {
r_result=params.result;
r_normal=params.normal;
return true;
} else {
return false;
}
}
void ConcavePolygonShapeSW::_cull(int p_idx,_CullParams *p_params) const {
const BVH* bvh=&p_params->bvh[p_idx];
if (!p_params->aabb.intersects( bvh->aabb ))
return;
if (bvh->face_index>=0) {
const Face *f=&p_params->faces[ bvh->face_index ];
FaceShapeSW *face=p_params->face;
face->normal=f->normal;
face->vertex[0]=p_params->vertices[f->indices[0]];
face->vertex[1]=p_params->vertices[f->indices[1]];
face->vertex[2]=p_params->vertices[f->indices[2]];
p_params->callback(p_params->userdata,face);
} else {
if (bvh->left>=0) {
_cull(bvh->left,p_params);
}
if (bvh->right>=0) {
_cull(bvh->right,p_params);
}
}
}
void ConcavePolygonShapeSW::cull(const AABB& p_local_aabb,Callback p_callback,void* p_userdata) const {
// make matrix local to concave
if (faces.size()==0)
return;
AABB local_aabb=p_local_aabb;
// unlock data
DVector<Face>::Read fr=faces.read();
DVector<Vector3>::Read vr=vertices.read();
DVector<BVH>::Read br=bvh.read();
FaceShapeSW face; // use this to send in the callback
_CullParams params;
params.aabb=local_aabb;
params.face=&face;
params.faces=fr.ptr();
params.vertices=vr.ptr();
params.bvh=br.ptr();
params.callback=p_callback;
params.userdata=p_userdata;
// cull
_cull(0,&params);
}
Vector3 ConcavePolygonShapeSW::get_moment_of_inertia(float p_mass) const {
// use crappy AABB approximation
Vector3 extents=get_aabb().size*0.5;
return Vector3(
(p_mass/3.0) * (extents.y*extents.y + extents.z*extents.z),
(p_mass/3.0) * (extents.x*extents.x + extents.z*extents.z),
(p_mass/3.0) * (extents.y*extents.y + extents.y*extents.y)
);
}
struct _VolumeSW_BVH_Element {
AABB aabb;
Vector3 center;
int face_index;
};
struct _VolumeSW_BVH_CompareX {
_FORCE_INLINE_ bool operator ()(const _VolumeSW_BVH_Element& a, const _VolumeSW_BVH_Element& b) const {
return a.center.x<b.center.x;
}
};
struct _VolumeSW_BVH_CompareY {
_FORCE_INLINE_ bool operator ()(const _VolumeSW_BVH_Element& a, const _VolumeSW_BVH_Element& b) const {
return a.center.y<b.center.y;
}
};
struct _VolumeSW_BVH_CompareZ {
_FORCE_INLINE_ bool operator ()(const _VolumeSW_BVH_Element& a, const _VolumeSW_BVH_Element& b) const {
return a.center.z<b.center.z;
}
};
struct _VolumeSW_BVH {
AABB aabb;
_VolumeSW_BVH *left;
_VolumeSW_BVH *right;
int face_index;
};
_VolumeSW_BVH* _volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements,int p_size,int &count) {
_VolumeSW_BVH* bvh = memnew( _VolumeSW_BVH );
if (p_size==1) {
//leaf
bvh->aabb=p_elements[0].aabb;
bvh->left=NULL;
bvh->right=NULL;
bvh->face_index=p_elements->face_index;
count++;
return bvh;
} else {
bvh->face_index=-1;
}
AABB aabb;
for(int i=0;i<p_size;i++) {
if (i==0)
aabb=p_elements[i].aabb;
else
aabb.merge_with(p_elements[i].aabb);
}
bvh->aabb=aabb;
switch(aabb.get_longest_axis_index()) {
case 0: {
SortArray<_VolumeSW_BVH_Element,_VolumeSW_BVH_CompareX> sort_x;
sort_x.sort(p_elements,p_size);
} break;
case 1: {
SortArray<_VolumeSW_BVH_Element,_VolumeSW_BVH_CompareY> sort_y;
sort_y.sort(p_elements,p_size);
} break;
case 2: {
SortArray<_VolumeSW_BVH_Element,_VolumeSW_BVH_CompareZ> sort_z;
sort_z.sort(p_elements,p_size);
} break;
}
int split=p_size/2;
bvh->left=_volume_sw_build_bvh(p_elements,split,count);
bvh->right=_volume_sw_build_bvh(&p_elements[split],p_size-split,count);
// printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
count++;
return bvh;
}
void ConcavePolygonShapeSW::_fill_bvh(_VolumeSW_BVH* p_bvh_tree,BVH* p_bvh_array,int& p_idx) {
int idx=p_idx;
p_bvh_array[idx].aabb=p_bvh_tree->aabb;
p_bvh_array[idx].face_index=p_bvh_tree->face_index;
// printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
if (p_bvh_tree->left) {
p_bvh_array[idx].left=++p_idx;
_fill_bvh(p_bvh_tree->left,p_bvh_array,p_idx);
} else {
p_bvh_array[p_idx].left=-1;
}
if (p_bvh_tree->right) {
p_bvh_array[idx].right=++p_idx;
_fill_bvh(p_bvh_tree->right,p_bvh_array,p_idx);
} else {
p_bvh_array[p_idx].right=-1;
}
memdelete(p_bvh_tree);
}
void ConcavePolygonShapeSW::_setup(DVector<Vector3> p_faces) {
int src_face_count=p_faces.size();
ERR_FAIL_COND(src_face_count%3);
src_face_count/=3;
DVector<Vector3>::Read r = p_faces.read();
const Vector3 * facesr= r.ptr();
#if 0
Map<Vector3,int> point_map;
List<Face> face_list;
for(int i=0;i<src_face_count;i++) {
Face3 faceaux;
for(int j=0;j<3;j++) {
faceaux.vertex[j]=facesr[i*3+j].snapped(_POINT_SNAP);
//faceaux.vertex[j]=facesr[i*3+j];//facesr[i*3+j].snapped(_POINT_SNAP);
}
ERR_CONTINUE( faceaux.is_degenerate() );
Face face;
for(int j=0;j<3;j++) {
Map<Vector3,int>::Element *E=point_map.find(faceaux.vertex[j]);
if (E) {
face.indices[j]=E->value();
} else {
face.indices[j]=point_map.size();
point_map.insert(faceaux.vertex[j],point_map.size());
}
}
face_list.push_back(face);
}
vertices.resize( point_map.size() );
DVector<Vector3>::Write vw = vertices.write();
Vector3 *verticesw=vw.ptr();
AABB _aabb;
for( Map<Vector3,int>::Element *E=point_map.front();E;E=E->next()) {
if (E==point_map.front()) {
_aabb.pos=E->key();
} else {
_aabb.expand_to(E->key());
}
verticesw[E->value()]=E->key();
}
point_map.clear(); // not needed anymore
faces.resize(face_list.size());
DVector<Face>::Write w = faces.write();
Face *facesw=w.ptr();
int fc=0;
for( List<Face>::Element *E=face_list.front();E;E=E->next()) {
facesw[fc++]=E->get();
}
face_list.clear();
DVector<_VolumeSW_BVH_Element> bvh_array;
bvh_array.resize( fc );
DVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write();
_VolumeSW_BVH_Element *bvh_arrayw=bvhw.ptr();
for(int i=0;i<fc;i++) {
AABB face_aabb;
face_aabb.pos=verticesw[facesw[i].indices[0]];
face_aabb.expand_to( verticesw[facesw[i].indices[1]] );
face_aabb.expand_to( verticesw[facesw[i].indices[2]] );
bvh_arrayw[i].face_index=i;
bvh_arrayw[i].aabb=face_aabb;
bvh_arrayw[i].center=face_aabb.pos+face_aabb.size*0.5;
}
w=DVector<Face>::Write();
vw=DVector<Vector3>::Write();
int count=0;
_VolumeSW_BVH *bvh_tree=_volume_sw_build_bvh(bvh_arrayw,fc,count);
ERR_FAIL_COND(count==0);
bvhw=DVector<_VolumeSW_BVH_Element>::Write();
bvh.resize( count+1 );
DVector<BVH>::Write bvhw2 = bvh.write();
BVH*bvh_arrayw2=bvhw2.ptr();
int idx=0;
_fill_bvh(bvh_tree,bvh_arrayw2,idx);
set_aabb(_aabb);
#else
DVector<_VolumeSW_BVH_Element> bvh_array;
bvh_array.resize( src_face_count );
DVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write();
_VolumeSW_BVH_Element *bvh_arrayw=bvhw.ptr();
faces.resize(src_face_count);
DVector<Face>::Write w = faces.write();
Face *facesw=w.ptr();
vertices.resize( src_face_count*3 );
DVector<Vector3>::Write vw = vertices.write();
Vector3 *verticesw=vw.ptr();
AABB _aabb;
for(int i=0;i<src_face_count;i++) {
Face3 face( facesr[i*3+0], facesr[i*3+1], facesr[i*3+2] );
bvh_arrayw[i].aabb=face.get_aabb();
bvh_arrayw[i].center = bvh_arrayw[i].aabb.pos + bvh_arrayw[i].aabb.size * 0.5;
bvh_arrayw[i].face_index=i;
facesw[i].indices[0]=i*3+0;
facesw[i].indices[1]=i*3+1;
facesw[i].indices[2]=i*3+2;
facesw[i].normal=face.get_plane().normal;
verticesw[i*3+0]=face.vertex[0];
verticesw[i*3+1]=face.vertex[1];
verticesw[i*3+2]=face.vertex[2];
if (i==0)
_aabb=bvh_arrayw[i].aabb;
else
_aabb.merge_with(bvh_arrayw[i].aabb);
}
w=DVector<Face>::Write();
vw=DVector<Vector3>::Write();
int count=0;
_VolumeSW_BVH *bvh_tree=_volume_sw_build_bvh(bvh_arrayw,src_face_count,count);
bvh.resize( count+1 );
DVector<BVH>::Write bvhw2 = bvh.write();
BVH*bvh_arrayw2=bvhw2.ptr();
int idx=0;
_fill_bvh(bvh_tree,bvh_arrayw2,idx);
configure(_aabb); // this type of shape has no margin
#endif
}
void ConcavePolygonShapeSW::set_data(const Variant& p_data) {
_setup(p_data);
}
Variant ConcavePolygonShapeSW::get_data() const {
return get_faces();
}
ConcavePolygonShapeSW::ConcavePolygonShapeSW() {
}
/* HEIGHT MAP SHAPE */
DVector<float> HeightMapShapeSW::get_heights() const {
return heights;
}
int HeightMapShapeSW::get_width() const {
return width;
}
int HeightMapShapeSW::get_depth() const {
return depth;
}
float HeightMapShapeSW::get_cell_size() const {
return cell_size;
}
void HeightMapShapeSW::project_range(const Vector3& p_normal, const Transform& p_transform, real_t &r_min, real_t &r_max) const {
//not very useful, but not very used either
p_transform.xform(get_aabb()).project_range_in_plane( Plane(p_normal,0),r_min,r_max );
}
Vector3 HeightMapShapeSW::get_support(const Vector3& p_normal) const {
//not very useful, but not very used either
return get_aabb().get_support(p_normal);
}
bool HeightMapShapeSW::intersect_segment(const Vector3& p_begin,const Vector3& p_end,Vector3 &r_point, Vector3 &r_normal) const {
return false;
}
void HeightMapShapeSW::cull(const AABB& p_local_aabb,Callback p_callback,void* p_userdata) const {
}
Vector3 HeightMapShapeSW::get_moment_of_inertia(float p_mass) const {
// use crappy AABB approximation
Vector3 extents=get_aabb().size*0.5;
return Vector3(
(p_mass/3.0) * (extents.y*extents.y + extents.z*extents.z),
(p_mass/3.0) * (extents.x*extents.x + extents.z*extents.z),
(p_mass/3.0) * (extents.y*extents.y + extents.y*extents.y)
);
}
void HeightMapShapeSW::_setup(DVector<real_t> p_heights,int p_width,int p_depth,real_t p_cell_size) {
heights=p_heights;
width=p_width;
depth=p_depth;;
cell_size=p_cell_size;
DVector<real_t>::Read r = heights. read();
AABB aabb;
for(int i=0;i<depth;i++) {
for(int j=0;j<width;j++) {
float h = r[i*width+j];
Vector3 pos( j*cell_size, h, i*cell_size );
if (i==0 || j==0)
aabb.pos=pos;
else
aabb.expand_to(pos);
}
}
configure(aabb);
}
void HeightMapShapeSW::set_data(const Variant& p_data) {
ERR_FAIL_COND( p_data.get_type()!=Variant::DICTIONARY );
Dictionary d=p_data;
ERR_FAIL_COND( !d.has("width") );
ERR_FAIL_COND( !d.has("depth") );
ERR_FAIL_COND( !d.has("cell_size") );
ERR_FAIL_COND( !d.has("heights") );
int width=d["width"];
int depth=d["depth"];
float cell_size=d["cell_size"];
DVector<float> heights=d["heights"];
ERR_FAIL_COND( width<= 0);
ERR_FAIL_COND( depth<= 0);
ERR_FAIL_COND( cell_size<= CMP_EPSILON);
ERR_FAIL_COND( heights.size() != (width*depth) );
_setup(heights, width, depth, cell_size );
}
Variant HeightMapShapeSW::get_data() const {
ERR_FAIL_V(Variant());
}
HeightMapShapeSW::HeightMapShapeSW() {
width=0;
depth=0;
cell_size=0;
}