virtualx-engine/thirdparty/basis_universal/encoder/basisu_enc.h

3136 lines
81 KiB
C++
Raw Normal View History

// basisu_enc.h
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "../transcoder/basisu.h"
#include "../transcoder/basisu_transcoder_internal.h"
#include <mutex>
#include <atomic>
#include <condition_variable>
#include <functional>
#include <thread>
#include <unordered_map>
#include <ostream>
#if !defined(_WIN32) || defined(__MINGW32__)
#include <libgen.h>
#endif
// This module is really just a huge grab bag of classes and helper functions needed by the encoder.
// If BASISU_USE_HIGH_PRECISION_COLOR_DISTANCE is 1, quality in perceptual mode will be slightly greater, but at a large increase in encoding CPU time.
#define BASISU_USE_HIGH_PRECISION_COLOR_DISTANCE (0)
namespace basisu
{
extern uint8_t g_hamming_dist[256];
extern const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8];
// Encoder library initialization.
// This function MUST be called before encoding anything!
void basisu_encoder_init();
// basisu_kernels_sse.cpp - will be a no-op and g_cpu_supports_sse41 will always be false unless compiled with BASISU_SUPPORT_SSE=1
extern void detect_sse41();
#if BASISU_SUPPORT_SSE
extern bool g_cpu_supports_sse41;
#else
const bool g_cpu_supports_sse41 = false;
#endif
void error_printf(const char *pFmt, ...);
// Helpers
inline uint8_t clamp255(int32_t i)
{
return (uint8_t)((i & 0xFFFFFF00U) ? (~(i >> 31)) : i);
}
inline int32_t clampi(int32_t value, int32_t low, int32_t high)
{
if (value < low)
value = low;
else if (value > high)
value = high;
return value;
}
inline uint8_t mul_8(uint32_t v, uint32_t a)
{
v = v * a + 128;
return (uint8_t)((v + (v >> 8)) >> 8);
}
inline uint64_t read_bits(const uint8_t* pBuf, uint32_t& bit_offset, uint32_t codesize)
{
assert(codesize <= 64);
uint64_t bits = 0;
uint32_t total_bits = 0;
while (total_bits < codesize)
{
uint32_t byte_bit_offset = bit_offset & 7;
uint32_t bits_to_read = minimum<int>(codesize - total_bits, 8 - byte_bit_offset);
uint32_t byte_bits = pBuf[bit_offset >> 3] >> byte_bit_offset;
byte_bits &= ((1 << bits_to_read) - 1);
bits |= ((uint64_t)(byte_bits) << total_bits);
total_bits += bits_to_read;
bit_offset += bits_to_read;
}
return bits;
}
inline uint32_t read_bits32(const uint8_t* pBuf, uint32_t& bit_offset, uint32_t codesize)
{
assert(codesize <= 32);
uint32_t bits = 0;
uint32_t total_bits = 0;
while (total_bits < codesize)
{
uint32_t byte_bit_offset = bit_offset & 7;
uint32_t bits_to_read = minimum<int>(codesize - total_bits, 8 - byte_bit_offset);
uint32_t byte_bits = pBuf[bit_offset >> 3] >> byte_bit_offset;
byte_bits &= ((1 << bits_to_read) - 1);
bits |= (byte_bits << total_bits);
total_bits += bits_to_read;
bit_offset += bits_to_read;
}
return bits;
}
// Hashing
inline uint32_t bitmix32c(uint32_t v)
{
v = (v + 0x7ed55d16) + (v << 12);
v = (v ^ 0xc761c23c) ^ (v >> 19);
v = (v + 0x165667b1) + (v << 5);
v = (v + 0xd3a2646c) ^ (v << 9);
v = (v + 0xfd7046c5) + (v << 3);
v = (v ^ 0xb55a4f09) ^ (v >> 16);
return v;
}
inline uint32_t bitmix32(uint32_t v)
{
v -= (v << 6);
v ^= (v >> 17);
v -= (v << 9);
v ^= (v << 4);
v -= (v << 3);
v ^= (v << 10);
v ^= (v >> 15);
return v;
}
inline uint32_t wang_hash(uint32_t seed)
{
seed = (seed ^ 61) ^ (seed >> 16);
seed *= 9;
seed = seed ^ (seed >> 4);
seed *= 0x27d4eb2d;
seed = seed ^ (seed >> 15);
return seed;
}
uint32_t hash_hsieh(const uint8_t* pBuf, size_t len);
template <typename Key>
struct bit_hasher
{
std::size_t operator()(const Key& k) const
{
return hash_hsieh(reinterpret_cast<const uint8_t *>(&k), sizeof(k));
}
};
class running_stat
{
public:
running_stat() :
m_n(0),
m_old_m(0), m_new_m(0), m_old_s(0), m_new_s(0)
{
}
void clear()
{
m_n = 0;
}
void push(double x)
{
m_n++;
if (m_n == 1)
{
m_old_m = m_new_m = x;
m_old_s = 0.0;
m_min = x;
m_max = x;
}
else
{
m_new_m = m_old_m + (x - m_old_m) / m_n;
m_new_s = m_old_s + (x - m_old_m) * (x - m_new_m);
m_old_m = m_new_m;
m_old_s = m_new_s;
m_min = basisu::minimum(x, m_min);
m_max = basisu::maximum(x, m_max);
}
}
uint32_t get_num() const
{
return m_n;
}
double get_mean() const
{
return (m_n > 0) ? m_new_m : 0.0;
}
double get_variance() const
{
return ((m_n > 1) ? m_new_s / (m_n - 1) : 0.0);
}
double get_std_dev() const
{
return sqrt(get_variance());
}
double get_min() const
{
return m_min;
}
double get_max() const
{
return m_max;
}
private:
uint32_t m_n;
double m_old_m, m_new_m, m_old_s, m_new_s, m_min, m_max;
};
// Linear algebra
template <uint32_t N, typename T>
class vec
{
protected:
T m_v[N];
public:
enum { num_elements = N };
inline vec() { }
inline vec(eZero) { set_zero(); }
explicit inline vec(T val) { set(val); }
inline vec(T v0, T v1) { set(v0, v1); }
inline vec(T v0, T v1, T v2) { set(v0, v1, v2); }
inline vec(T v0, T v1, T v2, T v3) { set(v0, v1, v2, v3); }
inline vec(const vec &other) { for (uint32_t i = 0; i < N; i++) m_v[i] = other.m_v[i]; }
template <uint32_t OtherN, typename OtherT> inline vec(const vec<OtherN, OtherT> &other) { set(other); }
inline T operator[](uint32_t i) const { assert(i < N); return m_v[i]; }
inline T &operator[](uint32_t i) { assert(i < N); return m_v[i]; }
inline T getX() const { return m_v[0]; }
inline T getY() const { static_assert(N >= 2, "N too small"); return m_v[1]; }
inline T getZ() const { static_assert(N >= 3, "N too small"); return m_v[2]; }
inline T getW() const { static_assert(N >= 4, "N too small"); return m_v[3]; }
inline bool operator==(const vec &rhs) const { for (uint32_t i = 0; i < N; i++) if (m_v[i] != rhs.m_v[i]) return false; return true; }
inline bool operator<(const vec &rhs) const { for (uint32_t i = 0; i < N; i++) { if (m_v[i] < rhs.m_v[i]) return true; else if (m_v[i] != rhs.m_v[i]) return false; } return false; }
inline void set_zero() { for (uint32_t i = 0; i < N; i++) m_v[i] = 0; }
template <uint32_t OtherN, typename OtherT>
inline vec &set(const vec<OtherN, OtherT> &other)
{
uint32_t i;
if ((const void *)(&other) == (const void *)(this))
return *this;
const uint32_t m = minimum(OtherN, N);
for (i = 0; i < m; i++)
m_v[i] = static_cast<T>(other[i]);
for (; i < N; i++)
m_v[i] = 0;
return *this;
}
inline vec &set_component(uint32_t index, T val) { assert(index < N); m_v[index] = val; return *this; }
inline vec &set(T val) { for (uint32_t i = 0; i < N; i++) m_v[i] = val; return *this; }
inline void clear_elements(uint32_t s, uint32_t e) { assert(e <= N); for (uint32_t i = s; i < e; i++) m_v[i] = 0; }
inline vec &set(T v0, T v1)
{
m_v[0] = v0;
if (N >= 2)
{
m_v[1] = v1;
clear_elements(2, N);
}
return *this;
}
inline vec &set(T v0, T v1, T v2)
{
m_v[0] = v0;
if (N >= 2)
{
m_v[1] = v1;
if (N >= 3)
{
m_v[2] = v2;
clear_elements(3, N);
}
}
return *this;
}
inline vec &set(T v0, T v1, T v2, T v3)
{
m_v[0] = v0;
if (N >= 2)
{
m_v[1] = v1;
if (N >= 3)
{
m_v[2] = v2;
if (N >= 4)
{
m_v[3] = v3;
clear_elements(5, N);
}
}
}
return *this;
}
inline vec &operator=(const vec &rhs) { if (this != &rhs) for (uint32_t i = 0; i < N; i++) m_v[i] = rhs.m_v[i]; return *this; }
template <uint32_t OtherN, typename OtherT> inline vec &operator=(const vec<OtherN, OtherT> &rhs) { set(rhs); return *this; }
inline const T *get_ptr() const { return reinterpret_cast<const T *>(&m_v[0]); }
inline T *get_ptr() { return reinterpret_cast<T *>(&m_v[0]); }
inline vec operator- () const { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = -m_v[i]; return res; }
inline vec operator+ () const { return *this; }
inline vec &operator+= (const vec &other) { for (uint32_t i = 0; i < N; i++) m_v[i] += other.m_v[i]; return *this; }
inline vec &operator-= (const vec &other) { for (uint32_t i = 0; i < N; i++) m_v[i] -= other.m_v[i]; return *this; }
inline vec &operator/= (const vec &other) { for (uint32_t i = 0; i < N; i++) m_v[i] /= other.m_v[i]; return *this; }
inline vec &operator*=(const vec &other) { for (uint32_t i = 0; i < N; i++) m_v[i] *= other.m_v[i]; return *this; }
inline vec &operator/= (T s) { for (uint32_t i = 0; i < N; i++) m_v[i] /= s; return *this; }
inline vec &operator*= (T s) { for (uint32_t i = 0; i < N; i++) m_v[i] *= s; return *this; }
friend inline vec operator+(const vec &lhs, const vec &rhs) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = lhs.m_v[i] + rhs.m_v[i]; return res; }
friend inline vec operator-(const vec &lhs, const vec &rhs) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = lhs.m_v[i] - rhs.m_v[i]; return res; }
friend inline vec operator*(const vec &lhs, T val) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = lhs.m_v[i] * val; return res; }
friend inline vec operator*(T val, const vec &rhs) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = val * rhs.m_v[i]; return res; }
friend inline vec operator/(const vec &lhs, T val) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = lhs.m_v[i] / val; return res; }
friend inline vec operator/(const vec &lhs, const vec &rhs) { vec res; for (uint32_t i = 0; i < N; i++) res.m_v[i] = lhs.m_v[i] / rhs.m_v[i]; return res; }
static inline T dot_product(const vec &lhs, const vec &rhs) { T res = lhs.m_v[0] * rhs.m_v[0]; for (uint32_t i = 1; i < N; i++) res += lhs.m_v[i] * rhs.m_v[i]; return res; }
inline T dot(const vec &rhs) const { return dot_product(*this, rhs); }
inline T norm() const { return dot_product(*this, *this); }
inline T length() const { return sqrt(norm()); }
inline T squared_distance(const vec &other) const { T d2 = 0; for (uint32_t i = 0; i < N; i++) { T d = m_v[i] - other.m_v[i]; d2 += d * d; } return d2; }
inline double squared_distance_d(const vec& other) const { double d2 = 0; for (uint32_t i = 0; i < N; i++) { double d = (double)m_v[i] - (double)other.m_v[i]; d2 += d * d; } return d2; }
inline T distance(const vec &other) const { return static_cast<T>(sqrt(squared_distance(other))); }
inline double distance_d(const vec& other) const { return sqrt(squared_distance_d(other)); }
inline vec &normalize_in_place() { T len = length(); if (len != 0.0f) *this *= (1.0f / len); return *this; }
inline vec &clamp(T l, T h)
{
for (uint32_t i = 0; i < N; i++)
m_v[i] = basisu::clamp(m_v[i], l, h);
return *this;
}
static vec component_min(const vec& a, const vec& b)
{
vec res;
for (uint32_t i = 0; i < N; i++)
res[i] = minimum(a[i], b[i]);
return res;
}
static vec component_max(const vec& a, const vec& b)
{
vec res;
for (uint32_t i = 0; i < N; i++)
res[i] = maximum(a[i], b[i]);
return res;
}
};
typedef vec<4, double> vec4D;
typedef vec<3, double> vec3D;
typedef vec<2, double> vec2D;
typedef vec<1, double> vec1D;
typedef vec<4, float> vec4F;
typedef vec<3, float> vec3F;
typedef vec<2, float> vec2F;
typedef vec<1, float> vec1F;
template <uint32_t Rows, uint32_t Cols, typename T>
class matrix
{
public:
typedef vec<Rows, T> col_vec;
typedef vec<Cols, T> row_vec;
typedef T scalar_type;
enum { rows = Rows, cols = Cols };
protected:
row_vec m_r[Rows];
public:
inline matrix() {}
inline matrix(eZero) { set_zero(); }
inline matrix(const matrix &other) { for (uint32_t i = 0; i < Rows; i++) m_r[i] = other.m_r[i]; }
inline matrix &operator=(const matrix &rhs) { if (this != &rhs) for (uint32_t i = 0; i < Rows; i++) m_r[i] = rhs.m_r[i]; return *this; }
inline T operator()(uint32_t r, uint32_t c) const { assert((r < Rows) && (c < Cols)); return m_r[r][c]; }
inline T &operator()(uint32_t r, uint32_t c) { assert((r < Rows) && (c < Cols)); return m_r[r][c]; }
inline const row_vec &operator[](uint32_t r) const { assert(r < Rows); return m_r[r]; }
inline row_vec &operator[](uint32_t r) { assert(r < Rows); return m_r[r]; }
inline matrix &set_zero()
{
for (uint32_t i = 0; i < Rows; i++)
m_r[i].set_zero();
return *this;
}
inline matrix &set_identity()
{
for (uint32_t i = 0; i < Rows; i++)
{
m_r[i].set_zero();
if (i < Cols)
m_r[i][i] = 1.0f;
}
return *this;
}
};
template<uint32_t N, typename VectorType>
inline VectorType compute_pca_from_covar(matrix<N, N, float> &cmatrix)
{
VectorType axis;
if (N == 1)
axis.set(1.0f);
else
{
for (uint32_t i = 0; i < N; i++)
axis[i] = lerp(.75f, 1.25f, i * (1.0f / maximum<int>(N - 1, 1)));
}
VectorType prev_axis(axis);
// Power iterations
for (uint32_t power_iter = 0; power_iter < 8; power_iter++)
{
VectorType trial_axis;
double max_sum = 0;
for (uint32_t i = 0; i < N; i++)
{
double sum = 0;
for (uint32_t j = 0; j < N; j++)
sum += cmatrix[i][j] * axis[j];
trial_axis[i] = static_cast<float>(sum);
max_sum = maximum(fabs(sum), max_sum);
}
if (max_sum != 0.0f)
trial_axis *= static_cast<float>(1.0f / max_sum);
VectorType delta_axis(prev_axis - trial_axis);
prev_axis = axis;
axis = trial_axis;
if (delta_axis.norm() < .0024f)
break;
}
return axis.normalize_in_place();
}
template<typename T> inline void indirect_sort(uint32_t num_indices, uint32_t* pIndices, const T* pKeys)
{
for (uint32_t i = 0; i < num_indices; i++)
pIndices[i] = i;
std::sort(
pIndices,
pIndices + num_indices,
[pKeys](uint32_t a, uint32_t b) { return pKeys[a] < pKeys[b]; }
);
}
// Very simple job pool with no dependencies.
class job_pool
{
BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(job_pool);
public:
// num_threads is the TOTAL number of job pool threads, including the calling thread! So 2=1 new thread, 3=2 new threads, etc.
job_pool(uint32_t num_threads);
~job_pool();
void add_job(const std::function<void()>& job);
void add_job(std::function<void()>&& job);
void wait_for_all();
size_t get_total_threads() const { return 1 + m_threads.size(); }
private:
std::vector<std::thread> m_threads;
std::vector<std::function<void()> > m_queue;
std::mutex m_mutex;
std::condition_variable m_has_work;
std::condition_variable m_no_more_jobs;
uint32_t m_num_active_jobs;
std::atomic<bool> m_kill_flag;
void job_thread(uint32_t index);
};
// Simple 32-bit color class
class color_rgba_i16
{
public:
union
{
int16_t m_comps[4];
struct
{
int16_t r;
int16_t g;
int16_t b;
int16_t a;
};
};
inline color_rgba_i16()
{
static_assert(sizeof(*this) == sizeof(int16_t)*4, "sizeof(*this) == sizeof(int16_t)*4");
}
inline color_rgba_i16(int sr, int sg, int sb, int sa)
{
set(sr, sg, sb, sa);
}
inline color_rgba_i16 &set(int sr, int sg, int sb, int sa)
{
m_comps[0] = (int16_t)clamp<int>(sr, INT16_MIN, INT16_MAX);
m_comps[1] = (int16_t)clamp<int>(sg, INT16_MIN, INT16_MAX);
m_comps[2] = (int16_t)clamp<int>(sb, INT16_MIN, INT16_MAX);
m_comps[3] = (int16_t)clamp<int>(sa, INT16_MIN, INT16_MAX);
return *this;
}
};
class color_rgba
{
public:
union
{
uint8_t m_comps[4];
struct
{
uint8_t r;
uint8_t g;
uint8_t b;
uint8_t a;
};
};
inline color_rgba()
{
static_assert(sizeof(*this) == 4, "sizeof(*this) != 4");
static_assert(sizeof(*this) == sizeof(basist::color32), "sizeof(*this) != sizeof(basist::color32)");
}
// Not too hot about this idea.
inline color_rgba(const basist::color32& other) :
r(other.r),
g(other.g),
b(other.b),
a(other.a)
{
}
color_rgba& operator= (const basist::color32& rhs)
{
r = rhs.r;
g = rhs.g;
b = rhs.b;
a = rhs.a;
return *this;
}
inline color_rgba(int y)
{
set(y);
}
inline color_rgba(int y, int na)
{
set(y, na);
}
inline color_rgba(int sr, int sg, int sb, int sa)
{
set(sr, sg, sb, sa);
}
inline color_rgba(eNoClamp, int sr, int sg, int sb, int sa)
{
set_noclamp_rgba((uint8_t)sr, (uint8_t)sg, (uint8_t)sb, (uint8_t)sa);
}
inline color_rgba& set_noclamp_y(int y)
{
m_comps[0] = (uint8_t)y;
m_comps[1] = (uint8_t)y;
m_comps[2] = (uint8_t)y;
m_comps[3] = (uint8_t)255;
return *this;
}
inline color_rgba &set_noclamp_rgba(int sr, int sg, int sb, int sa)
{
m_comps[0] = (uint8_t)sr;
m_comps[1] = (uint8_t)sg;
m_comps[2] = (uint8_t)sb;
m_comps[3] = (uint8_t)sa;
return *this;
}
inline color_rgba &set(int y)
{
m_comps[0] = static_cast<uint8_t>(clamp<int>(y, 0, 255));
m_comps[1] = m_comps[0];
m_comps[2] = m_comps[0];
m_comps[3] = 255;
return *this;
}
inline color_rgba &set(int y, int na)
{
m_comps[0] = static_cast<uint8_t>(clamp<int>(y, 0, 255));
m_comps[1] = m_comps[0];
m_comps[2] = m_comps[0];
m_comps[3] = static_cast<uint8_t>(clamp<int>(na, 0, 255));
return *this;
}
inline color_rgba &set(int sr, int sg, int sb, int sa)
{
m_comps[0] = static_cast<uint8_t>(clamp<int>(sr, 0, 255));
m_comps[1] = static_cast<uint8_t>(clamp<int>(sg, 0, 255));
m_comps[2] = static_cast<uint8_t>(clamp<int>(sb, 0, 255));
m_comps[3] = static_cast<uint8_t>(clamp<int>(sa, 0, 255));
return *this;
}
inline color_rgba &set_rgb(int sr, int sg, int sb)
{
m_comps[0] = static_cast<uint8_t>(clamp<int>(sr, 0, 255));
m_comps[1] = static_cast<uint8_t>(clamp<int>(sg, 0, 255));
m_comps[2] = static_cast<uint8_t>(clamp<int>(sb, 0, 255));
return *this;
}
inline color_rgba &set_rgb(const color_rgba &other)
{
r = other.r;
g = other.g;
b = other.b;
return *this;
}
inline const uint8_t &operator[] (uint32_t index) const { assert(index < 4); return m_comps[index]; }
inline uint8_t &operator[] (uint32_t index) { assert(index < 4); return m_comps[index]; }
inline void clear()
{
m_comps[0] = 0;
m_comps[1] = 0;
m_comps[2] = 0;
m_comps[3] = 0;
}
inline bool operator== (const color_rgba &rhs) const
{
if (m_comps[0] != rhs.m_comps[0]) return false;
if (m_comps[1] != rhs.m_comps[1]) return false;
if (m_comps[2] != rhs.m_comps[2]) return false;
if (m_comps[3] != rhs.m_comps[3]) return false;
return true;
}
inline bool operator!= (const color_rgba &rhs) const
{
return !(*this == rhs);
}
inline bool operator<(const color_rgba &rhs) const
{
for (int i = 0; i < 4; i++)
{
if (m_comps[i] < rhs.m_comps[i])
return true;
else if (m_comps[i] != rhs.m_comps[i])
return false;
}
return false;
}
inline int get_601_luma() const { return (19595U * m_comps[0] + 38470U * m_comps[1] + 7471U * m_comps[2] + 32768U) >> 16U; }
inline int get_709_luma() const { return (13938U * m_comps[0] + 46869U * m_comps[1] + 4729U * m_comps[2] + 32768U) >> 16U; }
inline int get_luma(bool luma_601) const { return luma_601 ? get_601_luma() : get_709_luma(); }
inline basist::color32 get_color32() const
{
return basist::color32(r, g, b, a);
}
static color_rgba comp_min(const color_rgba& a, const color_rgba& b) { return color_rgba(basisu::minimum(a[0], b[0]), basisu::minimum(a[1], b[1]), basisu::minimum(a[2], b[2]), basisu::minimum(a[3], b[3])); }
static color_rgba comp_max(const color_rgba& a, const color_rgba& b) { return color_rgba(basisu::maximum(a[0], b[0]), basisu::maximum(a[1], b[1]), basisu::maximum(a[2], b[2]), basisu::maximum(a[3], b[3])); }
};
typedef basisu::vector<color_rgba> color_rgba_vec;
const color_rgba g_black_color(0, 0, 0, 255);
const color_rgba g_black_trans_color(0, 0, 0, 0);
const color_rgba g_white_color(255, 255, 255, 255);
inline int color_distance(int r0, int g0, int b0, int r1, int g1, int b1)
{
int dr = r0 - r1, dg = g0 - g1, db = b0 - b1;
return dr * dr + dg * dg + db * db;
}
inline int color_distance(int r0, int g0, int b0, int a0, int r1, int g1, int b1, int a1)
{
int dr = r0 - r1, dg = g0 - g1, db = b0 - b1, da = a0 - a1;
return dr * dr + dg * dg + db * db + da * da;
}
inline int color_distance(const color_rgba &c0, const color_rgba &c1, bool alpha)
{
if (alpha)
return color_distance(c0.r, c0.g, c0.b, c0.a, c1.r, c1.g, c1.b, c1.a);
else
return color_distance(c0.r, c0.g, c0.b, c1.r, c1.g, c1.b);
}
// TODO: Allow user to control channel weightings.
inline uint32_t color_distance(bool perceptual, const color_rgba &e1, const color_rgba &e2, bool alpha)
{
if (perceptual)
{
#if BASISU_USE_HIGH_PRECISION_COLOR_DISTANCE
const float l1 = e1.r * .2126f + e1.g * .715f + e1.b * .0722f;
const float l2 = e2.r * .2126f + e2.g * .715f + e2.b * .0722f;
const float cr1 = e1.r - l1;
const float cr2 = e2.r - l2;
const float cb1 = e1.b - l1;
const float cb2 = e2.b - l2;
const float dl = l1 - l2;
const float dcr = cr1 - cr2;
const float dcb = cb1 - cb2;
uint32_t d = static_cast<uint32_t>(32.0f*4.0f*dl*dl + 32.0f*2.0f*(.5f / (1.0f - .2126f))*(.5f / (1.0f - .2126f))*dcr*dcr + 32.0f*.25f*(.5f / (1.0f - .0722f))*(.5f / (1.0f - .0722f))*dcb*dcb);
if (alpha)
{
int da = static_cast<int>(e1.a) - static_cast<int>(e2.a);
d += static_cast<uint32_t>(128.0f*da*da);
}
return d;
#elif 1
int dr = e1.r - e2.r;
int dg = e1.g - e2.g;
int db = e1.b - e2.b;
int delta_l = dr * 27 + dg * 92 + db * 9;
int delta_cr = dr * 128 - delta_l;
int delta_cb = db * 128 - delta_l;
uint32_t id = ((uint32_t)(delta_l * delta_l) >> 7U) +
((((uint32_t)(delta_cr * delta_cr) >> 7U) * 26U) >> 7U) +
((((uint32_t)(delta_cb * delta_cb) >> 7U) * 3U) >> 7U);
if (alpha)
{
int da = (e1.a - e2.a) << 7;
id += ((uint32_t)(da * da) >> 7U);
}
return id;
#else
int dr = e1.r - e2.r;
int dg = e1.g - e2.g;
int db = e1.b - e2.b;
int64_t delta_l = dr * 27 + dg * 92 + db * 9;
int64_t delta_cr = dr * 128 - delta_l;
int64_t delta_cb = db * 128 - delta_l;
int64_t id = ((delta_l * delta_l) * 128) +
((delta_cr * delta_cr) * 26) +
((delta_cb * delta_cb) * 3);
if (alpha)
{
int64_t da = (e1.a - e2.a);
id += (da * da) * 128;
}
int d = (id + 8192) >> 14;
return d;
#endif
}
else
return color_distance(e1, e2, alpha);
}
static inline uint32_t color_distance_la(const color_rgba& a, const color_rgba& b)
{
const int dl = a.r - b.r;
const int da = a.a - b.a;
return dl * dl + da * da;
}
// String helpers
inline int string_find_right(const std::string& filename, char c)
{
size_t result = filename.find_last_of(c);
return (result == std::string::npos) ? -1 : (int)result;
}
inline std::string string_get_extension(const std::string &filename)
{
int sep = -1;
#ifdef _WIN32
sep = string_find_right(filename, '\\');
#endif
if (sep < 0)
sep = string_find_right(filename, '/');
int dot = string_find_right(filename, '.');
if (dot <= sep)
return "";
std::string result(filename);
result.erase(0, dot + 1);
return result;
}
inline bool string_remove_extension(std::string &filename)
{
int sep = -1;
#ifdef _WIN32
sep = string_find_right(filename, '\\');
#endif
if (sep < 0)
sep = string_find_right(filename, '/');
int dot = string_find_right(filename, '.');
if ((dot < sep) || (dot < 0))
return false;
filename.resize(dot);
return true;
}
inline std::string string_format(const char* pFmt, ...)
{
char buf[2048];
va_list args;
va_start(args, pFmt);
#ifdef _WIN32
vsprintf_s(buf, sizeof(buf), pFmt, args);
#else
vsnprintf(buf, sizeof(buf), pFmt, args);
#endif
va_end(args);
return std::string(buf);
}
inline std::string string_tolower(const std::string& s)
{
std::string result(s);
for (size_t i = 0; i < result.size(); i++)
result[i] = (char)tolower((int)result[i]);
return result;
}
inline char *strcpy_safe(char *pDst, size_t dst_len, const char *pSrc)
{
assert(pDst && pSrc && dst_len);
if (!dst_len)
return pDst;
const size_t src_len = strlen(pSrc);
const size_t src_len_plus_terminator = src_len + 1;
if (src_len_plus_terminator <= dst_len)
memcpy(pDst, pSrc, src_len_plus_terminator);
else
{
if (dst_len > 1)
memcpy(pDst, pSrc, dst_len - 1);
pDst[dst_len - 1] = '\0';
}
return pDst;
}
inline bool string_ends_with(const std::string& s, char c)
{
return (s.size() != 0) && (s.back() == c);
}
inline bool string_split_path(const char *p, std::string *pDrive, std::string *pDir, std::string *pFilename, std::string *pExt)
{
#ifdef _MSC_VER
char drive_buf[_MAX_DRIVE] = { 0 };
char dir_buf[_MAX_DIR] = { 0 };
char fname_buf[_MAX_FNAME] = { 0 };
char ext_buf[_MAX_EXT] = { 0 };
errno_t error = _splitpath_s(p,
pDrive ? drive_buf : NULL, pDrive ? _MAX_DRIVE : 0,
pDir ? dir_buf : NULL, pDir ? _MAX_DIR : 0,
pFilename ? fname_buf : NULL, pFilename ? _MAX_FNAME : 0,
pExt ? ext_buf : NULL, pExt ? _MAX_EXT : 0);
if (error != 0)
return false;
if (pDrive) *pDrive = drive_buf;
if (pDir) *pDir = dir_buf;
if (pFilename) *pFilename = fname_buf;
if (pExt) *pExt = ext_buf;
return true;
#else
char dirtmp[1024], nametmp[1024];
strcpy_safe(dirtmp, sizeof(dirtmp), p);
strcpy_safe(nametmp, sizeof(nametmp), p);
if (pDrive)
pDrive->resize(0);
const char *pDirName = dirname(dirtmp);
const char* pBaseName = basename(nametmp);
if ((!pDirName) || (!pBaseName))
return false;
if (pDir)
{
*pDir = pDirName;
if ((pDir->size()) && (pDir->back() != '/'))
*pDir += "/";
}
if (pFilename)
{
*pFilename = pBaseName;
string_remove_extension(*pFilename);
}
if (pExt)
{
*pExt = pBaseName;
*pExt = string_get_extension(*pExt);
if (pExt->size())
*pExt = "." + *pExt;
}
return true;
#endif
}
inline bool is_path_separator(char c)
{
#ifdef _WIN32
return (c == '/') || (c == '\\');
#else
return (c == '/');
#endif
}
inline bool is_drive_separator(char c)
{
#ifdef _WIN32
return (c == ':');
#else
(void)c;
return false;
#endif
}
inline void string_combine_path(std::string &dst, const char *p, const char *q)
{
std::string temp(p);
if (temp.size() && !is_path_separator(q[0]))
{
if (!is_path_separator(temp.back()))
temp.append(1, BASISU_PATH_SEPERATOR_CHAR);
}
temp += q;
dst.swap(temp);
}
inline void string_combine_path(std::string &dst, const char *p, const char *q, const char *r)
{
string_combine_path(dst, p, q);
string_combine_path(dst, dst.c_str(), r);
}
inline void string_combine_path_and_extension(std::string &dst, const char *p, const char *q, const char *r, const char *pExt)
{
string_combine_path(dst, p, q, r);
if ((!string_ends_with(dst, '.')) && (pExt[0]) && (pExt[0] != '.'))
dst.append(1, '.');
dst.append(pExt);
}
inline bool string_get_pathname(const char *p, std::string &path)
{
std::string temp_drive, temp_path;
if (!string_split_path(p, &temp_drive, &temp_path, NULL, NULL))
return false;
string_combine_path(path, temp_drive.c_str(), temp_path.c_str());
return true;
}
inline bool string_get_filename(const char *p, std::string &filename)
{
std::string temp_ext;
if (!string_split_path(p, nullptr, nullptr, &filename, &temp_ext))
return false;
filename += temp_ext;
return true;
}
class rand
{
std::mt19937 m_mt;
public:
rand() { }
rand(uint32_t s) { seed(s); }
void seed(uint32_t s) { m_mt.seed(s); }
// between [l,h]
int irand(int l, int h) { std::uniform_int_distribution<int> d(l, h); return d(m_mt); }
uint32_t urand32() { return static_cast<uint32_t>(irand(INT32_MIN, INT32_MAX)); }
bool bit() { return irand(0, 1) == 1; }
uint8_t byte() { return static_cast<uint8_t>(urand32()); }
// between [l,h)
float frand(float l, float h) { std::uniform_real_distribution<float> d(l, h); return d(m_mt); }
float gaussian(float mean, float stddev) { std::normal_distribution<float> d(mean, stddev); return d(m_mt); }
};
class priority_queue
{
public:
priority_queue() :
m_size(0)
{
}
void clear()
{
m_heap.clear();
m_size = 0;
}
void init(uint32_t max_entries, uint32_t first_index, float first_priority)
{
m_heap.resize(max_entries + 1);
m_heap[1].m_index = first_index;
m_heap[1].m_priority = first_priority;
m_size = 1;
}
inline uint32_t size() const { return m_size; }
inline uint32_t get_top_index() const { return m_heap[1].m_index; }
inline float get_top_priority() const { return m_heap[1].m_priority; }
inline void delete_top()
{
assert(m_size > 0);
m_heap[1] = m_heap[m_size];
m_size--;
if (m_size)
down_heap(1);
}
inline void add_heap(uint32_t index, float priority)
{
m_size++;
uint32_t k = m_size;
if (m_size >= m_heap.size())
m_heap.resize(m_size + 1);
for (;;)
{
uint32_t parent_index = k >> 1;
if ((!parent_index) || (m_heap[parent_index].m_priority > priority))
break;
m_heap[k] = m_heap[parent_index];
k = parent_index;
}
m_heap[k].m_index = index;
m_heap[k].m_priority = priority;
}
private:
struct entry
{
uint32_t m_index;
float m_priority;
};
basisu::vector<entry> m_heap;
uint32_t m_size;
// Push down entry at index
inline void down_heap(uint32_t heap_index)
{
uint32_t orig_index = m_heap[heap_index].m_index;
const float orig_priority = m_heap[heap_index].m_priority;
uint32_t child_index;
while ((child_index = (heap_index << 1)) <= m_size)
{
if ((child_index < m_size) && (m_heap[child_index].m_priority < m_heap[child_index + 1].m_priority)) ++child_index;
if (orig_priority > m_heap[child_index].m_priority)
break;
m_heap[heap_index] = m_heap[child_index];
heap_index = child_index;
}
m_heap[heap_index].m_index = orig_index;
m_heap[heap_index].m_priority = orig_priority;
}
};
// Tree structured vector quantization (TSVQ)
template <typename TrainingVectorType>
class tree_vector_quant
{
public:
typedef TrainingVectorType training_vec_type;
typedef std::pair<TrainingVectorType, uint64_t> training_vec_with_weight;
typedef basisu::vector< training_vec_with_weight > array_of_weighted_training_vecs;
tree_vector_quant() :
m_next_codebook_index(0)
{
}
void clear()
{
clear_vector(m_training_vecs);
clear_vector(m_nodes);
m_next_codebook_index = 0;
}
void add_training_vec(const TrainingVectorType &v, uint64_t weight) { m_training_vecs.push_back(std::make_pair(v, weight)); }
size_t get_total_training_vecs() const { return m_training_vecs.size(); }
const array_of_weighted_training_vecs &get_training_vecs() const { return m_training_vecs; }
array_of_weighted_training_vecs &get_training_vecs() { return m_training_vecs; }
void retrieve(basisu::vector< basisu::vector<uint32_t> > &codebook) const
{
for (uint32_t i = 0; i < m_nodes.size(); i++)
{
const tsvq_node &n = m_nodes[i];
if (!n.is_leaf())
continue;
codebook.resize(codebook.size() + 1);
codebook.back() = n.m_training_vecs;
}
}
void retrieve(basisu::vector<TrainingVectorType> &codebook) const
{
for (uint32_t i = 0; i < m_nodes.size(); i++)
{
const tsvq_node &n = m_nodes[i];
if (!n.is_leaf())
continue;
codebook.resize(codebook.size() + 1);
codebook.back() = n.m_origin;
}
}
void retrieve(uint32_t max_clusters, basisu::vector<uint_vec> &codebook) const
{
uint_vec node_stack;
node_stack.reserve(512);
codebook.resize(0);
codebook.reserve(max_clusters);
uint32_t node_index = 0;
while (true)
{
const tsvq_node& cur = m_nodes[node_index];
if (cur.is_leaf() || ((2 + cur.m_codebook_index) > (int)max_clusters))
{
codebook.resize(codebook.size() + 1);
codebook.back() = cur.m_training_vecs;
if (node_stack.empty())
break;
node_index = node_stack.back();
node_stack.pop_back();
continue;
}
node_stack.push_back(cur.m_right_index);
node_index = cur.m_left_index;
}
}
bool generate(uint32_t max_size)
{
if (!m_training_vecs.size())
return false;
m_next_codebook_index = 0;
clear_vector(m_nodes);
m_nodes.reserve(max_size * 2 + 1);
m_nodes.push_back(prepare_root());
priority_queue var_heap;
var_heap.init(max_size, 0, m_nodes[0].m_var);
basisu::vector<uint32_t> l_children, r_children;
// Now split the worst nodes
l_children.reserve(m_training_vecs.size() + 1);
r_children.reserve(m_training_vecs.size() + 1);
uint32_t total_leaf_nodes = 1;
while ((var_heap.size()) && (total_leaf_nodes < max_size))
{
const uint32_t node_index = var_heap.get_top_index();
const tsvq_node &node = m_nodes[node_index];
assert(node.m_var == var_heap.get_top_priority());
assert(node.is_leaf());
var_heap.delete_top();
if (node.m_training_vecs.size() > 1)
{
if (split_node(node_index, var_heap, l_children, r_children))
{
// This removes one leaf node (making an internal node) and replaces it with two new leaves, so +1 total.
total_leaf_nodes += 1;
}
}
}
return true;
}
private:
class tsvq_node
{
public:
inline tsvq_node() : m_weight(0), m_origin(cZero), m_left_index(-1), m_right_index(-1), m_codebook_index(-1) { }
// vecs is erased
inline void set(const TrainingVectorType &org, uint64_t weight, float var, basisu::vector<uint32_t> &vecs) { m_origin = org; m_weight = weight; m_var = var; m_training_vecs.swap(vecs); }
inline bool is_leaf() const { return m_left_index < 0; }
float m_var;
uint64_t m_weight;
TrainingVectorType m_origin;
int32_t m_left_index, m_right_index;
basisu::vector<uint32_t> m_training_vecs;
int m_codebook_index;
};
typedef basisu::vector<tsvq_node> tsvq_node_vec;
tsvq_node_vec m_nodes;
array_of_weighted_training_vecs m_training_vecs;
uint32_t m_next_codebook_index;
tsvq_node prepare_root() const
{
double ttsum = 0.0f;
// Prepare root node containing all training vectors
tsvq_node root;
root.m_training_vecs.reserve(m_training_vecs.size());
for (uint32_t i = 0; i < m_training_vecs.size(); i++)
{
const TrainingVectorType &v = m_training_vecs[i].first;
const uint64_t weight = m_training_vecs[i].second;
root.m_training_vecs.push_back(i);
root.m_origin += (v * static_cast<float>(weight));
root.m_weight += weight;
ttsum += v.dot(v) * weight;
}
root.m_var = static_cast<float>(ttsum - (root.m_origin.dot(root.m_origin) / root.m_weight));
root.m_origin *= (1.0f / root.m_weight);
return root;
}
bool split_node(uint32_t node_index, priority_queue &var_heap, basisu::vector<uint32_t> &l_children, basisu::vector<uint32_t> &r_children)
{
TrainingVectorType l_child_org, r_child_org;
uint64_t l_weight = 0, r_weight = 0;
float l_var = 0.0f, r_var = 0.0f;
// Compute initial left/right child origins
if (!prep_split(m_nodes[node_index], l_child_org, r_child_org))
return false;
// Use k-means iterations to refine these children vectors
if (!refine_split(m_nodes[node_index], l_child_org, l_weight, l_var, l_children, r_child_org, r_weight, r_var, r_children))
return false;
// Create children
const uint32_t l_child_index = (uint32_t)m_nodes.size(), r_child_index = (uint32_t)m_nodes.size() + 1;
m_nodes[node_index].m_left_index = l_child_index;
m_nodes[node_index].m_right_index = r_child_index;
m_nodes[node_index].m_codebook_index = m_next_codebook_index;
m_next_codebook_index++;
m_nodes.resize(m_nodes.size() + 2);
tsvq_node &l_child = m_nodes[l_child_index], &r_child = m_nodes[r_child_index];
l_child.set(l_child_org, l_weight, l_var, l_children);
r_child.set(r_child_org, r_weight, r_var, r_children);
if ((l_child.m_var <= 0.0f) && (l_child.m_training_vecs.size() > 1))
{
TrainingVectorType v(m_training_vecs[l_child.m_training_vecs[0]].first);
for (uint32_t i = 1; i < l_child.m_training_vecs.size(); i++)
{
if (!(v == m_training_vecs[l_child.m_training_vecs[i]].first))
{
l_child.m_var = 1e-4f;
break;
}
}
}
if ((r_child.m_var <= 0.0f) && (r_child.m_training_vecs.size() > 1))
{
TrainingVectorType v(m_training_vecs[r_child.m_training_vecs[0]].first);
for (uint32_t i = 1; i < r_child.m_training_vecs.size(); i++)
{
if (!(v == m_training_vecs[r_child.m_training_vecs[i]].first))
{
r_child.m_var = 1e-4f;
break;
}
}
}
if ((l_child.m_var > 0.0f) && (l_child.m_training_vecs.size() > 1))
var_heap.add_heap(l_child_index, l_child.m_var);
if ((r_child.m_var > 0.0f) && (r_child.m_training_vecs.size() > 1))
var_heap.add_heap(r_child_index, r_child.m_var);
return true;
}
TrainingVectorType compute_split_axis(const tsvq_node &node) const
{
const uint32_t N = TrainingVectorType::num_elements;
matrix<N, N, float> cmatrix(cZero);
// Compute covariance matrix from weighted input vectors
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const TrainingVectorType v(m_training_vecs[node.m_training_vecs[i]].first - node.m_origin);
const TrainingVectorType w(static_cast<float>(m_training_vecs[node.m_training_vecs[i]].second) * v);
for (uint32_t x = 0; x < N; x++)
for (uint32_t y = x; y < N; y++)
cmatrix[x][y] = cmatrix[x][y] + v[x] * w[y];
}
const float renorm_scale = 1.0f / node.m_weight;
for (uint32_t x = 0; x < N; x++)
for (uint32_t y = x; y < N; y++)
cmatrix[x][y] *= renorm_scale;
// Diagonal flip
for (uint32_t x = 0; x < (N - 1); x++)
for (uint32_t y = x + 1; y < N; y++)
cmatrix[y][x] = cmatrix[x][y];
return compute_pca_from_covar<N, TrainingVectorType>(cmatrix);
}
bool prep_split(const tsvq_node &node, TrainingVectorType &l_child_result, TrainingVectorType &r_child_result) const
{
//const uint32_t N = TrainingVectorType::num_elements;
if (2 == node.m_training_vecs.size())
{
l_child_result = m_training_vecs[node.m_training_vecs[0]].first;
r_child_result = m_training_vecs[node.m_training_vecs[1]].first;
return true;
}
TrainingVectorType axis(compute_split_axis(node)), l_child(0.0f), r_child(0.0f);
double l_weight = 0.0f, r_weight = 0.0f;
// Compute initial left/right children
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const float weight = (float)m_training_vecs[node.m_training_vecs[i]].second;
const TrainingVectorType &v = m_training_vecs[node.m_training_vecs[i]].first;
double t = (v - node.m_origin).dot(axis);
if (t >= 0.0f)
{
r_child += v * weight;
r_weight += weight;
}
else
{
l_child += v * weight;
l_weight += weight;
}
}
if ((l_weight > 0.0f) && (r_weight > 0.0f))
{
l_child_result = l_child * static_cast<float>(1.0f / l_weight);
r_child_result = r_child * static_cast<float>(1.0f / r_weight);
}
else
{
TrainingVectorType l(1e+20f);
TrainingVectorType h(-1e+20f);
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const TrainingVectorType& v = m_training_vecs[node.m_training_vecs[i]].first;
l = TrainingVectorType::component_min(l, v);
h = TrainingVectorType::component_max(h, v);
}
TrainingVectorType r(h - l);
float largest_axis_v = 0.0f;
int largest_axis_index = -1;
for (uint32_t i = 0; i < TrainingVectorType::num_elements; i++)
{
if (r[i] > largest_axis_v)
{
largest_axis_v = r[i];
largest_axis_index = i;
}
}
if (largest_axis_index < 0)
return false;
basisu::vector<float> keys(node.m_training_vecs.size());
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
keys[i] = m_training_vecs[node.m_training_vecs[i]].first[largest_axis_index];
uint_vec indices(node.m_training_vecs.size());
indirect_sort((uint32_t)node.m_training_vecs.size(), &indices[0], &keys[0]);
l_child.set_zero();
l_weight = 0;
r_child.set_zero();
r_weight = 0;
const uint32_t half_index = (uint32_t)node.m_training_vecs.size() / 2;
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const float weight = (float)m_training_vecs[node.m_training_vecs[i]].second;
const TrainingVectorType& v = m_training_vecs[node.m_training_vecs[i]].first;
if (i < half_index)
{
l_child += v * weight;
l_weight += weight;
}
else
{
r_child += v * weight;
r_weight += weight;
}
}
if ((l_weight > 0.0f) && (r_weight > 0.0f))
{
l_child_result = l_child * static_cast<float>(1.0f / l_weight);
r_child_result = r_child * static_cast<float>(1.0f / r_weight);
}
else
{
l_child_result = l;
r_child_result = h;
}
}
return true;
}
bool refine_split(const tsvq_node &node,
TrainingVectorType &l_child, uint64_t &l_weight, float &l_var, basisu::vector<uint32_t> &l_children,
TrainingVectorType &r_child, uint64_t &r_weight, float &r_var, basisu::vector<uint32_t> &r_children) const
{
l_children.reserve(node.m_training_vecs.size());
r_children.reserve(node.m_training_vecs.size());
float prev_total_variance = 1e+10f;
// Refine left/right children locations using k-means iterations
const uint32_t cMaxIters = 6;
for (uint32_t iter = 0; iter < cMaxIters; iter++)
{
l_children.resize(0);
r_children.resize(0);
TrainingVectorType new_l_child(cZero), new_r_child(cZero);
double l_ttsum = 0.0f, r_ttsum = 0.0f;
l_weight = 0;
r_weight = 0;
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const TrainingVectorType &v = m_training_vecs[node.m_training_vecs[i]].first;
const uint64_t weight = m_training_vecs[node.m_training_vecs[i]].second;
double left_dist2 = l_child.squared_distance_d(v), right_dist2 = r_child.squared_distance_d(v);
if (left_dist2 >= right_dist2)
{
new_r_child += (v * static_cast<float>(weight));
r_weight += weight;
r_ttsum += weight * v.dot(v);
r_children.push_back(node.m_training_vecs[i]);
}
else
{
new_l_child += (v * static_cast<float>(weight));
l_weight += weight;
l_ttsum += weight * v.dot(v);
l_children.push_back(node.m_training_vecs[i]);
}
}
if ((!l_weight) || (!r_weight))
{
l_children.resize(0);
new_l_child.set(0.0f);
l_ttsum = 0.0f;
l_weight = 0;
r_children.resize(0);
new_r_child.set(0.0f);
r_ttsum = 0.0f;
r_weight = 0;
TrainingVectorType firstVec;
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{
const TrainingVectorType& v = m_training_vecs[node.m_training_vecs[i]].first;
const uint64_t weight = m_training_vecs[node.m_training_vecs[i]].second;
if ((!i) || (v == firstVec))
{
firstVec = v;
new_r_child += (v * static_cast<float>(weight));
r_weight += weight;
r_ttsum += weight * v.dot(v);
r_children.push_back(node.m_training_vecs[i]);
}
else
{
new_l_child += (v * static_cast<float>(weight));
l_weight += weight;
l_ttsum += weight * v.dot(v);
l_children.push_back(node.m_training_vecs[i]);
}
}
if ((!l_weight) || (!r_weight))
return false;
}
l_var = static_cast<float>(l_ttsum - (new_l_child.dot(new_l_child) / l_weight));
r_var = static_cast<float>(r_ttsum - (new_r_child.dot(new_r_child) / r_weight));
new_l_child *= (1.0f / l_weight);
new_r_child *= (1.0f / r_weight);
l_child = new_l_child;
r_child = new_r_child;
float total_var = l_var + r_var;
const float cGiveupVariance = .00001f;
if (total_var < cGiveupVariance)
break;
// Check to see if the variance has settled
const float cVarianceDeltaThresh = .00125f;
if (((prev_total_variance - total_var) / total_var) < cVarianceDeltaThresh)
break;
prev_total_variance = total_var;
}
return true;
}
};
struct weighted_block_group
{
uint64_t m_total_weight;
uint_vec m_indices;
};
template<typename Quantizer>
bool generate_hierarchical_codebook_threaded_internal(Quantizer& q,
uint32_t max_codebook_size, uint32_t max_parent_codebook_size,
basisu::vector<uint_vec>& codebook,
basisu::vector<uint_vec>& parent_codebook,
uint32_t max_threads, bool limit_clusterizers, job_pool *pJob_pool)
{
codebook.resize(0);
parent_codebook.resize(0);
if ((max_threads <= 1) || (q.get_training_vecs().size() < 256) || (max_codebook_size < max_threads * 16))
{
if (!q.generate(max_codebook_size))
return false;
q.retrieve(codebook);
if (max_parent_codebook_size)
q.retrieve(max_parent_codebook_size, parent_codebook);
return true;
}
const uint32_t cMaxThreads = 16;
if (max_threads > cMaxThreads)
max_threads = cMaxThreads;
if (!q.generate(max_threads))
return false;
basisu::vector<uint_vec> initial_codebook;
q.retrieve(initial_codebook);
if (initial_codebook.size() < max_threads)
{
codebook = initial_codebook;
if (max_parent_codebook_size)
q.retrieve(max_parent_codebook_size, parent_codebook);
return true;
}
Quantizer quantizers[cMaxThreads];
bool success_flags[cMaxThreads];
clear_obj(success_flags);
basisu::vector<uint_vec> local_clusters[cMaxThreads];
basisu::vector<uint_vec> local_parent_clusters[cMaxThreads];
for (uint32_t thread_iter = 0; thread_iter < max_threads; thread_iter++)
{
#ifndef __EMSCRIPTEN__
pJob_pool->add_job( [thread_iter, &local_clusters, &local_parent_clusters, &success_flags, &quantizers, &initial_codebook, &q, &limit_clusterizers, &max_codebook_size, &max_threads, &max_parent_codebook_size] {
#endif
Quantizer& lq = quantizers[thread_iter];
uint_vec& cluster_indices = initial_codebook[thread_iter];
uint_vec local_to_global(cluster_indices.size());
for (uint32_t i = 0; i < cluster_indices.size(); i++)
{
const uint32_t global_training_vec_index = cluster_indices[i];
local_to_global[i] = global_training_vec_index;
lq.add_training_vec(q.get_training_vecs()[global_training_vec_index].first, q.get_training_vecs()[global_training_vec_index].second);
}
const uint32_t max_clusters = limit_clusterizers ? ((max_codebook_size + max_threads - 1) / max_threads) : (uint32_t)lq.get_total_training_vecs();
success_flags[thread_iter] = lq.generate(max_clusters);
if (success_flags[thread_iter])
{
lq.retrieve(local_clusters[thread_iter]);
for (uint32_t i = 0; i < local_clusters[thread_iter].size(); i++)
{
for (uint32_t j = 0; j < local_clusters[thread_iter][i].size(); j++)
local_clusters[thread_iter][i][j] = local_to_global[local_clusters[thread_iter][i][j]];
}
if (max_parent_codebook_size)
{
lq.retrieve((max_parent_codebook_size + max_threads - 1) / max_threads, local_parent_clusters[thread_iter]);
for (uint32_t i = 0; i < local_parent_clusters[thread_iter].size(); i++)
{
for (uint32_t j = 0; j < local_parent_clusters[thread_iter][i].size(); j++)
local_parent_clusters[thread_iter][i][j] = local_to_global[local_parent_clusters[thread_iter][i][j]];
}
}
}
#ifndef __EMSCRIPTEN__
} );
#endif
} // thread_iter
#ifndef __EMSCRIPTEN__
pJob_pool->wait_for_all();
#endif
uint32_t total_clusters = 0, total_parent_clusters = 0;
for (int thread_iter = 0; thread_iter < (int)max_threads; thread_iter++)
{
if (!success_flags[thread_iter])
return false;
total_clusters += (uint32_t)local_clusters[thread_iter].size();
total_parent_clusters += (uint32_t)local_parent_clusters[thread_iter].size();
}
codebook.reserve(total_clusters);
parent_codebook.reserve(total_parent_clusters);
for (uint32_t thread_iter = 0; thread_iter < max_threads; thread_iter++)
{
for (uint32_t j = 0; j < local_clusters[thread_iter].size(); j++)
{
codebook.resize(codebook.size() + 1);
codebook.back().swap(local_clusters[thread_iter][j]);
}
for (uint32_t j = 0; j < local_parent_clusters[thread_iter].size(); j++)
{
parent_codebook.resize(parent_codebook.size() + 1);
parent_codebook.back().swap(local_parent_clusters[thread_iter][j]);
}
}
return true;
}
template<typename Quantizer>
bool generate_hierarchical_codebook_threaded(Quantizer& q,
uint32_t max_codebook_size, uint32_t max_parent_codebook_size,
basisu::vector<uint_vec>& codebook,
basisu::vector<uint_vec>& parent_codebook,
uint32_t max_threads, job_pool *pJob_pool)
{
typedef bit_hasher<typename Quantizer::training_vec_type> training_vec_bit_hasher;
typedef std::unordered_map < typename Quantizer::training_vec_type, weighted_block_group,
training_vec_bit_hasher> group_hash;
group_hash unique_vecs;
weighted_block_group g;
g.m_indices.resize(1);
for (uint32_t i = 0; i < q.get_training_vecs().size(); i++)
{
g.m_total_weight = q.get_training_vecs()[i].second;
g.m_indices[0] = i;
auto ins_res = unique_vecs.insert(std::make_pair(q.get_training_vecs()[i].first, g));
if (!ins_res.second)
{
(ins_res.first)->second.m_total_weight += g.m_total_weight;
(ins_res.first)->second.m_indices.push_back(i);
}
}
debug_printf("generate_hierarchical_codebook_threaded: %u training vectors, %u unique training vectors\n", q.get_total_training_vecs(), (uint32_t)unique_vecs.size());
Quantizer group_quant;
typedef typename group_hash::const_iterator group_hash_const_iter;
basisu::vector<group_hash_const_iter> unique_vec_iters;
unique_vec_iters.reserve(unique_vecs.size());
for (auto iter = unique_vecs.begin(); iter != unique_vecs.end(); ++iter)
{
group_quant.add_training_vec(iter->first, iter->second.m_total_weight);
unique_vec_iters.push_back(iter);
}
bool limit_clusterizers = true;
if (unique_vecs.size() <= max_codebook_size)
limit_clusterizers = false;
debug_printf("Limit clusterizers: %u\n", limit_clusterizers);
basisu::vector<uint_vec> group_codebook, group_parent_codebook;
bool status = generate_hierarchical_codebook_threaded_internal(group_quant,
max_codebook_size, max_parent_codebook_size,
group_codebook,
group_parent_codebook,
(unique_vecs.size() < 65536*4) ? 1 : max_threads, limit_clusterizers, pJob_pool);
if (!status)
return false;
codebook.resize(0);
for (uint32_t i = 0; i < group_codebook.size(); i++)
{
codebook.resize(codebook.size() + 1);
for (uint32_t j = 0; j < group_codebook[i].size(); j++)
{
const uint32_t group_index = group_codebook[i][j];
typename group_hash::const_iterator group_iter = unique_vec_iters[group_index];
const uint_vec& training_vec_indices = group_iter->second.m_indices;
append_vector(codebook.back(), training_vec_indices);
}
}
parent_codebook.resize(0);
for (uint32_t i = 0; i < group_parent_codebook.size(); i++)
{
parent_codebook.resize(parent_codebook.size() + 1);
for (uint32_t j = 0; j < group_parent_codebook[i].size(); j++)
{
const uint32_t group_index = group_parent_codebook[i][j];
typename group_hash::const_iterator group_iter = unique_vec_iters[group_index];
const uint_vec& training_vec_indices = group_iter->second.m_indices;
append_vector(parent_codebook.back(), training_vec_indices);
}
}
return true;
}
// Canonical Huffman coding
class histogram
{
basisu::vector<uint32_t> m_hist;
public:
histogram(uint32_t size = 0) { init(size); }
void clear()
{
clear_vector(m_hist);
}
void init(uint32_t size)
{
m_hist.resize(0);
m_hist.resize(size);
}
inline uint32_t size() const { return static_cast<uint32_t>(m_hist.size()); }
inline const uint32_t &operator[] (uint32_t index) const
{
return m_hist[index];
}
inline uint32_t &operator[] (uint32_t index)
{
return m_hist[index];
}
inline void inc(uint32_t index)
{
m_hist[index]++;
}
uint64_t get_total() const
{
uint64_t total = 0;
for (uint32_t i = 0; i < m_hist.size(); ++i)
total += m_hist[i];
return total;
}
double get_entropy() const
{
double total = static_cast<double>(get_total());
if (total == 0.0f)
return 0.0f;
const double inv_total = 1.0f / total;
const double neg_inv_log2 = -1.0f / log(2.0f);
double e = 0.0f;
for (uint32_t i = 0; i < m_hist.size(); i++)
if (m_hist[i])
e += log(m_hist[i] * inv_total) * neg_inv_log2 * static_cast<double>(m_hist[i]);
return e;
}
};
struct sym_freq
{
uint32_t m_key;
uint16_t m_sym_index;
};
sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1);
void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms);
void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size);
class huffman_encoding_table
{
public:
huffman_encoding_table()
{
}
void clear()
{
clear_vector(m_codes);
clear_vector(m_code_sizes);
}
bool init(const histogram &h, uint32_t max_code_size = cHuffmanMaxSupportedCodeSize)
{
return init(h.size(), &h[0], max_code_size);
}
bool init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size);
bool init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size);
inline const uint16_vec &get_codes() const { return m_codes; }
inline const uint8_vec &get_code_sizes() const { return m_code_sizes; }
uint32_t get_total_used_codes() const
{
for (int i = static_cast<int>(m_code_sizes.size()) - 1; i >= 0; i--)
if (m_code_sizes[i])
return i + 1;
return 0;
}
private:
uint16_vec m_codes;
uint8_vec m_code_sizes;
};
class bitwise_coder
{
public:
bitwise_coder() :
m_bit_buffer(0),
m_bit_buffer_size(0),
m_total_bits(0)
{
}
inline void clear()
{
clear_vector(m_bytes);
m_bit_buffer = 0;
m_bit_buffer_size = 0;
m_total_bits = 0;
}
inline const uint8_vec &get_bytes() const { return m_bytes; }
inline uint64_t get_total_bits() const { return m_total_bits; }
inline void clear_total_bits() { m_total_bits = 0; }
inline void init(uint32_t reserve_size = 1024)
{
m_bytes.reserve(reserve_size);
m_bytes.resize(0);
m_bit_buffer = 0;
m_bit_buffer_size = 0;
m_total_bits = 0;
}
inline uint32_t flush()
{
if (m_bit_buffer_size)
{
m_total_bits += 8 - (m_bit_buffer_size & 7);
append_byte(static_cast<uint8_t>(m_bit_buffer));
m_bit_buffer = 0;
m_bit_buffer_size = 0;
return 8;
}
return 0;
}
inline uint32_t put_bits(uint32_t bits, uint32_t num_bits)
{
assert(num_bits <= 32);
assert(bits < (1ULL << num_bits));
if (!num_bits)
return 0;
m_total_bits += num_bits;
uint64_t v = (static_cast<uint64_t>(bits) << m_bit_buffer_size) | m_bit_buffer;
m_bit_buffer_size += num_bits;
while (m_bit_buffer_size >= 8)
{
append_byte(static_cast<uint8_t>(v));
v >>= 8;
m_bit_buffer_size -= 8;
}
m_bit_buffer = static_cast<uint8_t>(v);
return num_bits;
}
inline uint32_t put_code(uint32_t sym, const huffman_encoding_table &tab)
{
uint32_t code = tab.get_codes()[sym];
uint32_t code_size = tab.get_code_sizes()[sym];
assert(code_size >= 1);
put_bits(code, code_size);
return code_size;
}
inline uint32_t put_truncated_binary(uint32_t v, uint32_t n)
{
assert((n >= 2) && (v < n));
uint32_t k = floor_log2i(n);
uint32_t u = (1 << (k + 1)) - n;
if (v < u)
return put_bits(v, k);
uint32_t x = v + u;
assert((x >> 1) >= u);
put_bits(x >> 1, k);
put_bits(x & 1, 1);
return k + 1;
}
inline uint32_t put_rice(uint32_t v, uint32_t m)
{
assert(m);
const uint64_t start_bits = m_total_bits;
uint32_t q = v >> m, r = v & ((1 << m) - 1);
// rice coding sanity check
assert(q <= 64);
for (; q > 16; q -= 16)
put_bits(0xFFFF, 16);
put_bits((1 << q) - 1, q);
put_bits(r << 1, m + 1);
return (uint32_t)(m_total_bits - start_bits);
}
inline uint32_t put_vlc(uint32_t v, uint32_t chunk_bits)
{
assert(chunk_bits);
const uint32_t chunk_size = 1 << chunk_bits;
const uint32_t chunk_mask = chunk_size - 1;
uint32_t total_bits = 0;
for ( ; ; )
{
uint32_t next_v = v >> chunk_bits;
total_bits += put_bits((v & chunk_mask) | (next_v ? chunk_size : 0), chunk_bits + 1);
if (!next_v)
break;
v = next_v;
}
return total_bits;
}
uint32_t emit_huffman_table(const huffman_encoding_table &tab);
private:
uint8_vec m_bytes;
uint32_t m_bit_buffer, m_bit_buffer_size;
uint64_t m_total_bits;
void append_byte(uint8_t c)
{
m_bytes.resize(m_bytes.size() + 1);
m_bytes.back() = c;
}
static void end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len);
static void end_zero_run(uint16_vec &syms, uint32_t &run_size);
};
class huff2D
{
public:
huff2D() { }
huff2D(uint32_t bits_per_sym, uint32_t total_syms_per_group) { init(bits_per_sym, total_syms_per_group); }
inline const histogram &get_histogram() const { return m_histogram; }
inline const huffman_encoding_table &get_encoding_table() const { return m_encoding_table; }
inline void init(uint32_t bits_per_sym, uint32_t total_syms_per_group)
{
assert((bits_per_sym * total_syms_per_group) <= 16 && total_syms_per_group >= 1 && bits_per_sym >= 1);
m_bits_per_sym = bits_per_sym;
m_total_syms_per_group = total_syms_per_group;
m_cur_sym_bits = 0;
m_cur_num_syms = 0;
m_decode_syms_remaining = 0;
m_next_decoder_group_index = 0;
m_histogram.init(1 << (bits_per_sym * total_syms_per_group));
}
inline void clear()
{
m_group_bits.clear();
m_cur_sym_bits = 0;
m_cur_num_syms = 0;
m_decode_syms_remaining = 0;
m_next_decoder_group_index = 0;
}
inline void emit(uint32_t sym)
{
m_cur_sym_bits |= (sym << (m_cur_num_syms * m_bits_per_sym));
m_cur_num_syms++;
if (m_cur_num_syms == m_total_syms_per_group)
flush();
}
inline void flush()
{
if (m_cur_num_syms)
{
m_group_bits.push_back(m_cur_sym_bits);
m_histogram.inc(m_cur_sym_bits);
m_cur_sym_bits = 0;
m_cur_num_syms = 0;
}
}
inline bool start_encoding(uint32_t code_size_limit = 16)
{
flush();
if (!m_encoding_table.init(m_histogram, code_size_limit))
return false;
m_decode_syms_remaining = 0;
m_next_decoder_group_index = 0;
return true;
}
inline uint32_t emit_next_sym(bitwise_coder &c)
{
uint32_t bits = 0;
if (!m_decode_syms_remaining)
{
bits = c.put_code(m_group_bits[m_next_decoder_group_index++], m_encoding_table);
m_decode_syms_remaining = m_total_syms_per_group;
}
m_decode_syms_remaining--;
return bits;
}
inline void emit_flush()
{
m_decode_syms_remaining = 0;
}
private:
uint_vec m_group_bits;
huffman_encoding_table m_encoding_table;
histogram m_histogram;
uint32_t m_bits_per_sym, m_total_syms_per_group, m_cur_sym_bits, m_cur_num_syms, m_next_decoder_group_index, m_decode_syms_remaining;
};
bool huffman_test(int rand_seed);
// VQ index reordering
class palette_index_reorderer
{
public:
palette_index_reorderer()
{
}
void clear()
{
clear_vector(m_hist);
clear_vector(m_total_count_to_picked);
clear_vector(m_entries_picked);
clear_vector(m_entries_to_do);
clear_vector(m_remap_table);
}
// returns [0,1] distance of entry i to entry j
typedef float(*pEntry_dist_func)(uint32_t i, uint32_t j, void *pCtx);
void init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight);
// Table remaps old to new symbol indices
inline const uint_vec &get_remap_table() const { return m_remap_table; }
private:
uint_vec m_hist, m_total_count_to_picked, m_entries_picked, m_entries_to_do, m_remap_table;
inline uint32_t get_hist(int i, int j, int n) const { return (i > j) ? m_hist[j * n + i] : m_hist[i * n + j]; }
inline void inc_hist(int i, int j, int n) { if ((i != j) && (i < j) && (i != -1) && (j != -1)) { assert(((uint32_t)i < (uint32_t)n) && ((uint32_t)j < (uint32_t)n)); m_hist[i * n + j]++; } }
void prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices);
void find_initial(uint32_t num_syms);
void find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight);
float pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight);
};
// Simple 32-bit 2D image class
class image
{
public:
image() :
m_width(0), m_height(0), m_pitch(0)
{
}
image(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX) :
m_width(0), m_height(0), m_pitch(0)
{
resize(w, h, p);
}
image(const uint8_t *pImage, uint32_t width, uint32_t height, uint32_t comps) :
m_width(0), m_height(0), m_pitch(0)
{
init(pImage, width, height, comps);
}
image(const image &other) :
m_width(0), m_height(0), m_pitch(0)
{
*this = other;
}
image &swap(image &other)
{
std::swap(m_width, other.m_width);
std::swap(m_height, other.m_height);
std::swap(m_pitch, other.m_pitch);
m_pixels.swap(other.m_pixels);
return *this;
}
image &operator= (const image &rhs)
{
if (this != &rhs)
{
m_width = rhs.m_width;
m_height = rhs.m_height;
m_pitch = rhs.m_pitch;
m_pixels = rhs.m_pixels;
}
return *this;
}
image &clear()
{
m_width = 0;
m_height = 0;
m_pitch = 0;
clear_vector(m_pixels);
return *this;
}
image &resize(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX, const color_rgba& background = g_black_color)
{
return crop(w, h, p, background);
}
image &set_all(const color_rgba &c)
{
for (uint32_t i = 0; i < m_pixels.size(); i++)
m_pixels[i] = c;
return *this;
}
void init(const uint8_t *pImage, uint32_t width, uint32_t height, uint32_t comps)
{
assert(comps >= 1 && comps <= 4);
resize(width, height);
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
const uint8_t *pSrc = &pImage[(x + y * width) * comps];
color_rgba &dst = (*this)(x, y);
if (comps == 1)
{
dst.r = pSrc[0];
dst.g = pSrc[0];
dst.b = pSrc[0];
dst.a = 255;
}
else if (comps == 2)
{
dst.r = pSrc[0];
dst.g = pSrc[0];
dst.b = pSrc[0];
dst.a = pSrc[1];
}
else
{
dst.r = pSrc[0];
dst.g = pSrc[1];
dst.b = pSrc[2];
if (comps == 4)
dst.a = pSrc[3];
else
dst.a = 255;
}
}
}
}
image &fill_box(uint32_t x, uint32_t y, uint32_t w, uint32_t h, const color_rgba &c)
{
for (uint32_t iy = 0; iy < h; iy++)
for (uint32_t ix = 0; ix < w; ix++)
set_clipped(x + ix, y + iy, c);
return *this;
}
image& fill_box_alpha(uint32_t x, uint32_t y, uint32_t w, uint32_t h, const color_rgba& c)
{
for (uint32_t iy = 0; iy < h; iy++)
for (uint32_t ix = 0; ix < w; ix++)
set_clipped_alpha(x + ix, y + iy, c);
return *this;
}
image &crop_dup_borders(uint32_t w, uint32_t h)
{
const uint32_t orig_w = m_width, orig_h = m_height;
crop(w, h);
if (orig_w && orig_h)
{
if (m_width > orig_w)
{
for (uint32_t x = orig_w; x < m_width; x++)
for (uint32_t y = 0; y < m_height; y++)
set_clipped(x, y, get_clamped(minimum(x, orig_w - 1U), minimum(y, orig_h - 1U)));
}
if (m_height > orig_h)
{
for (uint32_t y = orig_h; y < m_height; y++)
for (uint32_t x = 0; x < m_width; x++)
set_clipped(x, y, get_clamped(minimum(x, orig_w - 1U), minimum(y, orig_h - 1U)));
}
}
return *this;
}
image &crop(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX, const color_rgba &background = g_black_color)
{
if (p == UINT32_MAX)
p = w;
if ((w == m_width) && (m_height == h) && (m_pitch == p))
return *this;
if ((!w) || (!h) || (!p))
{
clear();
return *this;
}
color_rgba_vec cur_state;
cur_state.swap(m_pixels);
m_pixels.resize(p * h);
for (uint32_t y = 0; y < h; y++)
{
for (uint32_t x = 0; x < w; x++)
{
if ((x < m_width) && (y < m_height))
m_pixels[x + y * p] = cur_state[x + y * m_pitch];
else
m_pixels[x + y * p] = background;
}
}
m_width = w;
m_height = h;
m_pitch = p;
return *this;
}
inline const color_rgba &operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_pixels[x + y * m_pitch]; }
inline color_rgba &operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_pixels[x + y * m_pitch]; }
inline const color_rgba &get_clamped(int x, int y) const { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
inline color_rgba &get_clamped(int x, int y) { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
inline const color_rgba &get_clamped_or_wrapped(int x, int y, bool wrap_u, bool wrap_v) const
{
x = wrap_u ? posmod(x, m_width) : clamp<int>(x, 0, m_width - 1);
y = wrap_v ? posmod(y, m_height) : clamp<int>(y, 0, m_height - 1);
return m_pixels[x + y * m_pitch];
}
inline color_rgba &get_clamped_or_wrapped(int x, int y, bool wrap_u, bool wrap_v)
{
x = wrap_u ? posmod(x, m_width) : clamp<int>(x, 0, m_width - 1);
y = wrap_v ? posmod(y, m_height) : clamp<int>(y, 0, m_height - 1);
return m_pixels[x + y * m_pitch];
}
inline image &set_clipped(int x, int y, const color_rgba &c)
{
if ((static_cast<uint32_t>(x) < m_width) && (static_cast<uint32_t>(y) < m_height))
(*this)(x, y) = c;
return *this;
}
inline image& set_clipped_alpha(int x, int y, const color_rgba& c)
{
if ((static_cast<uint32_t>(x) < m_width) && (static_cast<uint32_t>(y) < m_height))
(*this)(x, y).m_comps[3] = c.m_comps[3];
return *this;
}
// Very straightforward blit with full clipping. Not fast, but it works.
image &blit(const image &src, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y)
{
for (int y = 0; y < src_h; y++)
{
const int sy = src_y + y;
if (sy < 0)
continue;
else if (sy >= (int)src.get_height())
break;
for (int x = 0; x < src_w; x++)
{
const int sx = src_x + x;
if (sx < 0)
continue;
else if (sx >= (int)src.get_height())
break;
set_clipped(dst_x + x, dst_y + y, src(sx, sy));
}
}
return *this;
}
const image &extract_block_clamped(color_rgba *pDst, uint32_t src_x, uint32_t src_y, uint32_t w, uint32_t h) const
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
*pDst++ = get_clamped(src_x + x, src_y + y);
return *this;
}
image &set_block_clipped(const color_rgba *pSrc, uint32_t dst_x, uint32_t dst_y, uint32_t w, uint32_t h)
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
set_clipped(dst_x + x, dst_y + y, *pSrc++);
return *this;
}
inline uint32_t get_width() const { return m_width; }
inline uint32_t get_height() const { return m_height; }
inline uint32_t get_pitch() const { return m_pitch; }
inline uint32_t get_total_pixels() const { return m_width * m_height; }
inline uint32_t get_block_width(uint32_t w) const { return (m_width + (w - 1)) / w; }
inline uint32_t get_block_height(uint32_t h) const { return (m_height + (h - 1)) / h; }
inline uint32_t get_total_blocks(uint32_t w, uint32_t h) const { return get_block_width(w) * get_block_height(h); }
inline const color_rgba_vec &get_pixels() const { return m_pixels; }
inline color_rgba_vec &get_pixels() { return m_pixels; }
inline const color_rgba *get_ptr() const { return &m_pixels[0]; }
inline color_rgba *get_ptr() { return &m_pixels[0]; }
bool has_alpha() const
{
for (uint32_t y = 0; y < m_height; ++y)
for (uint32_t x = 0; x < m_width; ++x)
if ((*this)(x, y).a < 255)
return true;
return false;
}
image &set_alpha(uint8_t a)
{
for (uint32_t y = 0; y < m_height; ++y)
for (uint32_t x = 0; x < m_width; ++x)
(*this)(x, y).a = a;
return *this;
}
image &flip_y()
{
for (uint32_t y = 0; y < m_height / 2; ++y)
for (uint32_t x = 0; x < m_width; ++x)
std::swap((*this)(x, y), (*this)(x, m_height - 1 - y));
return *this;
}
// TODO: There are many ways to do this, not sure this is the best way.
image &renormalize_normal_map()
{
for (uint32_t y = 0; y < m_height; y++)
{
for (uint32_t x = 0; x < m_width; x++)
{
color_rgba &c = (*this)(x, y);
if ((c.r == 128) && (c.g == 128) && (c.b == 128))
continue;
vec3F v(c.r, c.g, c.b);
v = (v * (2.0f / 255.0f)) - vec3F(1.0f);
v.clamp(-1.0f, 1.0f);
float length = v.length();
const float cValidThresh = .077f;
if (length < cValidThresh)
{
c.set(128, 128, 128, c.a);
}
else if (fabs(length - 1.0f) > cValidThresh)
{
if (length)
v /= length;
for (uint32_t i = 0; i < 3; i++)
c[i] = static_cast<uint8_t>(clamp<float>(floor((v[i] + 1.0f) * 255.0f * .5f + .5f), 0.0f, 255.0f));
if ((c.g == 128) && (c.r == 128))
{
if (c.b < 128)
c.b = 0;
else
c.b = 255;
}
}
}
}
return *this;
}
void debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t x_scale, uint32_t y_scale, const color_rgba &fg, const color_rgba *pBG, bool alpha_only, const char* p, ...);
private:
uint32_t m_width, m_height, m_pitch; // all in pixels
color_rgba_vec m_pixels;
};
// Float images
typedef basisu::vector<vec4F> vec4F_vec;
class imagef
{
public:
imagef() :
m_width(0), m_height(0), m_pitch(0)
{
}
imagef(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX) :
m_width(0), m_height(0), m_pitch(0)
{
resize(w, h, p);
}
imagef(const imagef &other) :
m_width(0), m_height(0), m_pitch(0)
{
*this = other;
}
imagef &swap(imagef &other)
{
std::swap(m_width, other.m_width);
std::swap(m_height, other.m_height);
std::swap(m_pitch, other.m_pitch);
m_pixels.swap(other.m_pixels);
return *this;
}
imagef &operator= (const imagef &rhs)
{
if (this != &rhs)
{
m_width = rhs.m_width;
m_height = rhs.m_height;
m_pitch = rhs.m_pitch;
m_pixels = rhs.m_pixels;
}
return *this;
}
imagef &clear()
{
m_width = 0;
m_height = 0;
m_pitch = 0;
clear_vector(m_pixels);
return *this;
}
imagef &set(const image &src, const vec4F &scale = vec4F(1), const vec4F &bias = vec4F(0))
{
const uint32_t width = src.get_width();
const uint32_t height = src.get_height();
resize(width, height);
for (int y = 0; y < (int)height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
const color_rgba &src_pixel = src(x, y);
(*this)(x, y).set((float)src_pixel.r * scale[0] + bias[0], (float)src_pixel.g * scale[1] + bias[1], (float)src_pixel.b * scale[2] + bias[2], (float)src_pixel.a * scale[3] + bias[3]);
}
}
return *this;
}
imagef &resize(const imagef &other, uint32_t p = UINT32_MAX, const vec4F& background = vec4F(0,0,0,1))
{
return resize(other.get_width(), other.get_height(), p, background);
}
imagef &resize(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX, const vec4F& background = vec4F(0,0,0,1))
{
return crop(w, h, p, background);
}
imagef &set_all(const vec4F &c)
{
for (uint32_t i = 0; i < m_pixels.size(); i++)
m_pixels[i] = c;
return *this;
}
imagef &fill_box(uint32_t x, uint32_t y, uint32_t w, uint32_t h, const vec4F &c)
{
for (uint32_t iy = 0; iy < h; iy++)
for (uint32_t ix = 0; ix < w; ix++)
set_clipped(x + ix, y + iy, c);
return *this;
}
imagef &crop(uint32_t w, uint32_t h, uint32_t p = UINT32_MAX, const vec4F &background = vec4F(0,0,0,1))
{
if (p == UINT32_MAX)
p = w;
if ((w == m_width) && (m_height == h) && (m_pitch == p))
return *this;
if ((!w) || (!h) || (!p))
{
clear();
return *this;
}
vec4F_vec cur_state;
cur_state.swap(m_pixels);
m_pixels.resize(p * h);
for (uint32_t y = 0; y < h; y++)
{
for (uint32_t x = 0; x < w; x++)
{
if ((x < m_width) && (y < m_height))
m_pixels[x + y * p] = cur_state[x + y * m_pitch];
else
m_pixels[x + y * p] = background;
}
}
m_width = w;
m_height = h;
m_pitch = p;
return *this;
}
inline const vec4F &operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_pixels[x + y * m_pitch]; }
inline vec4F &operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_pixels[x + y * m_pitch]; }
inline const vec4F &get_clamped(int x, int y) const { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
inline vec4F &get_clamped(int x, int y) { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
inline const vec4F &get_clamped_or_wrapped(int x, int y, bool wrap_u, bool wrap_v) const
{
x = wrap_u ? posmod(x, m_width) : clamp<int>(x, 0, m_width - 1);
y = wrap_v ? posmod(y, m_height) : clamp<int>(y, 0, m_height - 1);
return m_pixels[x + y * m_pitch];
}
inline vec4F &get_clamped_or_wrapped(int x, int y, bool wrap_u, bool wrap_v)
{
x = wrap_u ? posmod(x, m_width) : clamp<int>(x, 0, m_width - 1);
y = wrap_v ? posmod(y, m_height) : clamp<int>(y, 0, m_height - 1);
return m_pixels[x + y * m_pitch];
}
inline imagef &set_clipped(int x, int y, const vec4F &c)
{
if ((static_cast<uint32_t>(x) < m_width) && (static_cast<uint32_t>(y) < m_height))
(*this)(x, y) = c;
return *this;
}
// Very straightforward blit with full clipping. Not fast, but it works.
imagef &blit(const imagef &src, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y)
{
for (int y = 0; y < src_h; y++)
{
const int sy = src_y + y;
if (sy < 0)
continue;
else if (sy >= (int)src.get_height())
break;
for (int x = 0; x < src_w; x++)
{
const int sx = src_x + x;
if (sx < 0)
continue;
else if (sx >= (int)src.get_height())
break;
set_clipped(dst_x + x, dst_y + y, src(sx, sy));
}
}
return *this;
}
const imagef &extract_block_clamped(vec4F *pDst, uint32_t src_x, uint32_t src_y, uint32_t w, uint32_t h) const
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
*pDst++ = get_clamped(src_x + x, src_y + y);
return *this;
}
imagef &set_block_clipped(const vec4F *pSrc, uint32_t dst_x, uint32_t dst_y, uint32_t w, uint32_t h)
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
set_clipped(dst_x + x, dst_y + y, *pSrc++);
return *this;
}
inline uint32_t get_width() const { return m_width; }
inline uint32_t get_height() const { return m_height; }
inline uint32_t get_pitch() const { return m_pitch; }
inline uint32_t get_total_pixels() const { return m_width * m_height; }
inline uint32_t get_block_width(uint32_t w) const { return (m_width + (w - 1)) / w; }
inline uint32_t get_block_height(uint32_t h) const { return (m_height + (h - 1)) / h; }
inline uint32_t get_total_blocks(uint32_t w, uint32_t h) const { return get_block_width(w) * get_block_height(h); }
inline const vec4F_vec &get_pixels() const { return m_pixels; }
inline vec4F_vec &get_pixels() { return m_pixels; }
inline const vec4F *get_ptr() const { return &m_pixels[0]; }
inline vec4F *get_ptr() { return &m_pixels[0]; }
private:
uint32_t m_width, m_height, m_pitch; // all in pixels
vec4F_vec m_pixels;
};
// Image metrics
class image_metrics
{
public:
// TODO: Add ssim
float m_max, m_mean, m_mean_squared, m_rms, m_psnr, m_ssim;
image_metrics()
{
clear();
}
void clear()
{
m_max = 0;
m_mean = 0;
m_mean_squared = 0;
m_rms = 0;
m_psnr = 0;
m_ssim = 0;
}
void print(const char *pPrefix = nullptr) { printf("%sMax: %3.0f Mean: %3.3f RMS: %3.3f PSNR: %2.3f dB\n", pPrefix ? pPrefix : "", m_max, m_mean, m_rms, m_psnr); }
void calc(const image &a, const image &b, uint32_t first_chan = 0, uint32_t total_chans = 0, bool avg_comp_error = true, bool use_601_luma = false);
};
// Image saving/loading/resampling
bool load_png(const uint8_t* pBuf, size_t buf_size, image& img, const char* pFilename = nullptr);
bool load_png(const char* pFilename, image& img);
inline bool load_png(const std::string &filename, image &img) { return load_png(filename.c_str(), img); }
bool load_bmp(const char* pFilename, image& img);
inline bool load_bmp(const std::string &filename, image &img) { return load_bmp(filename.c_str(), img); }
bool load_tga(const char* pFilename, image& img);
inline bool load_tga(const std::string &filename, image &img) { return load_tga(filename.c_str(), img); }
bool load_jpg(const char *pFilename, image& img);
inline bool load_jpg(const std::string &filename, image &img) { return load_jpg(filename.c_str(), img); }
// Currently loads .BMP, .PNG, or .TGA.
bool load_image(const char* pFilename, image& img);
inline bool load_image(const std::string &filename, image &img) { return load_image(filename.c_str(), img); }
uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans);
uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans);
enum
{
cImageSaveGrayscale = 1,
cImageSaveIgnoreAlpha = 2
};
bool save_png(const char* pFilename, const image& img, uint32_t image_save_flags = 0, uint32_t grayscale_comp = 0);
inline bool save_png(const std::string &filename, const image &img, uint32_t image_save_flags = 0, uint32_t grayscale_comp = 0) { return save_png(filename.c_str(), img, image_save_flags, grayscale_comp); }
bool read_file_to_vec(const char* pFilename, uint8_vec& data);
bool write_data_to_file(const char* pFilename, const void* pData, size_t len);
inline bool write_vec_to_file(const char* pFilename, const uint8_vec& v) { return v.size() ? write_data_to_file(pFilename, &v[0], v.size()) : write_data_to_file(pFilename, "", 0); }
float linear_to_srgb(float l);
float srgb_to_linear(float s);
bool image_resample(const image &src, image &dst, bool srgb = false,
const char *pFilter = "lanczos4", float filter_scale = 1.0f,
bool wrapping = false,
uint32_t first_comp = 0, uint32_t num_comps = 4);
// Timing
typedef uint64_t timer_ticks;
class interval_timer
{
public:
interval_timer();
void start();
void stop();
double get_elapsed_secs() const;
inline double get_elapsed_ms() const { return 1000.0f* get_elapsed_secs(); }
static void init();
static inline timer_ticks get_ticks_per_sec() { return g_freq; }
static timer_ticks get_ticks();
static double ticks_to_secs(timer_ticks ticks);
static inline double ticks_to_ms(timer_ticks ticks) { return ticks_to_secs(ticks) * 1000.0f; }
private:
static timer_ticks g_init_ticks, g_freq;
static double g_timer_freq;
timer_ticks m_start_time, m_stop_time;
bool m_started, m_stopped;
};
// 2D array
template<typename T>
class vector2D
{
typedef basisu::vector<T> TVec;
uint32_t m_width, m_height;
TVec m_values;
public:
vector2D() :
m_width(0),
m_height(0)
{
}
vector2D(uint32_t w, uint32_t h) :
m_width(0),
m_height(0)
{
resize(w, h);
}
vector2D(const vector2D &other)
{
*this = other;
}
vector2D &operator= (const vector2D &other)
{
if (this != &other)
{
m_width = other.m_width;
m_height = other.m_height;
m_values = other.m_values;
}
return *this;
}
inline bool operator== (const vector2D &rhs) const
{
return (m_width == rhs.m_width) && (m_height == rhs.m_height) && (m_values == rhs.m_values);
}
inline uint32_t size_in_bytes() const { return (uint32_t)m_values.size() * sizeof(m_values[0]); }
inline const T &operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
inline T &operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
inline const T &operator[] (uint32_t i) const { return m_values[i]; }
inline T &operator[] (uint32_t i) { return m_values[i]; }
inline const T &at_clamped(int x, int y) const { return (*this)(clamp<int>(x, 0, m_width), clamp<int>(y, 0, m_height)); }
inline T &at_clamped(int x, int y) { return (*this)(clamp<int>(x, 0, m_width), clamp<int>(y, 0, m_height)); }
void clear()
{
m_width = 0;
m_height = 0;
m_values.clear();
}
void set_all(const T&val)
{
vector_set_all(m_values, val);
}
inline const T* get_ptr() const { return &m_values[0]; }
inline T* get_ptr() { return &m_values[0]; }
vector2D &resize(uint32_t new_width, uint32_t new_height)
{
if ((m_width == new_width) && (m_height == new_height))
return *this;
TVec oldVals(new_width * new_height);
oldVals.swap(m_values);
const uint32_t w = minimum(m_width, new_width);
const uint32_t h = minimum(m_height, new_height);
if ((w) && (h))
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
m_values[x + y * new_width] = oldVals[x + y * m_width];
}
m_width = new_width;
m_height = new_height;
return *this;
}
};
inline FILE *fopen_safe(const char *pFilename, const char *pMode)
{
#ifdef _WIN32
FILE *pFile = nullptr;
fopen_s(&pFile, pFilename, pMode);
return pFile;
#else
return fopen(pFilename, pMode);
#endif
}
void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed = 1);
} // namespace basisu