2017-08-01 14:30:58 +02:00
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
2019-01-03 14:26:51 +01:00
static const char * solveContactCL =
" /* \n "
" Copyright (c) 2012 Advanced Micro Devices, Inc. \n "
" This software is provided 'as-is', without any express or implied warranty. \n "
" In no event will the authors be held liable for any damages arising from the use of this software. \n "
" Permission is granted to anyone to use this software for any purpose, \n "
" including commercial applications, and to alter it and redistribute it freely, \n "
" subject to the following restrictions: \n "
" 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. \n "
" 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. \n "
" 3. This notice may not be removed or altered from any source distribution. \n "
" */ \n "
" //Originally written by Takahiro Harada \n "
" //#pragma OPENCL EXTENSION cl_amd_printf : enable \n "
" #pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable \n "
" #pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable \n "
" #ifdef cl_ext_atomic_counters_32 \n "
" #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable \n "
" #else \n "
" #define counter32_t volatile global int* \n "
" #endif \n "
" typedef unsigned int u32; \n "
" typedef unsigned short u16; \n "
" typedef unsigned char u8; \n "
" #define GET_GROUP_IDX get_group_id(0) \n "
" #define GET_LOCAL_IDX get_local_id(0) \n "
" #define GET_GLOBAL_IDX get_global_id(0) \n "
" #define GET_GROUP_SIZE get_local_size(0) \n "
" #define GET_NUM_GROUPS get_num_groups(0) \n "
" #define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) \n "
" #define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) \n "
" #define AtomInc(x) atom_inc(&(x)) \n "
" #define AtomInc1(x, out) out = atom_inc(&(x)) \n "
" #define AppendInc(x, out) out = atomic_inc(x) \n "
" #define AtomAdd(x, value) atom_add(&(x), value) \n "
" #define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) \n "
" #define AtomXhg(x, value) atom_xchg ( &(x), value ) \n "
" #define SELECT_UINT4( b, a, condition ) select( b,a,condition ) \n "
" #define mymake_float4 (float4) \n "
" //#define make_float2 (float2) \n "
" //#define make_uint4 (uint4) \n "
" //#define make_int4 (int4) \n "
" //#define make_uint2 (uint2) \n "
" //#define make_int2 (int2) \n "
" #define max2 max \n "
" #define min2 min \n "
" /////////////////////////////////////// \n "
" // Vector \n "
" /////////////////////////////////////// \n "
" __inline \n "
" float4 fastNormalize4(float4 v) \n "
" { \n "
" return fast_normalize(v); \n "
" } \n "
" __inline \n "
" float4 cross3(float4 a, float4 b) \n "
" { \n "
" return cross(a,b); \n "
" } \n "
" __inline \n "
" float dot3F4(float4 a, float4 b) \n "
" { \n "
" float4 a1 = mymake_float4(a.xyz,0.f); \n "
" float4 b1 = mymake_float4(b.xyz,0.f); \n "
" return dot(a1, b1); \n "
" } \n "
" __inline \n "
" float4 normalize3(const float4 a) \n "
" { \n "
" float4 n = mymake_float4(a.x, a.y, a.z, 0.f); \n "
" return fastNormalize4( n ); \n "
" // float length = sqrtf(dot3F4(a, a)); \n "
" // return 1.f/length * a; \n "
" } \n "
" /////////////////////////////////////// \n "
" // Matrix3x3 \n "
" /////////////////////////////////////// \n "
" typedef struct \n "
" { \n "
" float4 m_row[3]; \n "
" }Matrix3x3; \n "
" __inline \n "
" float4 mtMul1(Matrix3x3 a, float4 b); \n "
" __inline \n "
" float4 mtMul3(float4 a, Matrix3x3 b); \n "
" __inline \n "
" float4 mtMul1(Matrix3x3 a, float4 b) \n "
" { \n "
" float4 ans; \n "
" ans.x = dot3F4( a.m_row[0], b ); \n "
" ans.y = dot3F4( a.m_row[1], b ); \n "
" ans.z = dot3F4( a.m_row[2], b ); \n "
" ans.w = 0.f; \n "
" return ans; \n "
" } \n "
" __inline \n "
" float4 mtMul3(float4 a, Matrix3x3 b) \n "
" { \n "
" float4 colx = mymake_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0); \n "
" float4 coly = mymake_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0); \n "
" float4 colz = mymake_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0); \n "
" float4 ans; \n "
" ans.x = dot3F4( a, colx ); \n "
" ans.y = dot3F4( a, coly ); \n "
" ans.z = dot3F4( a, colz ); \n "
" return ans; \n "
" } \n "
" /////////////////////////////////////// \n "
" // Quaternion \n "
" /////////////////////////////////////// \n "
" typedef float4 Quaternion; \n "
" #define WG_SIZE 64 \n "
" typedef struct \n "
" { \n "
" float4 m_pos; \n "
" Quaternion m_quat; \n "
" float4 m_linVel; \n "
" float4 m_angVel; \n "
" u32 m_shapeIdx; \n "
" float m_invMass; \n "
" float m_restituitionCoeff; \n "
" float m_frictionCoeff; \n "
" } Body; \n "
" typedef struct \n "
" { \n "
" Matrix3x3 m_invInertia; \n "
" Matrix3x3 m_initInvInertia; \n "
" } Shape; \n "
" typedef struct \n "
" { \n "
" float4 m_linear; \n "
" float4 m_worldPos[4]; \n "
" float4 m_center; \n "
" float m_jacCoeffInv[4]; \n "
" float m_b[4]; \n "
" float m_appliedRambdaDt[4]; \n "
" float m_fJacCoeffInv[2]; \n "
" float m_fAppliedRambdaDt[2]; \n "
" u32 m_bodyA; \n "
" u32 m_bodyB; \n "
" int m_batchIdx; \n "
" u32 m_paddings[1]; \n "
" } Constraint4; \n "
" typedef struct \n "
" { \n "
" int m_nConstraints; \n "
" int m_start; \n "
" int m_batchIdx; \n "
" int m_nSplit; \n "
" // int m_paddings[1]; \n "
" } ConstBuffer; \n "
" typedef struct \n "
" { \n "
" int m_solveFriction; \n "
" int m_maxBatch; // long batch really kills the performance \n "
" int m_batchIdx; \n "
" int m_nSplit; \n "
" // int m_paddings[1]; \n "
" } ConstBufferBatchSolve; \n "
" void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1); \n "
" void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1) \n "
" { \n "
" *linear = mymake_float4(-n.xyz,0.f); \n "
" *angular0 = -cross3(r0, n); \n "
" *angular1 = cross3(r1, n); \n "
" } \n "
" float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 ); \n "
" float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 ) \n "
" { \n "
" return dot3F4(l0, linVel0) + dot3F4(a0, angVel0) + dot3F4(l1, linVel1) + dot3F4(a1, angVel1); \n "
" } \n "
" float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1, \n "
" float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1); \n "
" float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1, \n "
" float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1) \n "
" { \n "
" // linear0,1 are normlized \n "
" float jmj0 = invMass0;//dot3F4(linear0, linear0)*invMass0; \n "
" float jmj1 = dot3F4(mtMul3(angular0,*invInertia0), angular0); \n "
" float jmj2 = invMass1;//dot3F4(linear1, linear1)*invMass1; \n "
" float jmj3 = dot3F4(mtMul3(angular1,*invInertia1), angular1); \n "
" return -1.f/(jmj0+jmj1+jmj2+jmj3); \n "
" } \n "
" void solveContact(__global Constraint4* cs, \n "
" float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA, \n "
" float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB); \n "
" void solveContact(__global Constraint4* cs, \n "
" float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA, \n "
" float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB) \n "
" { \n "
" float minRambdaDt = 0; \n "
" float maxRambdaDt = FLT_MAX; \n "
" for(int ic=0; ic<4; ic++) \n "
" { \n "
" if( cs->m_jacCoeffInv[ic] == 0.f ) continue; \n "
" float4 angular0, angular1, linear; \n "
" float4 r0 = cs->m_worldPos[ic] - posA; \n "
" float4 r1 = cs->m_worldPos[ic] - posB; \n "
" setLinearAndAngular( -cs->m_linear, r0, r1, &linear, &angular0, &angular1 ); \n "
" float rambdaDt = calcRelVel( cs->m_linear, -cs->m_linear, angular0, angular1, \n "
" *linVelA, *angVelA, *linVelB, *angVelB ) + cs->m_b[ic]; \n "
" rambdaDt *= cs->m_jacCoeffInv[ic]; \n "
" { \n "
" float prevSum = cs->m_appliedRambdaDt[ic]; \n "
" float updated = prevSum; \n "
" updated += rambdaDt; \n "
" updated = max2( updated, minRambdaDt ); \n "
" updated = min2( updated, maxRambdaDt ); \n "
" rambdaDt = updated - prevSum; \n "
" cs->m_appliedRambdaDt[ic] = updated; \n "
" } \n "
" float4 linImp0 = invMassA*linear*rambdaDt; \n "
" float4 linImp1 = invMassB*(-linear)*rambdaDt; \n "
" float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt; \n "
" float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt; \n "
" *linVelA += linImp0; \n "
" *angVelA += angImp0; \n "
" *linVelB += linImp1; \n "
" *angVelB += angImp1; \n "
" } \n "
" } \n "
" void btPlaneSpace1 (const float4* n, float4* p, float4* q); \n "
" void btPlaneSpace1 (const float4* n, float4* p, float4* q) \n "
" { \n "
" if (fabs(n[0].z) > 0.70710678f) { \n "
" // choose p in y-z plane \n "
" float a = n[0].y*n[0].y + n[0].z*n[0].z; \n "
" float k = 1.f/sqrt(a); \n "
" p[0].x = 0; \n "
" p[0].y = -n[0].z*k; \n "
" p[0].z = n[0].y*k; \n "
" // set q = n x p \n "
" q[0].x = a*k; \n "
" q[0].y = -n[0].x*p[0].z; \n "
" q[0].z = n[0].x*p[0].y; \n "
" } \n "
" else { \n "
" // choose p in x-y plane \n "
" float a = n[0].x*n[0].x + n[0].y*n[0].y; \n "
" float k = 1.f/sqrt(a); \n "
" p[0].x = -n[0].y*k; \n "
" p[0].y = n[0].x*k; \n "
" p[0].z = 0; \n "
" // set q = n x p \n "
" q[0].x = -n[0].z*p[0].y; \n "
" q[0].y = n[0].z*p[0].x; \n "
" q[0].z = a*k; \n "
" } \n "
" } \n "
" void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs); \n "
" void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs) \n "
" { \n "
" //float frictionCoeff = ldsCs[0].m_linear.w; \n "
" int aIdx = ldsCs[0].m_bodyA; \n "
" int bIdx = ldsCs[0].m_bodyB; \n "
" float4 posA = gBodies[aIdx].m_pos; \n "
" float4 linVelA = gBodies[aIdx].m_linVel; \n "
" float4 angVelA = gBodies[aIdx].m_angVel; \n "
" float invMassA = gBodies[aIdx].m_invMass; \n "
" Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; \n "
" float4 posB = gBodies[bIdx].m_pos; \n "
" float4 linVelB = gBodies[bIdx].m_linVel; \n "
" float4 angVelB = gBodies[bIdx].m_angVel; \n "
" float invMassB = gBodies[bIdx].m_invMass; \n "
" Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; \n "
" solveContact( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA, \n "
" posB, &linVelB, &angVelB, invMassB, invInertiaB ); \n "
" if (gBodies[aIdx].m_invMass) \n "
" { \n "
" gBodies[aIdx].m_linVel = linVelA; \n "
" gBodies[aIdx].m_angVel = angVelA; \n "
" } else \n "
" { \n "
" gBodies[aIdx].m_linVel = mymake_float4(0,0,0,0); \n "
" gBodies[aIdx].m_angVel = mymake_float4(0,0,0,0); \n "
" \n "
" } \n "
" if (gBodies[bIdx].m_invMass) \n "
" { \n "
" gBodies[bIdx].m_linVel = linVelB; \n "
" gBodies[bIdx].m_angVel = angVelB; \n "
" } else \n "
" { \n "
" gBodies[bIdx].m_linVel = mymake_float4(0,0,0,0); \n "
" gBodies[bIdx].m_angVel = mymake_float4(0,0,0,0); \n "
" \n "
" } \n "
" } \n "
" typedef struct \n "
" { \n "
" int m_valInt0; \n "
" int m_valInt1; \n "
" int m_valInt2; \n "
" int m_valInt3; \n "
" float m_val0; \n "
" float m_val1; \n "
" float m_val2; \n "
" float m_val3; \n "
" } SolverDebugInfo; \n "
" __kernel \n "
" __attribute__((reqd_work_group_size(WG_SIZE,1,1))) \n "
" void BatchSolveKernelContact(__global Body* gBodies, \n "
" __global Shape* gShapes, \n "
" __global Constraint4* gConstraints, \n "
" __global int* gN, \n "
" __global int* gOffsets, \n "
" __global int* batchSizes, \n "
" int maxBatch1, \n "
" int cellBatch, \n "
" int4 nSplit \n "
" ) \n "
" { \n "
" //__local int ldsBatchIdx[WG_SIZE+1]; \n "
" __local int ldsCurBatch; \n "
" __local int ldsNextBatch; \n "
" __local int ldsStart; \n "
" int lIdx = GET_LOCAL_IDX; \n "
" int wgIdx = GET_GROUP_IDX; \n "
" // int gIdx = GET_GLOBAL_IDX; \n "
" // debugInfo[gIdx].m_valInt0 = gIdx; \n "
" //debugInfo[gIdx].m_valInt1 = GET_GROUP_SIZE; \n "
" \n "
" \n "
" int zIdx = (wgIdx/((nSplit.x*nSplit.y)/4))*2+((cellBatch&4)>>2); \n "
" int remain= (wgIdx%((nSplit.x*nSplit.y)/4)); \n "
" int yIdx = (remain/(nSplit.x/2))*2 + ((cellBatch&2)>>1); \n "
" int xIdx = (remain%(nSplit.x/2))*2 + (cellBatch&1); \n "
" int cellIdx = xIdx+yIdx*nSplit.x+zIdx*(nSplit.x*nSplit.y); \n "
" //int xIdx = (wgIdx/(nSplit/2))*2 + (bIdx&1); \n "
" //int yIdx = (wgIdx%(nSplit/2))*2 + (bIdx>>1); \n "
" //int cellIdx = xIdx+yIdx*nSplit; \n "
" \n "
" if( gN[cellIdx] == 0 ) \n "
" return; \n "
" int maxBatch = batchSizes[cellIdx]; \n "
" \n "
" \n "
" const int start = gOffsets[cellIdx]; \n "
" const int end = start + gN[cellIdx]; \n "
" \n "
" \n "
" \n "
" if( lIdx == 0 ) \n "
" { \n "
" ldsCurBatch = 0; \n "
" ldsNextBatch = 0; \n "
" ldsStart = start; \n "
" } \n "
" GROUP_LDS_BARRIER; \n "
" int idx=ldsStart+lIdx; \n "
" while (ldsCurBatch < maxBatch) \n "
" { \n "
" for(; idx<end; ) \n "
" { \n "
" if (gConstraints[idx].m_batchIdx == ldsCurBatch) \n "
" { \n "
" solveContactConstraint( gBodies, gShapes, &gConstraints[idx] ); \n "
" idx+=64; \n "
" } else \n "
" { \n "
" break; \n "
" } \n "
" } \n "
" GROUP_LDS_BARRIER; \n "
" \n "
" if( lIdx == 0 ) \n "
" { \n "
" ldsCurBatch++; \n "
" } \n "
" GROUP_LDS_BARRIER; \n "
" } \n "
" \n "
" \n "
" } \n "
" __kernel void solveSingleContactKernel(__global Body* gBodies, \n "
" __global Shape* gShapes, \n "
" __global Constraint4* gConstraints, \n "
" int cellIdx, \n "
" int batchOffset, \n "
" int numConstraintsInBatch \n "
" ) \n "
" { \n "
" int index = get_global_id(0); \n "
" if (index < numConstraintsInBatch) \n "
" { \n "
" int idx=batchOffset+index; \n "
" solveContactConstraint( gBodies, gShapes, &gConstraints[idx] ); \n "
" } \n "
" } \n " ;