virtualx-engine/thirdparty/bullet/Bullet3OpenCL/RigidBody/b3GpuPgsContactSolver.cpp

1530 lines
49 KiB
C++
Raw Normal View History

bool gUseLargeBatches = false;
bool gCpuBatchContacts = false;
bool gCpuSolveConstraint = false;
bool gCpuRadixSort = false;
bool gCpuSetSortData = false;
bool gCpuSortContactsDeterminism = false;
bool gUseCpuCopyConstraints = false;
bool gUseScanHost = false;
bool gReorderContactsOnCpu = false;
bool optionalSortContactsDeterminism = true;
#include "b3GpuPgsContactSolver.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3BoundSearchCL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3PrefixScanCL.h"
#include <string.h>
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Config.h"
#include "b3Solver.h"
#define B3_SOLVER_SETUP_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup.cl"
#define B3_SOLVER_SETUP2_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup2.cl"
#define B3_SOLVER_CONTACT_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveContact.cl"
#define B3_SOLVER_FRICTION_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveFriction.cl"
#define B3_BATCHING_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernels.cl"
#define B3_BATCHING_NEW_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernelsNew.cl"
#include "kernels/solverSetup.h"
#include "kernels/solverSetup2.h"
#include "kernels/solveContact.h"
#include "kernels/solveFriction.h"
#include "kernels/batchingKernels.h"
#include "kernels/batchingKernelsNew.h"
struct b3GpuBatchingPgsSolverInternalData
{
cl_context m_context;
cl_device_id m_device;
cl_command_queue m_queue;
int m_pairCapacity;
int m_nIterations;
b3OpenCLArray<b3GpuConstraint4>* m_contactCGPU;
b3OpenCLArray<unsigned int>* m_numConstraints;
b3OpenCLArray<unsigned int>* m_offsets;
b3Solver* m_solverGPU;
cl_kernel m_batchingKernel;
cl_kernel m_batchingKernelNew;
cl_kernel m_solveContactKernel;
cl_kernel m_solveSingleContactKernel;
cl_kernel m_solveSingleFrictionKernel;
cl_kernel m_solveFrictionKernel;
cl_kernel m_contactToConstraintKernel;
cl_kernel m_setSortDataKernel;
cl_kernel m_reorderContactKernel;
cl_kernel m_copyConstraintKernel;
cl_kernel m_setDeterminismSortDataBodyAKernel;
cl_kernel m_setDeterminismSortDataBodyBKernel;
cl_kernel m_setDeterminismSortDataChildShapeAKernel;
cl_kernel m_setDeterminismSortDataChildShapeBKernel;
class b3RadixSort32CL* m_sort32;
class b3BoundSearchCL* m_search;
class b3PrefixScanCL* m_scan;
b3OpenCLArray<b3SortData>* m_sortDataBuffer;
b3OpenCLArray<b3Contact4>* m_contactBuffer;
b3OpenCLArray<b3RigidBodyData>* m_bodyBufferGPU;
b3OpenCLArray<b3InertiaData>* m_inertiaBufferGPU;
b3OpenCLArray<b3Contact4>* m_pBufContactOutGPU;
b3OpenCLArray<b3Contact4>* m_pBufContactOutGPUCopy;
b3OpenCLArray<b3SortData>* m_contactKeyValues;
b3AlignedObjectArray<unsigned int> m_idxBuffer;
b3AlignedObjectArray<b3SortData> m_sortData;
b3AlignedObjectArray<b3Contact4> m_old;
b3AlignedObjectArray<int> m_batchSizes;
b3OpenCLArray<int>* m_batchSizesGpu;
};
b3GpuPgsContactSolver::b3GpuPgsContactSolver(cl_context ctx, cl_device_id device, cl_command_queue q, int pairCapacity)
{
m_debugOutput = 0;
m_data = new b3GpuBatchingPgsSolverInternalData;
m_data->m_context = ctx;
m_data->m_device = device;
m_data->m_queue = q;
m_data->m_pairCapacity = pairCapacity;
m_data->m_nIterations = 4;
m_data->m_batchSizesGpu = new b3OpenCLArray<int>(ctx, q);
m_data->m_bodyBufferGPU = new b3OpenCLArray<b3RigidBodyData>(ctx, q);
m_data->m_inertiaBufferGPU = new b3OpenCLArray<b3InertiaData>(ctx, q);
m_data->m_pBufContactOutGPU = new b3OpenCLArray<b3Contact4>(ctx, q);
m_data->m_pBufContactOutGPUCopy = new b3OpenCLArray<b3Contact4>(ctx, q);
m_data->m_contactKeyValues = new b3OpenCLArray<b3SortData>(ctx, q);
m_data->m_solverGPU = new b3Solver(ctx, device, q, 512 * 1024);
m_data->m_sort32 = new b3RadixSort32CL(ctx, device, m_data->m_queue);
m_data->m_scan = new b3PrefixScanCL(ctx, device, m_data->m_queue, B3_SOLVER_N_CELLS);
m_data->m_search = new b3BoundSearchCL(ctx, device, m_data->m_queue, B3_SOLVER_N_CELLS);
const int sortSize = B3NEXTMULTIPLEOF(pairCapacity, 512);
m_data->m_sortDataBuffer = new b3OpenCLArray<b3SortData>(ctx, m_data->m_queue, sortSize);
m_data->m_contactBuffer = new b3OpenCLArray<b3Contact4>(ctx, m_data->m_queue);
m_data->m_numConstraints = new b3OpenCLArray<unsigned int>(ctx, m_data->m_queue, B3_SOLVER_N_CELLS);
m_data->m_numConstraints->resize(B3_SOLVER_N_CELLS);
m_data->m_contactCGPU = new b3OpenCLArray<b3GpuConstraint4>(ctx, q, pairCapacity);
m_data->m_offsets = new b3OpenCLArray<unsigned int>(ctx, m_data->m_queue, B3_SOLVER_N_CELLS);
m_data->m_offsets->resize(B3_SOLVER_N_CELLS);
const char* additionalMacros = "";
//const char* srcFileNameForCaching="";
cl_int pErrNum;
const char* batchKernelSource = batchingKernelsCL;
const char* batchKernelNewSource = batchingKernelsNewCL;
const char* solverSetupSource = solverSetupCL;
const char* solverSetup2Source = solverSetup2CL;
const char* solveContactSource = solveContactCL;
const char* solveFrictionSource = solveFrictionCL;
{
cl_program solveContactProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, solveContactSource, &pErrNum, additionalMacros, B3_SOLVER_CONTACT_KERNEL_PATH);
b3Assert(solveContactProg);
cl_program solveFrictionProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, solveFrictionSource, &pErrNum, additionalMacros, B3_SOLVER_FRICTION_KERNEL_PATH);
b3Assert(solveFrictionProg);
cl_program solverSetup2Prog = b3OpenCLUtils::compileCLProgramFromString(ctx, device, solverSetup2Source, &pErrNum, additionalMacros, B3_SOLVER_SETUP2_KERNEL_PATH);
b3Assert(solverSetup2Prog);
cl_program solverSetupProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, solverSetupSource, &pErrNum, additionalMacros, B3_SOLVER_SETUP_KERNEL_PATH);
b3Assert(solverSetupProg);
m_data->m_solveFrictionKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solveFrictionSource, "BatchSolveKernelFriction", &pErrNum, solveFrictionProg, additionalMacros);
b3Assert(m_data->m_solveFrictionKernel);
m_data->m_solveContactKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solveContactSource, "BatchSolveKernelContact", &pErrNum, solveContactProg, additionalMacros);
b3Assert(m_data->m_solveContactKernel);
m_data->m_solveSingleContactKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solveContactSource, "solveSingleContactKernel", &pErrNum, solveContactProg, additionalMacros);
b3Assert(m_data->m_solveSingleContactKernel);
m_data->m_solveSingleFrictionKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solveFrictionSource, "solveSingleFrictionKernel", &pErrNum, solveFrictionProg, additionalMacros);
b3Assert(m_data->m_solveSingleFrictionKernel);
m_data->m_contactToConstraintKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetupSource, "ContactToConstraintKernel", &pErrNum, solverSetupProg, additionalMacros);
b3Assert(m_data->m_contactToConstraintKernel);
m_data->m_setSortDataKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "SetSortDataKernel", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_setSortDataKernel);
m_data->m_setDeterminismSortDataBodyAKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "SetDeterminismSortDataBodyA", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_setDeterminismSortDataBodyAKernel);
m_data->m_setDeterminismSortDataBodyBKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "SetDeterminismSortDataBodyB", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_setDeterminismSortDataBodyBKernel);
m_data->m_setDeterminismSortDataChildShapeAKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "SetDeterminismSortDataChildShapeA", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_setDeterminismSortDataChildShapeAKernel);
m_data->m_setDeterminismSortDataChildShapeBKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "SetDeterminismSortDataChildShapeB", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_setDeterminismSortDataChildShapeBKernel);
m_data->m_reorderContactKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "ReorderContactKernel", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_reorderContactKernel);
m_data->m_copyConstraintKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverSetup2Source, "CopyConstraintKernel", &pErrNum, solverSetup2Prog, additionalMacros);
b3Assert(m_data->m_copyConstraintKernel);
}
{
cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, batchKernelSource, &pErrNum, additionalMacros, B3_BATCHING_PATH);
b3Assert(batchingProg);
m_data->m_batchingKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, batchKernelSource, "CreateBatches", &pErrNum, batchingProg, additionalMacros);
b3Assert(m_data->m_batchingKernel);
}
{
cl_program batchingNewProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, batchKernelNewSource, &pErrNum, additionalMacros, B3_BATCHING_NEW_PATH);
b3Assert(batchingNewProg);
m_data->m_batchingKernelNew = b3OpenCLUtils::compileCLKernelFromString(ctx, device, batchKernelNewSource, "CreateBatchesNew", &pErrNum, batchingNewProg, additionalMacros);
b3Assert(m_data->m_batchingKernelNew);
}
}
b3GpuPgsContactSolver::~b3GpuPgsContactSolver()
{
delete m_data->m_batchSizesGpu;
delete m_data->m_bodyBufferGPU;
delete m_data->m_inertiaBufferGPU;
delete m_data->m_pBufContactOutGPU;
delete m_data->m_pBufContactOutGPUCopy;
delete m_data->m_contactKeyValues;
delete m_data->m_contactCGPU;
delete m_data->m_numConstraints;
delete m_data->m_offsets;
delete m_data->m_sortDataBuffer;
delete m_data->m_contactBuffer;
delete m_data->m_sort32;
delete m_data->m_scan;
delete m_data->m_search;
delete m_data->m_solverGPU;
clReleaseKernel(m_data->m_batchingKernel);
clReleaseKernel(m_data->m_batchingKernelNew);
clReleaseKernel(m_data->m_solveSingleContactKernel);
clReleaseKernel(m_data->m_solveSingleFrictionKernel);
clReleaseKernel(m_data->m_solveContactKernel);
clReleaseKernel(m_data->m_solveFrictionKernel);
clReleaseKernel(m_data->m_contactToConstraintKernel);
clReleaseKernel(m_data->m_setSortDataKernel);
clReleaseKernel(m_data->m_reorderContactKernel);
clReleaseKernel(m_data->m_copyConstraintKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataBodyAKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataBodyBKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataChildShapeAKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataChildShapeBKernel);
delete m_data;
}
struct b3ConstraintCfg
{
b3ConstraintCfg(float dt = 0.f) : m_positionDrift(0.005f), m_positionConstraintCoeff(0.2f), m_dt(dt), m_staticIdx(0) {}
float m_positionDrift;
float m_positionConstraintCoeff;
float m_dt;
bool m_enableParallelSolve;
float m_batchCellSize;
int m_staticIdx;
};
void b3GpuPgsContactSolver::solveContactConstraintBatchSizes(const b3OpenCLArray<b3RigidBodyData>* bodyBuf, const b3OpenCLArray<b3InertiaData>* shapeBuf,
b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n, int maxNumBatches, int numIterations, const b3AlignedObjectArray<int>* batchSizes) //const b3OpenCLArray<int>* gpuBatchSizes)
{
B3_PROFILE("solveContactConstraintBatchSizes");
int numBatches = batchSizes->size() / B3_MAX_NUM_BATCHES;
for (int iter = 0; iter < numIterations; iter++)
{
for (int cellId = 0; cellId < numBatches; cellId++)
{
int offset = 0;
for (int ii = 0; ii < B3_MAX_NUM_BATCHES; ii++)
{
int numInBatch = batchSizes->at(cellId * B3_MAX_NUM_BATCHES + ii);
if (!numInBatch)
break;
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_solveSingleContactKernel, "m_solveSingleContactKernel");
launcher.setBuffer(bodyBuf->getBufferCL());
launcher.setBuffer(shapeBuf->getBufferCL());
launcher.setBuffer(constraint->getBufferCL());
launcher.setConst(cellId);
launcher.setConst(offset);
launcher.setConst(numInBatch);
launcher.launch1D(numInBatch);
offset += numInBatch;
}
}
}
}
for (int iter = 0; iter < numIterations; iter++)
{
for (int cellId = 0; cellId < numBatches; cellId++)
{
int offset = 0;
for (int ii = 0; ii < B3_MAX_NUM_BATCHES; ii++)
{
int numInBatch = batchSizes->at(cellId * B3_MAX_NUM_BATCHES + ii);
if (!numInBatch)
break;
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_solveSingleFrictionKernel, "m_solveSingleFrictionKernel");
launcher.setBuffer(bodyBuf->getBufferCL());
launcher.setBuffer(shapeBuf->getBufferCL());
launcher.setBuffer(constraint->getBufferCL());
launcher.setConst(cellId);
launcher.setConst(offset);
launcher.setConst(numInBatch);
launcher.launch1D(numInBatch);
offset += numInBatch;
}
}
}
}
}
void b3GpuPgsContactSolver::solveContactConstraint(const b3OpenCLArray<b3RigidBodyData>* bodyBuf, const b3OpenCLArray<b3InertiaData>* shapeBuf,
b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n, int maxNumBatches, int numIterations, const b3AlignedObjectArray<int>* batchSizes) //,const b3OpenCLArray<int>* gpuBatchSizes)
{
//sort the contacts
b3Int4 cdata = b3MakeInt4(n, 0, 0, 0);
{
const int nn = B3_SOLVER_N_CELLS;
cdata.x = 0;
cdata.y = maxNumBatches; //250;
int numWorkItems = 64 * nn / B3_SOLVER_N_BATCHES;
#ifdef DEBUG_ME
SolverDebugInfo* debugInfo = new SolverDebugInfo[numWorkItems];
adl::b3OpenCLArray<SolverDebugInfo> gpuDebugInfo(data->m_device, numWorkItems);
#endif
{
B3_PROFILE("m_batchSolveKernel iterations");
for (int iter = 0; iter < numIterations; iter++)
{
for (int ib = 0; ib < B3_SOLVER_N_BATCHES; ib++)
{
#ifdef DEBUG_ME
memset(debugInfo, 0, sizeof(SolverDebugInfo) * numWorkItems);
gpuDebugInfo.write(debugInfo, numWorkItems);
#endif
cdata.z = ib;
b3LauncherCL launcher(m_data->m_queue, m_data->m_solveContactKernel, "m_solveContactKernel");
#if 1
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL(bodyBuf->getBufferCL()),
b3BufferInfoCL(shapeBuf->getBufferCL()),
b3BufferInfoCL(constraint->getBufferCL()),
b3BufferInfoCL(m_data->m_solverGPU->m_numConstraints->getBufferCL()),
b3BufferInfoCL(m_data->m_solverGPU->m_offsets->getBufferCL())
#ifdef DEBUG_ME
,
b3BufferInfoCL(&gpuDebugInfo)
#endif
};
launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL));
launcher.setBuffer(m_data->m_solverGPU->m_batchSizes.getBufferCL());
//launcher.setConst( cdata.x );
launcher.setConst(cdata.y);
launcher.setConst(cdata.z);
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
launcher.setConst(nSplit);
launcher.launch1D(numWorkItems, 64);
#else
const char* fileName = "m_batchSolveKernel.bin";
FILE* f = fopen(fileName, "rb");
if (f)
{
int sizeInBytes = 0;
if (fseek(f, 0, SEEK_END) || (sizeInBytes = ftell(f)) == EOF || fseek(f, 0, SEEK_SET))
{
printf("error, cannot get file size\n");
exit(0);
}
unsigned char* buf = (unsigned char*)malloc(sizeInBytes);
fread(buf, sizeInBytes, 1, f);
int serializedBytes = launcher.deserializeArgs(buf, sizeInBytes, m_context);
int num = *(int*)&buf[serializedBytes];
launcher.launch1D(num);
//this clFinish is for testing on errors
clFinish(m_queue);
}
#endif
#ifdef DEBUG_ME
clFinish(m_queue);
gpuDebugInfo.read(debugInfo, numWorkItems);
clFinish(m_queue);
for (int i = 0; i < numWorkItems; i++)
{
if (debugInfo[i].m_valInt2 > 0)
{
printf("debugInfo[i].m_valInt2 = %d\n", i, debugInfo[i].m_valInt2);
}
if (debugInfo[i].m_valInt3 > 0)
{
printf("debugInfo[i].m_valInt3 = %d\n", i, debugInfo[i].m_valInt3);
}
}
#endif //DEBUG_ME
}
}
clFinish(m_data->m_queue);
}
cdata.x = 1;
bool applyFriction = true;
if (applyFriction)
{
B3_PROFILE("m_batchSolveKernel iterations2");
for (int iter = 0; iter < numIterations; iter++)
{
for (int ib = 0; ib < B3_SOLVER_N_BATCHES; ib++)
{
cdata.z = ib;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL(bodyBuf->getBufferCL()),
b3BufferInfoCL(shapeBuf->getBufferCL()),
b3BufferInfoCL(constraint->getBufferCL()),
b3BufferInfoCL(m_data->m_solverGPU->m_numConstraints->getBufferCL()),
b3BufferInfoCL(m_data->m_solverGPU->m_offsets->getBufferCL())
#ifdef DEBUG_ME
,
b3BufferInfoCL(&gpuDebugInfo)
#endif //DEBUG_ME
};
b3LauncherCL launcher(m_data->m_queue, m_data->m_solveFrictionKernel, "m_solveFrictionKernel");
launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL));
launcher.setBuffer(m_data->m_solverGPU->m_batchSizes.getBufferCL());
//launcher.setConst( cdata.x );
launcher.setConst(cdata.y);
launcher.setConst(cdata.z);
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
launcher.setConst(nSplit);
launcher.launch1D(64 * nn / B3_SOLVER_N_BATCHES, 64);
}
}
clFinish(m_data->m_queue);
}
#ifdef DEBUG_ME
delete[] debugInfo;
#endif //DEBUG_ME
}
}
static bool sortfnc(const b3SortData& a, const b3SortData& b)
{
return (a.m_key < b.m_key);
}
static bool b3ContactCmp(const b3Contact4& p, const b3Contact4& q)
{
return ((p.m_bodyAPtrAndSignBit < q.m_bodyAPtrAndSignBit) ||
((p.m_bodyAPtrAndSignBit == q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit < q.m_bodyBPtrAndSignBit)) ||
((p.m_bodyAPtrAndSignBit == q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit == q.m_bodyBPtrAndSignBit) && p.m_childIndexA < q.m_childIndexA) ||
((p.m_bodyAPtrAndSignBit == q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit == q.m_bodyBPtrAndSignBit) && p.m_childIndexA < q.m_childIndexA) ||
((p.m_bodyAPtrAndSignBit == q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit == q.m_bodyBPtrAndSignBit) && p.m_childIndexA == q.m_childIndexA && p.m_childIndexB < q.m_childIndexB));
}
#define USE_SPATIAL_BATCHING 1
#define USE_4x4_GRID 1
#ifndef USE_SPATIAL_BATCHING
static const int gridTable4x4[] =
{
0, 1, 17, 16,
1, 2, 18, 19,
17, 18, 32, 3,
16, 19, 3, 34};
static const int gridTable8x8[] =
{
0, 2, 3, 16, 17, 18, 19, 1,
66, 64, 80, 67, 82, 81, 65, 83,
131, 144, 128, 130, 147, 129, 145, 146,
208, 195, 194, 192, 193, 211, 210, 209,
21, 22, 23, 5, 4, 6, 7, 20,
86, 85, 69, 87, 70, 68, 84, 71,
151, 133, 149, 150, 135, 148, 132, 134,
197, 27, 214, 213, 212, 199, 198, 196
};
#endif
void SetSortDataCPU(b3Contact4* gContact, b3RigidBodyData* gBodies, b3SortData* gSortDataOut, int nContacts, float scale, const b3Int4& nSplit, int staticIdx)
{
for (int gIdx = 0; gIdx < nContacts; gIdx++)
{
if (gIdx < nContacts)
{
int aPtrAndSignBit = gContact[gIdx].m_bodyAPtrAndSignBit;
int bPtrAndSignBit = gContact[gIdx].m_bodyBPtrAndSignBit;
int aIdx = abs(aPtrAndSignBit);
int bIdx = abs(bPtrAndSignBit);
bool aStatic = (aPtrAndSignBit < 0) || (aPtrAndSignBit == staticIdx);
#if USE_SPATIAL_BATCHING
int idx = (aStatic) ? bIdx : aIdx;
b3Vector3 p = gBodies[idx].m_pos;
int xIdx = (int)((p.x - ((p.x < 0.f) ? 1.f : 0.f)) * scale) & (nSplit.x - 1);
int yIdx = (int)((p.y - ((p.y < 0.f) ? 1.f : 0.f)) * scale) & (nSplit.y - 1);
int zIdx = (int)((p.z - ((p.z < 0.f) ? 1.f : 0.f)) * scale) & (nSplit.z - 1);
int newIndex = (xIdx + yIdx * nSplit.x + zIdx * nSplit.x * nSplit.y);
#else //USE_SPATIAL_BATCHING
bool bStatic = (bPtrAndSignBit < 0) || (bPtrAndSignBit == staticIdx);
#if USE_4x4_GRID
int aa = aIdx & 3;
int bb = bIdx & 3;
if (aStatic)
aa = bb;
if (bStatic)
bb = aa;
int gridIndex = aa + bb * 4;
int newIndex = gridTable4x4[gridIndex];
#else //USE_4x4_GRID
int aa = aIdx & 7;
int bb = bIdx & 7;
if (aStatic)
aa = bb;
if (bStatic)
bb = aa;
int gridIndex = aa + bb * 8;
int newIndex = gridTable8x8[gridIndex];
#endif //USE_4x4_GRID
#endif //USE_SPATIAL_BATCHING
gSortDataOut[gIdx].x = newIndex;
gSortDataOut[gIdx].y = gIdx;
}
else
{
gSortDataOut[gIdx].x = 0xffffffff;
}
}
}
void b3GpuPgsContactSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const b3Config& config, int static0Index)
{
B3_PROFILE("solveContacts");
m_data->m_bodyBufferGPU->setFromOpenCLBuffer(bodyBuf, numBodies);
m_data->m_inertiaBufferGPU->setFromOpenCLBuffer(inertiaBuf, numBodies);
m_data->m_pBufContactOutGPU->setFromOpenCLBuffer(contactBuf, numContacts);
if (optionalSortContactsDeterminism)
{
if (!gCpuSortContactsDeterminism)
{
B3_PROFILE("GPU Sort contact constraints (determinism)");
m_data->m_pBufContactOutGPUCopy->resize(numContacts);
m_data->m_contactKeyValues->resize(numContacts);
m_data->m_pBufContactOutGPU->copyToCL(m_data->m_pBufContactOutGPUCopy->getBufferCL(), numContacts, 0, 0);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataChildShapeBKernel, "m_setDeterminismSortDataChildShapeBKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D(numContacts, 64);
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataChildShapeAKernel, "m_setDeterminismSortDataChildShapeAKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D(numContacts, 64);
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataBodyBKernel, "m_setDeterminismSortDataBodyBKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D(numContacts, 64);
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataBodyAKernel, "m_setDeterminismSortDataBodyAKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D(numContacts, 64);
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
B3_PROFILE("gpu reorderContactKernel (determinism)");
b3Int4 cdata;
cdata.x = numContacts;
//b3BufferInfoCL bInfo[] = { b3BufferInfoCL( m_data->m_pBufContactOutGPU->getBufferCL() ), b3BufferInfoCL( m_data->m_solverGPU->m_contactBuffer2->getBufferCL())
// , b3BufferInfoCL( m_data->m_solverGPU->m_sortDataBuffer->getBufferCL()) };
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_reorderContactKernel, "m_reorderContactKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_pBufContactOutGPU->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(cdata);
launcher.launch1D(numContacts, 64);
}
}
else
{
B3_PROFILE("CPU Sort contact constraints (determinism)");
b3AlignedObjectArray<b3Contact4> cpuConstraints;
m_data->m_pBufContactOutGPU->copyToHost(cpuConstraints);
bool sort = true;
if (sort)
{
cpuConstraints.quickSort(b3ContactCmp);
for (int i = 0; i < cpuConstraints.size(); i++)
{
cpuConstraints[i].m_batchIdx = i;
}
}
m_data->m_pBufContactOutGPU->copyFromHost(cpuConstraints);
if (m_debugOutput == 100)
{
for (int i = 0; i < cpuConstraints.size(); i++)
{
printf("c[%d].m_bodyA = %d, m_bodyB = %d, batchId = %d\n", i, cpuConstraints[i].m_bodyAPtrAndSignBit, cpuConstraints[i].m_bodyBPtrAndSignBit, cpuConstraints[i].m_batchIdx);
}
}
m_debugOutput++;
}
}
int nContactOut = m_data->m_pBufContactOutGPU->size();
bool useSolver = true;
if (useSolver)
{
float dt = 1. / 60.;
b3ConstraintCfg csCfg(dt);
csCfg.m_enableParallelSolve = true;
csCfg.m_batchCellSize = 6;
csCfg.m_staticIdx = static0Index;
b3OpenCLArray<b3RigidBodyData>* bodyBuf = m_data->m_bodyBufferGPU;
void* additionalData = 0; //m_data->m_frictionCGPU;
const b3OpenCLArray<b3InertiaData>* shapeBuf = m_data->m_inertiaBufferGPU;
b3OpenCLArray<b3GpuConstraint4>* contactConstraintOut = m_data->m_contactCGPU;
int nContacts = nContactOut;
int maxNumBatches = 0;
if (!gUseLargeBatches)
{
if (m_data->m_solverGPU->m_contactBuffer2)
{
m_data->m_solverGPU->m_contactBuffer2->resize(nContacts);
}
if (m_data->m_solverGPU->m_contactBuffer2 == 0)
{
m_data->m_solverGPU->m_contactBuffer2 = new b3OpenCLArray<b3Contact4>(m_data->m_context, m_data->m_queue, nContacts);
m_data->m_solverGPU->m_contactBuffer2->resize(nContacts);
}
//clFinish(m_data->m_queue);
{
B3_PROFILE("batching");
//@todo: just reserve it, without copy of original contact (unless we use warmstarting)
//const b3OpenCLArray<b3RigidBodyData>* bodyNative = bodyBuf;
{
//b3OpenCLArray<b3RigidBodyData>* bodyNative = b3OpenCLArrayUtils::map<adl::TYPE_CL, true>( data->m_device, bodyBuf );
//b3OpenCLArray<b3Contact4>* contactNative = b3OpenCLArrayUtils::map<adl::TYPE_CL, true>( data->m_device, contactsIn );
const int sortAlignment = 512; // todo. get this out of sort
if (csCfg.m_enableParallelSolve)
{
int sortSize = B3NEXTMULTIPLEOF(nContacts, sortAlignment);
b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
if (!gCpuSetSortData)
{ // 2. set cell idx
B3_PROFILE("GPU set cell idx");
struct CB
{
int m_nContacts;
int m_staticIdx;
float m_scale;
b3Int4 m_nSplit;
};
b3Assert(sortSize % 64 == 0);
CB cdata;
cdata.m_nContacts = nContacts;
cdata.m_staticIdx = csCfg.m_staticIdx;
cdata.m_scale = 1.f / csCfg.m_batchCellSize;
cdata.m_nSplit.x = B3_SOLVER_N_SPLIT_X;
cdata.m_nSplit.y = B3_SOLVER_N_SPLIT_Y;
cdata.m_nSplit.z = B3_SOLVER_N_SPLIT_Z;
m_data->m_solverGPU->m_sortDataBuffer->resize(nContacts);
b3BufferInfoCL bInfo[] = {b3BufferInfoCL(m_data->m_pBufContactOutGPU->getBufferCL()), b3BufferInfoCL(bodyBuf->getBufferCL()), b3BufferInfoCL(m_data->m_solverGPU->m_sortDataBuffer->getBufferCL())};
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_setSortDataKernel, "m_setSortDataKernel");
launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL));
launcher.setConst(cdata.m_nContacts);
launcher.setConst(cdata.m_scale);
launcher.setConst(cdata.m_nSplit);
launcher.setConst(cdata.m_staticIdx);
launcher.launch1D(sortSize, 64);
}
else
{
m_data->m_solverGPU->m_sortDataBuffer->resize(nContacts);
b3AlignedObjectArray<b3SortData> sortDataCPU;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataCPU);
b3AlignedObjectArray<b3Contact4> contactCPU;
m_data->m_pBufContactOutGPU->copyToHost(contactCPU);
b3AlignedObjectArray<b3RigidBodyData> bodiesCPU;
bodyBuf->copyToHost(bodiesCPU);
float scale = 1.f / csCfg.m_batchCellSize;
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
SetSortDataCPU(&contactCPU[0], &bodiesCPU[0], &sortDataCPU[0], nContacts, scale, nSplit, csCfg.m_staticIdx);
m_data->m_solverGPU->m_sortDataBuffer->copyFromHost(sortDataCPU);
}
if (!gCpuRadixSort)
{ // 3. sort by cell idx
B3_PROFILE("gpuRadixSort");
//int n = B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT;
//int sortBit = 32;
//if( n <= 0xffff ) sortBit = 16;
//if( n <= 0xff ) sortBit = 8;
//adl::RadixSort<adl::TYPE_CL>::execute( data->m_sort, *data->m_sortDataBuffer, sortSize );
//adl::RadixSort32<adl::TYPE_CL>::execute( data->m_sort32, *data->m_sortDataBuffer, sortSize );
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
this->m_data->m_solverGPU->m_sort32->execute(keyValuesInOut);
}
else
{
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
b3AlignedObjectArray<b3SortData> hostValues;
keyValuesInOut.copyToHost(hostValues);
hostValues.quickSort(sortfnc);
keyValuesInOut.copyFromHost(hostValues);
}
if (gUseScanHost)
{
// 4. find entries
B3_PROFILE("cpuBoundSearch");
b3AlignedObjectArray<unsigned int> countsHost;
countsNative->copyToHost(countsHost);
b3AlignedObjectArray<b3SortData> sortDataHost;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataHost);
//m_data->m_solverGPU->m_search->executeHost(*m_data->m_solverGPU->m_sortDataBuffer,nContacts,*countsNative,B3_SOLVER_N_CELLS,b3BoundSearchCL::COUNT);
m_data->m_solverGPU->m_search->executeHost(sortDataHost, nContacts, countsHost, B3_SOLVER_N_CELLS, b3BoundSearchCL::COUNT);
countsNative->copyFromHost(countsHost);
//adl::BoundSearch<adl::TYPE_CL>::execute( data->m_search, *data->m_sortDataBuffer, nContacts, *countsNative,
// B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT, adl::BoundSearchBase::COUNT );
//unsigned int sum;
//m_data->m_solverGPU->m_scan->execute(*countsNative,*offsetsNative, B3_SOLVER_N_CELLS);//,&sum );
b3AlignedObjectArray<unsigned int> offsetsHost;
offsetsHost.resize(offsetsNative->size());
m_data->m_solverGPU->m_scan->executeHost(countsHost, offsetsHost, B3_SOLVER_N_CELLS); //,&sum );
offsetsNative->copyFromHost(offsetsHost);
//printf("sum = %d\n",sum);
}
else
{
// 4. find entries
B3_PROFILE("gpuBoundSearch");
m_data->m_solverGPU->m_search->execute(*m_data->m_solverGPU->m_sortDataBuffer, nContacts, *countsNative, B3_SOLVER_N_CELLS, b3BoundSearchCL::COUNT);
m_data->m_solverGPU->m_scan->execute(*countsNative, *offsetsNative, B3_SOLVER_N_CELLS); //,&sum );
}
if (nContacts)
{ // 5. sort constraints by cellIdx
if (gReorderContactsOnCpu)
{
B3_PROFILE("cpu m_reorderContactKernel");
b3AlignedObjectArray<b3SortData> sortDataHost;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataHost);
b3AlignedObjectArray<b3Contact4> inContacts;
b3AlignedObjectArray<b3Contact4> outContacts;
m_data->m_pBufContactOutGPU->copyToHost(inContacts);
outContacts.resize(inContacts.size());
for (int i = 0; i < nContacts; i++)
{
int srcIdx = sortDataHost[i].y;
outContacts[i] = inContacts[srcIdx];
}
m_data->m_solverGPU->m_contactBuffer2->copyFromHost(outContacts);
/* "void ReorderContactKernel(__global struct b3Contact4Data* in, __global struct b3Contact4Data* out, __global int2* sortData, int4 cb )\n"
"{\n"
" int nContacts = cb.x;\n"
" int gIdx = GET_GLOBAL_IDX;\n"
" if( gIdx < nContacts )\n"
" {\n"
" int srcIdx = sortData[gIdx].y;\n"
" out[gIdx] = in[srcIdx];\n"
" }\n"
"}\n"
*/
}
else
{
B3_PROFILE("gpu m_reorderContactKernel");
b3Int4 cdata;
cdata.x = nContacts;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL(m_data->m_pBufContactOutGPU->getBufferCL()),
b3BufferInfoCL(m_data->m_solverGPU->m_contactBuffer2->getBufferCL()), b3BufferInfoCL(m_data->m_solverGPU->m_sortDataBuffer->getBufferCL())};
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_reorderContactKernel, "m_reorderContactKernel");
launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL));
launcher.setConst(cdata);
launcher.launch1D(nContacts, 64);
}
}
}
}
//clFinish(m_data->m_queue);
// {
// b3AlignedObjectArray<unsigned int> histogram;
// m_data->m_solverGPU->m_numConstraints->copyToHost(histogram);
// printf(",,,\n");
// }
if (nContacts)
{
if (gUseCpuCopyConstraints)
{
for (int i = 0; i < nContacts; i++)
{
m_data->m_pBufContactOutGPU->copyFromOpenCLArray(*m_data->m_solverGPU->m_contactBuffer2);
// m_data->m_solverGPU->m_contactBuffer2->getBufferCL();
// m_data->m_pBufContactOutGPU->getBufferCL()
}
}
else
{
B3_PROFILE("gpu m_copyConstraintKernel");
b3Int4 cdata;
cdata.x = nContacts;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL(m_data->m_solverGPU->m_contactBuffer2->getBufferCL()),
b3BufferInfoCL(m_data->m_pBufContactOutGPU->getBufferCL())};
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_copyConstraintKernel, "m_copyConstraintKernel");
launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL));
launcher.setConst(cdata);
launcher.launch1D(nContacts, 64);
//we use the clFinish for proper benchmark/profile
clFinish(m_data->m_queue);
}
}
// bool compareGPU = false;
if (nContacts)
{
if (!gCpuBatchContacts)
{
B3_PROFILE("gpu batchContacts");
maxNumBatches = 250; //250;
m_data->m_solverGPU->batchContacts(m_data->m_pBufContactOutGPU, nContacts, m_data->m_solverGPU->m_numConstraints, m_data->m_solverGPU->m_offsets, csCfg.m_staticIdx);
clFinish(m_data->m_queue);
}
else
{
B3_PROFILE("cpu batchContacts");
static b3AlignedObjectArray<b3Contact4> cpuContacts;
b3OpenCLArray<b3Contact4>* contactsIn = m_data->m_solverGPU->m_contactBuffer2;
{
B3_PROFILE("copyToHost");
contactsIn->copyToHost(cpuContacts);
}
b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
b3AlignedObjectArray<unsigned int> nNativeHost;
b3AlignedObjectArray<unsigned int> offsetsNativeHost;
{
B3_PROFILE("countsNative/offsetsNative copyToHost");
countsNative->copyToHost(nNativeHost);
offsetsNative->copyToHost(offsetsNativeHost);
}
int numNonzeroGrid = 0;
if (gUseLargeBatches)
{
m_data->m_batchSizes.resize(B3_MAX_NUM_BATCHES);
int totalNumConstraints = cpuContacts.size();
//int simdWidth =numBodies+1;//-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3(&cpuContacts[0], totalNumConstraints, totalNumConstraints + 1, csCfg.m_staticIdx, numBodies, &m_data->m_batchSizes[0]); // on GPU
maxNumBatches = b3Max(numBatches, maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches > globalMaxBatch)
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n", maxNumBatches);
}
}
else
{
m_data->m_batchSizes.resize(B3_SOLVER_N_CELLS * B3_MAX_NUM_BATCHES);
B3_PROFILE("cpu batch grid");
for (int i = 0; i < B3_SOLVER_N_CELLS; i++)
{
int n = (nNativeHost)[i];
int offset = (offsetsNativeHost)[i];
if (n)
{
numNonzeroGrid++;
int simdWidth = numBodies + 1; //-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3(&cpuContacts[0] + offset, n, simdWidth, csCfg.m_staticIdx, numBodies, &m_data->m_batchSizes[i * B3_MAX_NUM_BATCHES]); // on GPU
maxNumBatches = b3Max(numBatches, maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches > globalMaxBatch)
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n", maxNumBatches);
}
//we use the clFinish for proper benchmark/profile
}
}
//clFinish(m_data->m_queue);
}
{
B3_PROFILE("m_contactBuffer->copyFromHost");
m_data->m_solverGPU->m_contactBuffer2->copyFromHost((b3AlignedObjectArray<b3Contact4>&)cpuContacts);
}
}
}
}
}
//printf("maxNumBatches = %d\n", maxNumBatches);
if (gUseLargeBatches)
{
if (nContacts)
{
B3_PROFILE("cpu batchContacts");
static b3AlignedObjectArray<b3Contact4> cpuContacts;
// b3OpenCLArray<b3Contact4>* contactsIn = m_data->m_solverGPU->m_contactBuffer2;
{
B3_PROFILE("copyToHost");
m_data->m_pBufContactOutGPU->copyToHost(cpuContacts);
}
// b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
// b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
// int numNonzeroGrid=0;
{
m_data->m_batchSizes.resize(B3_MAX_NUM_BATCHES);
int totalNumConstraints = cpuContacts.size();
// int simdWidth =numBodies+1;//-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3(&cpuContacts[0], totalNumConstraints, totalNumConstraints + 1, csCfg.m_staticIdx, numBodies, &m_data->m_batchSizes[0]); // on GPU
maxNumBatches = b3Max(numBatches, maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches > globalMaxBatch)
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n", maxNumBatches);
}
}
{
B3_PROFILE("m_contactBuffer->copyFromHost");
m_data->m_solverGPU->m_contactBuffer2->copyFromHost((b3AlignedObjectArray<b3Contact4>&)cpuContacts);
}
}
}
if (nContacts)
{
B3_PROFILE("gpu convertToConstraints");
m_data->m_solverGPU->convertToConstraints(bodyBuf,
shapeBuf, m_data->m_solverGPU->m_contactBuffer2,
contactConstraintOut,
additionalData, nContacts,
(b3SolverBase::ConstraintCfg&)csCfg);
clFinish(m_data->m_queue);
}
if (1)
{
int numIter = 4;
m_data->m_solverGPU->m_nIterations = numIter; //10
if (!gCpuSolveConstraint)
{
B3_PROFILE("GPU solveContactConstraint");
/*m_data->m_solverGPU->solveContactConstraint(
m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU,0,
nContactOut ,
maxNumBatches);
*/
//m_data->m_batchSizesGpu->copyFromHost(m_data->m_batchSizes);
if (gUseLargeBatches)
{
solveContactConstraintBatchSizes(m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU, 0,
nContactOut,
maxNumBatches, numIter, &m_data->m_batchSizes);
}
else
{
solveContactConstraint(
m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU, 0,
nContactOut,
maxNumBatches, numIter, &m_data->m_batchSizes); //m_data->m_batchSizesGpu);
}
}
else
{
B3_PROFILE("Host solveContactConstraint");
m_data->m_solverGPU->solveContactConstraintHost(m_data->m_bodyBufferGPU, m_data->m_inertiaBufferGPU, m_data->m_contactCGPU, 0, nContactOut, maxNumBatches, &m_data->m_batchSizes);
}
}
#if 0
if (0)
{
B3_PROFILE("read body velocities back to CPU");
//read body updated linear/angular velocities back to CPU
m_data->m_bodyBufferGPU->read(
m_data->m_bodyBufferCPU->m_ptr,numOfConvexRBodies);
adl::DeviceUtils::waitForCompletion( m_data->m_deviceCL );
}
#endif
}
}
void b3GpuPgsContactSolver::batchContacts(b3OpenCLArray<b3Contact4>* contacts, int nContacts, b3OpenCLArray<unsigned int>* n, b3OpenCLArray<unsigned int>* offsets, int staticIdx)
{
}
b3AlignedObjectArray<unsigned int> idxBuffer;
b3AlignedObjectArray<b3SortData> sortData;
b3AlignedObjectArray<b3Contact4> old;
inline int b3GpuPgsContactSolver::sortConstraintByBatch(b3Contact4* cs, int n, int simdWidth, int staticIdx, int numBodies)
{
B3_PROFILE("sortConstraintByBatch");
int numIter = 0;
sortData.resize(n);
idxBuffer.resize(n);
old.resize(n);
unsigned int* idxSrc = &idxBuffer[0];
unsigned int* idxDst = &idxBuffer[0];
int nIdxSrc, nIdxDst;
const int N_FLG = 256;
const int FLG_MASK = N_FLG - 1;
unsigned int flg[N_FLG / 32];
#if defined(_DEBUG)
for (int i = 0; i < n; i++)
cs[i].getBatchIdx() = -1;
#endif
for (int i = 0; i < n; i++)
idxSrc[i] = i;
nIdxSrc = n;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while (nIdxSrc)
{
numIter++;
nIdxDst = 0;
int nCurrentBatch = 0;
// clear flag
for (int i = 0; i < N_FLG / 32; i++) flg[i] = 0;
for (int i = 0; i < nIdxSrc; i++)
{
int idx = idxSrc[i];
b3Assert(idx < n);
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
int aIdx = bodyA & FLG_MASK;
int bIdx = bodyB & FLG_MASK;
unsigned int aUnavailable = flg[aIdx / 32] & (1 << (aIdx & 31));
unsigned int bUnavailable = flg[bIdx / 32] & (1 << (bIdx & 31));
bool aIsStatic = (bodyAS < 0) || bodyAS == staticIdx;
bool bIsStatic = (bodyBS < 0) || bodyBS == staticIdx;
//use inv_mass!
aUnavailable = !aIsStatic ? aUnavailable : 0; //
bUnavailable = !bIsStatic ? bUnavailable : 0;
if (aUnavailable == 0 && bUnavailable == 0) // ok
{
if (!aIsStatic)
flg[aIdx / 32] |= (1 << (aIdx & 31));
if (!bIsStatic)
flg[bIdx / 32] |= (1 << (bIdx & 31));
cs[idx].getBatchIdx() = batchIdx;
sortData[idx].m_key = batchIdx;
sortData[idx].m_value = idx;
{
nCurrentBatch++;
if (nCurrentBatch == simdWidth)
{
nCurrentBatch = 0;
for (int i = 0; i < N_FLG / 32; i++) flg[i] = 0;
}
}
}
else
{
idxDst[nIdxDst++] = idx;
}
}
b3Swap(idxSrc, idxDst);
b3Swap(nIdxSrc, nIdxDst);
batchIdx++;
}
}
{
B3_PROFILE("quickSort");
sortData.quickSort(sortfnc);
}
{
B3_PROFILE("reorder");
// reorder
memcpy(&old[0], cs, sizeof(b3Contact4) * n);
for (int i = 0; i < n; i++)
{
int idx = sortData[i].m_value;
cs[i] = old[idx];
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for (int i = 0; i < n; i++)
{
b3Assert(cs[i].getBatchIdx() != -1);
}
#endif
return batchIdx;
}
b3AlignedObjectArray<int> bodyUsed2;
inline int b3GpuPgsContactSolver::sortConstraintByBatch2(b3Contact4* cs, int numConstraints, int simdWidth, int staticIdx, int numBodies)
{
B3_PROFILE("sortConstraintByBatch2");
bodyUsed2.resize(2 * simdWidth);
for (int q = 0; q < 2 * simdWidth; q++)
bodyUsed2[q] = 0;
int curBodyUsed = 0;
int numIter = 0;
m_data->m_sortData.resize(numConstraints);
m_data->m_idxBuffer.resize(numConstraints);
m_data->m_old.resize(numConstraints);
unsigned int* idxSrc = &m_data->m_idxBuffer[0];
#if defined(_DEBUG)
for (int i = 0; i < numConstraints; i++)
cs[i].getBatchIdx() = -1;
#endif
for (int i = 0; i < numConstraints; i++)
idxSrc[i] = i;
int numValidConstraints = 0;
// int unprocessedConstraintIndex = 0;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while (numValidConstraints < numConstraints)
{
numIter++;
int nCurrentBatch = 0;
// clear flag
for (int i = 0; i < curBodyUsed; i++)
bodyUsed2[i] = 0;
curBodyUsed = 0;
for (int i = numValidConstraints; i < numConstraints; i++)
{
int idx = idxSrc[i];
b3Assert(idx < numConstraints);
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
bool aIsStatic = (bodyAS < 0) || bodyAS == staticIdx;
bool bIsStatic = (bodyBS < 0) || bodyBS == staticIdx;
int aUnavailable = 0;
int bUnavailable = 0;
if (!aIsStatic)
{
for (int j = 0; j < curBodyUsed; j++)
{
if (bodyA == bodyUsed2[j])
{
aUnavailable = 1;
break;
}
}
}
if (!aUnavailable)
if (!bIsStatic)
{
for (int j = 0; j < curBodyUsed; j++)
{
if (bodyB == bodyUsed2[j])
{
bUnavailable = 1;
break;
}
}
}
if (aUnavailable == 0 && bUnavailable == 0) // ok
{
if (!aIsStatic)
{
bodyUsed2[curBodyUsed++] = bodyA;
}
if (!bIsStatic)
{
bodyUsed2[curBodyUsed++] = bodyB;
}
cs[idx].getBatchIdx() = batchIdx;
m_data->m_sortData[idx].m_key = batchIdx;
m_data->m_sortData[idx].m_value = idx;
if (i != numValidConstraints)
{
b3Swap(idxSrc[i], idxSrc[numValidConstraints]);
}
numValidConstraints++;
{
nCurrentBatch++;
if (nCurrentBatch == simdWidth)
{
nCurrentBatch = 0;
for (int i = 0; i < curBodyUsed; i++)
bodyUsed2[i] = 0;
curBodyUsed = 0;
}
}
}
}
batchIdx++;
}
}
{
B3_PROFILE("quickSort");
//m_data->m_sortData.quickSort(sortfnc);
}
{
B3_PROFILE("reorder");
// reorder
memcpy(&m_data->m_old[0], cs, sizeof(b3Contact4) * numConstraints);
for (int i = 0; i < numConstraints; i++)
{
b3Assert(m_data->m_sortData[idxSrc[i]].m_value == idxSrc[i]);
int idx = m_data->m_sortData[idxSrc[i]].m_value;
cs[i] = m_data->m_old[idx];
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for (int i = 0; i < numConstraints; i++)
{
b3Assert(cs[i].getBatchIdx() != -1);
}
#endif
return batchIdx;
}
b3AlignedObjectArray<int> bodyUsed;
b3AlignedObjectArray<int> curUsed;
inline int b3GpuPgsContactSolver::sortConstraintByBatch3(b3Contact4* cs, int numConstraints, int simdWidth, int staticIdx, int numBodies, int* batchSizes)
{
B3_PROFILE("sortConstraintByBatch3");
static int maxSwaps = 0;
int numSwaps = 0;
curUsed.resize(2 * simdWidth);
static int maxNumConstraints = 0;
if (maxNumConstraints < numConstraints)
{
maxNumConstraints = numConstraints;
//printf("maxNumConstraints = %d\n",maxNumConstraints );
}
int numUsedArray = numBodies / 32 + 1;
bodyUsed.resize(numUsedArray);
for (int q = 0; q < numUsedArray; q++)
bodyUsed[q] = 0;
int curBodyUsed = 0;
int numIter = 0;
m_data->m_sortData.resize(0);
m_data->m_idxBuffer.resize(0);
m_data->m_old.resize(0);
#if defined(_DEBUG)
for (int i = 0; i < numConstraints; i++)
cs[i].getBatchIdx() = -1;
#endif
int numValidConstraints = 0;
// int unprocessedConstraintIndex = 0;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while (numValidConstraints < numConstraints)
{
numIter++;
int nCurrentBatch = 0;
batchSizes[batchIdx] = 0;
// clear flag
for (int i = 0; i < curBodyUsed; i++)
bodyUsed[curUsed[i] / 32] = 0;
curBodyUsed = 0;
for (int i = numValidConstraints; i < numConstraints; i++)
{
int idx = i;
b3Assert(idx < numConstraints);
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
bool aIsStatic = (bodyAS < 0) || bodyAS == staticIdx;
bool bIsStatic = (bodyBS < 0) || bodyBS == staticIdx;
int aUnavailable = 0;
int bUnavailable = 0;
if (!aIsStatic)
{
aUnavailable = bodyUsed[bodyA / 32] & (1 << (bodyA & 31));
}
if (!aUnavailable)
if (!bIsStatic)
{
bUnavailable = bodyUsed[bodyB / 32] & (1 << (bodyB & 31));
}
if (aUnavailable == 0 && bUnavailable == 0) // ok
{
if (!aIsStatic)
{
bodyUsed[bodyA / 32] |= (1 << (bodyA & 31));
curUsed[curBodyUsed++] = bodyA;
}
if (!bIsStatic)
{
bodyUsed[bodyB / 32] |= (1 << (bodyB & 31));
curUsed[curBodyUsed++] = bodyB;
}
cs[idx].getBatchIdx() = batchIdx;
if (i != numValidConstraints)
{
b3Swap(cs[i], cs[numValidConstraints]);
numSwaps++;
}
numValidConstraints++;
{
nCurrentBatch++;
if (nCurrentBatch == simdWidth)
{
batchSizes[batchIdx] += simdWidth;
nCurrentBatch = 0;
for (int i = 0; i < curBodyUsed; i++)
bodyUsed[curUsed[i] / 32] = 0;
curBodyUsed = 0;
}
}
}
}
if (batchIdx >= B3_MAX_NUM_BATCHES)
{
b3Error("batchIdx>=B3_MAX_NUM_BATCHES");
b3Assert(0);
break;
}
batchSizes[batchIdx] += nCurrentBatch;
batchIdx++;
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for (int i = 0; i < numConstraints; i++)
{
b3Assert(cs[i].getBatchIdx() != -1);
}
#endif
batchSizes[batchIdx] = 0;
if (maxSwaps < numSwaps)
{
maxSwaps = numSwaps;
//printf("maxSwaps = %d\n", maxSwaps);
}
return batchIdx;
}