virtualx-engine/thirdparty/zstd/compress/huf_compress.c

915 lines
37 KiB
C
Raw Normal View History

/* ******************************************************************
2020-09-18 21:38:36 +02:00
* Huffman encoder, part of New Generation Entropy library
* Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* **************************************************************
* Includes
****************************************************************/
2021-01-08 11:21:43 +01:00
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
2020-09-18 21:38:36 +02:00
#include "../common/compiler.h"
#include "../common/bitstream.h"
2019-01-04 01:30:03 +01:00
#include "hist.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
2020-09-18 21:38:36 +02:00
#include "../common/fse.h" /* header compression */
#define HUF_STATIC_LINKING_ONLY
2020-09-18 21:38:36 +02:00
#include "../common/huf.h"
#include "../common/error_private.h"
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
2019-01-04 01:30:03 +01:00
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Utils
****************************************************************/
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
}
/* *******************************************************
* HUF : Huffman block compression
*********************************************************/
/* HUF_compressWeights() :
* Same as FSE_compress(), but dedicated to huff0's weights compression.
* The use case needs much less stack memory.
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
*/
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
2019-01-04 01:30:03 +01:00
static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
2019-01-04 01:30:03 +01:00
unsigned maxSymbolValue = HUF_TABLELOG_MAX;
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
2021-01-08 11:21:43 +01:00
U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
2019-01-04 01:30:03 +01:00
unsigned count[HUF_TABLELOG_MAX+1];
S16 norm[HUF_TABLELOG_MAX+1];
/* init conditions */
if (wtSize <= 1) return 0; /* Not compressible */
/* Scan input and build symbol stats */
2019-01-04 01:30:03 +01:00
{ unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
2019-01-04 01:30:03 +01:00
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
}
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
2021-01-08 11:21:43 +01:00
CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
/* Write table description header */
2020-09-18 21:38:36 +02:00
{ CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
op += hSize;
}
/* Compress */
CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
2020-09-18 21:38:36 +02:00
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
if (cSize == 0) return 0; /* not enough space for compressed data */
op += cSize;
}
2020-09-18 21:38:36 +02:00
return (size_t)(op-ostart);
}
/*! HUF_writeCTable() :
`CTable` : Huffman tree to save, using huf representation.
@return : size of saved CTable */
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
2019-01-04 01:30:03 +01:00
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
{
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
BYTE* op = (BYTE*)dst;
U32 n;
/* check conditions */
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
/* convert to weight */
bitsToWeight[0] = 0;
for (n=1; n<huffLog+1; n++)
bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
for (n=0; n<maxSymbolValue; n++)
huffWeight[n] = bitsToWeight[CTable[n].nbBits];
/* attempt weights compression by FSE */
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
op[0] = (BYTE)hSize;
return hSize+1;
} }
/* write raw values as 4-bits (max : 15) */
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
for (n=0; n<maxSymbolValue; n+=2)
op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
return ((maxSymbolValue+1)/2) + 1;
}
2020-09-18 21:38:36 +02:00
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
{
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
U32 tableLog = 0;
U32 nbSymbols = 0;
/* get symbol weights */
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
2021-01-08 11:21:43 +01:00
*hasZeroWeights = (rankVal[0] > 0);
/* check result */
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
2017-10-26 22:41:47 +02:00
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
/* Prepare base value per rank */
{ U32 n, nextRankStart = 0;
for (n=1; n<=tableLog; n++) {
2021-01-08 11:21:43 +01:00
U32 curr = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
2021-01-08 11:21:43 +01:00
rankVal[n] = curr;
} }
/* fill nbBits */
{ U32 n; for (n=0; n<nbSymbols; n++) {
const U32 w = huffWeight[n];
2020-09-18 21:38:36 +02:00
CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
} }
/* fill val */
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
/* determine stating value per rank */
valPerRank[tableLog+1] = 0; /* for w==0 */
{ U16 min = 0;
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
/* assign value within rank, symbol order */
2017-10-26 22:41:47 +02:00
{ U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
}
2017-10-26 22:41:47 +02:00
*maxSymbolValuePtr = nbSymbols - 1;
return readSize;
}
2019-01-04 01:30:03 +01:00
U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
{
const HUF_CElt* table = (const HUF_CElt*)symbolTable;
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
return table[symbolValue].nbBits;
}
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
2021-01-08 11:21:43 +01:00
/**
* HUF_setMaxHeight():
* Enforces maxNbBits on the Huffman tree described in huffNode.
*
* It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
* the tree to so that it is a valid canonical Huffman tree.
*
* @pre The sum of the ranks of each symbol == 2^largestBits,
* where largestBits == huffNode[lastNonNull].nbBits.
* @post The sum of the ranks of each symbol == 2^largestBits,
* where largestBits is the return value <= maxNbBits.
*
* @param huffNode The Huffman tree modified in place to enforce maxNbBits.
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
* @param maxNbBits The maximum allowed number of bits, which the Huffman tree
* may not respect. After this function the Huffman tree will
* respect maxNbBits.
* @return The maximum number of bits of the Huffman tree after adjustment,
* necessarily no more than maxNbBits.
*/
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
const U32 largestBits = huffNode[lastNonNull].nbBits;
2021-01-08 11:21:43 +01:00
/* early exit : no elt > maxNbBits, so the tree is already valid. */
if (largestBits <= maxNbBits) return largestBits;
/* there are several too large elements (at least >= 2) */
{ int totalCost = 0;
const U32 baseCost = 1 << (largestBits - maxNbBits);
2020-09-18 21:38:36 +02:00
int n = (int)lastNonNull;
2021-01-08 11:21:43 +01:00
/* Adjust any ranks > maxNbBits to maxNbBits.
* Compute totalCost, which is how far the sum of the ranks is
* we are over 2^largestBits after adjust the offending ranks.
*/
while (huffNode[n].nbBits > maxNbBits) {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)maxNbBits;
2021-01-08 11:21:43 +01:00
n--;
}
/* n stops at huffNode[n].nbBits <= maxNbBits */
assert(huffNode[n].nbBits <= maxNbBits);
/* n end at index of smallest symbol using < maxNbBits */
while (huffNode[n].nbBits == maxNbBits) --n;
2021-01-08 11:21:43 +01:00
/* renorm totalCost from 2^largestBits to 2^maxNbBits
* note : totalCost is necessarily a multiple of baseCost */
assert((totalCost & (baseCost - 1)) == 0);
totalCost >>= (largestBits - maxNbBits);
assert(totalCost > 0);
/* repay normalized cost */
{ U32 const noSymbol = 0xF0F0F0F0;
U32 rankLast[HUF_TABLELOG_MAX+2];
2021-01-08 11:21:43 +01:00
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
{ U32 currentNbBits = maxNbBits;
2020-09-18 21:38:36 +02:00
int pos;
for (pos=n ; pos >= 0; pos--) {
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
2020-09-18 21:38:36 +02:00
rankLast[maxNbBits-currentNbBits] = (U32)pos;
} }
while (totalCost > 0) {
2021-01-08 11:21:43 +01:00
/* Try to reduce the next power of 2 above totalCost because we
* gain back half the rank.
*/
2020-09-18 21:38:36 +02:00
U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
2020-09-18 21:38:36 +02:00
U32 const highPos = rankLast[nBitsToDecrease];
U32 const lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noSymbol) continue;
2021-01-08 11:21:43 +01:00
/* Decrease highPos if no symbols of lowPos or if it is
* not cheaper to remove 2 lowPos than highPos.
*/
if (lowPos == noSymbol) break;
{ U32 const highTotal = huffNode[highPos].count;
U32 const lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
} }
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
2021-01-08 11:21:43 +01:00
assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
2017-07-22 23:46:05 +02:00
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
2021-01-08 11:21:43 +01:00
nBitsToDecrease++;
assert(rankLast[nBitsToDecrease] != noSymbol);
/* Increase the number of bits to gain back half the rank cost. */
totalCost -= 1 << (nBitsToDecrease-1);
2021-01-08 11:21:43 +01:00
huffNode[rankLast[nBitsToDecrease]].nbBits++;
/* Fix up the new rank.
* If the new rank was empty, this symbol is now its smallest.
* Otherwise, this symbol will be the largest in the new rank so no adjustment.
*/
if (rankLast[nBitsToDecrease-1] == noSymbol)
2021-01-08 11:21:43 +01:00
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
/* Fix up the old rank.
* If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
* it must be the only symbol in its rank, so the old rank now has no symbols.
* Otherwise, since the Huffman nodes are sorted by count, the previous position is now
* the smallest node in the rank. If the previous position belongs to a different rank,
* then the rank is now empty.
*/
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol;
else {
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
2021-01-08 11:21:43 +01:00
}
} /* while (totalCost > 0) */
/* If we've removed too much weight, then we have to add it back.
* To avoid overshooting again, we only adjust the smallest rank.
* We take the largest nodes from the lowest rank 0 and move them
* to rank 1. There's guaranteed to be enough rank 0 symbols because
* TODO.
*/
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
2021-01-08 11:21:43 +01:00
/* special case : no rank 1 symbol (using maxNbBits-1);
* let's create one from largest rank 0 (using maxNbBits).
*/
if (rankLast[1] == noSymbol) {
while (huffNode[n].nbBits == maxNbBits) n--;
huffNode[n+1].nbBits--;
2020-09-18 21:38:36 +02:00
assert(n >= 0);
rankLast[1] = (U32)(n+1);
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
2021-01-08 11:21:43 +01:00
}
} /* repay normalized cost */
} /* there are several too large elements (at least >= 2) */
return maxNbBits;
}
typedef struct {
U32 base;
2021-01-08 11:21:43 +01:00
U32 curr;
} rankPos;
2020-09-18 21:38:36 +02:00
typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
#define RANK_POSITION_TABLE_SIZE 32
typedef struct {
huffNodeTable huffNodeTbl;
rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
} HUF_buildCTable_wksp_tables;
2021-01-08 11:21:43 +01:00
/**
* HUF_sort():
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
*
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
* Must have (maxSymbolValue + 1) entries.
* @param[in] count Histogram of the symbols.
* @param[in] maxSymbolValue Maximum symbol value.
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
*/
2020-09-18 21:38:36 +02:00
static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
{
2021-01-08 11:21:43 +01:00
int n;
int const maxSymbolValue1 = (int)maxSymbolValue + 1;
/* Compute base and set curr to base.
* For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
* Then 2^lowerRank <= count[n]+1 <= 2^rank.
* We attribute each symbol to lowerRank's base value, because we want to know where
* each rank begins in the output, so for rank R we want to count ranks R+1 and above.
*/
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
for (n = 0; n < maxSymbolValue1; ++n) {
U32 lowerRank = BIT_highbit32(count[n] + 1);
rankPosition[lowerRank].base++;
}
2021-01-08 11:21:43 +01:00
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
rankPosition[n-1].base += rankPosition[n].base;
rankPosition[n-1].curr = rankPosition[n-1].base;
}
/* Sort */
for (n = 0; n < maxSymbolValue1; ++n) {
U32 const c = count[n];
U32 const r = BIT_highbit32(c+1) + 1;
2021-01-08 11:21:43 +01:00
U32 pos = rankPosition[r].curr++;
/* Insert into the correct position in the rank.
* We have at most 256 symbols, so this insertion should be fine.
*/
2020-09-18 21:38:36 +02:00
while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
2018-05-15 19:45:22 +02:00
huffNode[pos] = huffNode[pos-1];
pos--;
}
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
}
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
2020-09-18 21:38:36 +02:00
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
*/
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
2020-09-18 21:38:36 +02:00
2021-01-08 11:21:43 +01:00
/* HUF_buildTree():
* Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
*
* @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
* @param maxSymbolValue The maximum symbol value.
* @return The smallest node in the Huffman tree (by count).
*/
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
{
2021-01-08 11:21:43 +01:00
nodeElt* const huffNode0 = huffNode - 1;
2020-09-18 21:38:36 +02:00
int nonNullRank;
int lowS, lowN;
2020-09-18 21:38:36 +02:00
int nodeNb = STARTNODE;
int n, nodeRoot;
/* init for parents */
2020-09-18 21:38:36 +02:00
nonNullRank = (int)maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
2020-09-18 21:38:36 +02:00
huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
/* create parents */
while (nodeNb <= nodeRoot) {
2020-09-18 21:38:36 +02:00
int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
2020-09-18 21:38:36 +02:00
huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
nodeNb++;
}
/* distribute weights (unlimited tree height) */
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
2021-01-08 11:21:43 +01:00
return nonNullRank;
}
/**
* HUF_buildCTableFromTree():
* Build the CTable given the Huffman tree in huffNode.
*
* @param[out] CTable The output Huffman CTable.
* @param huffNode The Huffman tree.
* @param nonNullRank The last and smallest node in the Huffman tree.
* @param maxSymbolValue The maximum symbol value.
* @param maxNbBits The exact maximum number of bits used in the Huffman tree.
*/
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
{
/* fill result into ctable (val, nbBits) */
int n;
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
int const alphabetSize = (int)(maxSymbolValue + 1);
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
/* determine starting value per rank */
{ U16 min = 0;
for (n=(int)maxNbBits; n>0; n--) {
valPerRank[n] = min; /* get starting value within each rank */
min += nbPerRank[n];
min >>= 1;
} }
for (n=0; n<alphabetSize; n++)
CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
for (n=0; n<alphabetSize; n++)
CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */
}
size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
{
HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
nodeElt* const huffNode = huffNode0+1;
int nonNullRank;
/* safety checks */
if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
return ERROR(workSpace_tooSmall);
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
return ERROR(maxSymbolValue_tooLarge);
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
/* sort, decreasing order */
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
/* build tree */
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
/* enforce maxTableLog */
2020-09-18 21:38:36 +02:00
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
2021-01-08 11:21:43 +01:00
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
2021-01-08 11:21:43 +01:00
HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
return maxNbBits;
}
2020-09-18 21:38:36 +02:00
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
{
size_t nbBits = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
nbBits += CTable[s].nbBits * count[s];
}
return nbBits >> 3;
}
2020-09-18 21:38:36 +02:00
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
int bad = 0;
int s;
for (s = 0; s <= (int)maxSymbolValue; ++s) {
bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
}
return !bad;
}
2018-05-15 19:45:22 +02:00
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
{
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
}
#define HUF_FLUSHBITS(s) BIT_flushBits(s)
#define HUF_FLUSHBITS_1(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
#define HUF_FLUSHBITS_2(stream) \
if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
2018-05-15 19:45:22 +02:00
FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
size_t n;
BIT_CStream_t bitC;
/* init */
if (dstSize < 8) return 0; /* not enough space to compress */
2020-09-18 21:38:36 +02:00
{ size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
if (HUF_isError(initErr)) return 0; }
n = srcSize & ~3; /* join to mod 4 */
switch (srcSize & 3)
{
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
HUF_FLUSHBITS_2(&bitC);
2017-07-22 23:46:05 +02:00
/* fall-through */
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
HUF_FLUSHBITS_1(&bitC);
2017-07-22 23:46:05 +02:00
/* fall-through */
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
HUF_FLUSHBITS(&bitC);
2017-07-22 23:46:05 +02:00
/* fall-through */
case 0 : /* fall-through */
default: break;
}
for (; n>0; n-=4) { /* note : n&3==0 at this stage */
HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
HUF_FLUSHBITS_2(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
HUF_FLUSHBITS_1(&bitC);
HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
HUF_FLUSHBITS(&bitC);
}
return BIT_closeCStream(&bitC);
}
2018-05-15 19:45:22 +02:00
#if DYNAMIC_BMI2
2018-05-15 19:45:22 +02:00
static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
if (bmi2) {
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
}
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
}
#else
static size_t
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, const int bmi2)
{
(void)bmi2;
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
}
#endif
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
static size_t
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
const void* src, size_t srcSize,
const HUF_CElt* CTable, int bmi2)
{
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
const BYTE* ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
if (srcSize < 12) return 0; /* no saving possible : too small input */
op += 6; /* jumpTable */
2020-09-18 21:38:36 +02:00
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
2018-05-15 19:45:22 +02:00
assert(cSize <= 65535);
MEM_writeLE16(ostart, (U16)cSize);
op += cSize;
}
ip += segmentSize;
2020-09-18 21:38:36 +02:00
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
2018-05-15 19:45:22 +02:00
assert(cSize <= 65535);
MEM_writeLE16(ostart+2, (U16)cSize);
op += cSize;
}
ip += segmentSize;
2020-09-18 21:38:36 +02:00
assert(op <= oend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
if (cSize==0) return 0;
2018-05-15 19:45:22 +02:00
assert(cSize <= 65535);
MEM_writeLE16(ostart+4, (U16)cSize);
op += cSize;
}
ip += segmentSize;
2020-09-18 21:38:36 +02:00
assert(op <= oend);
assert(ip <= iend);
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
if (cSize==0) return 0;
op += cSize;
}
2020-09-18 21:38:36 +02:00
return (size_t)(op-ostart);
}
2018-05-15 19:45:22 +02:00
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
{
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
}
2019-01-04 01:30:03 +01:00
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
static size_t HUF_compressCTable_internal(
BYTE* const ostart, BYTE* op, BYTE* const oend,
const void* src, size_t srcSize,
2019-01-04 01:30:03 +01:00
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
{
2019-01-04 01:30:03 +01:00
size_t const cSize = (nbStreams==HUF_singleStream) ?
2020-09-18 21:38:36 +02:00
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
if (HUF_isError(cSize)) { return cSize; }
if (cSize==0) { return 0; } /* uncompressible */
op += cSize;
/* check compressibility */
2020-09-18 21:38:36 +02:00
assert(op >= ostart);
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
2020-09-18 21:38:36 +02:00
return (size_t)(op-ostart);
}
2018-05-15 19:45:22 +02:00
typedef struct {
2019-01-04 01:30:03 +01:00
unsigned count[HUF_SYMBOLVALUE_MAX + 1];
2018-05-15 19:45:22 +02:00
HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
2020-09-18 21:38:36 +02:00
HUF_buildCTable_wksp_tables buildCTable_wksp;
2018-05-15 19:45:22 +02:00
} HUF_compress_tables_t;
2018-05-15 19:45:22 +02:00
/* HUF_compress_internal() :
2021-01-08 11:21:43 +01:00
* `workSpace_align4` must be aligned on 4-bytes boundaries,
* and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
2019-01-04 01:30:03 +01:00
static size_t
HUF_compress_internal (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
HUF_nbStreams_e nbStreams,
2021-01-08 11:21:43 +01:00
void* workSpace_align4, size_t wkspSize,
2019-01-04 01:30:03 +01:00
HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
const int bmi2)
{
2021-01-08 11:21:43 +01:00
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart;
2020-09-18 21:38:36 +02:00
HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
2021-01-08 11:21:43 +01:00
assert(((size_t)workSpace_align4 & 3) == 0); /* must be aligned on 4-bytes boundaries */
2020-09-18 21:38:36 +02:00
/* checks & inits */
2019-01-04 01:30:03 +01:00
if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
2018-05-15 19:45:22 +02:00
if (!srcSize) return 0; /* Uncompressed */
if (!dstSize) return 0; /* cannot fit anything within dst budget */
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
2018-05-15 19:45:22 +02:00
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
2018-05-15 19:45:22 +02:00
/* Heuristic : If old table is valid, use it for small inputs */
if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
2018-05-15 19:45:22 +02:00
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
2019-01-04 01:30:03 +01:00
nbStreams, oldHufTable, bmi2);
}
/* Scan input and build symbol stats */
2021-01-08 11:21:43 +01:00
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
2019-01-04 01:30:03 +01:00
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
}
/* Check validity of previous table */
2018-05-15 19:45:22 +02:00
if ( repeat
&& *repeat == HUF_repeat_check
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
*repeat = HUF_repeat_none;
}
/* Heuristic : use existing table for small inputs */
if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
2018-05-15 19:45:22 +02:00
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
2019-01-04 01:30:03 +01:00
nbStreams, oldHufTable, bmi2);
}
/* Build Huffman Tree */
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
2019-01-04 01:30:03 +01:00
{ size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
maxSymbolValue, huffLog,
2020-09-18 21:38:36 +02:00
&table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
2019-01-04 01:30:03 +01:00
CHECK_F(maxBits);
huffLog = (U32)maxBits;
2018-05-15 19:45:22 +02:00
/* Zero unused symbols in CTable, so we can check it for validity */
2021-01-08 11:21:43 +01:00
ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
2018-05-15 19:45:22 +02:00
sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
}
/* Write table description header */
2018-05-15 19:45:22 +02:00
{ CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
/* Check if using previous huffman table is beneficial */
if (repeat && *repeat != HUF_repeat_none) {
2018-05-15 19:45:22 +02:00
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
2018-05-15 19:45:22 +02:00
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
2019-01-04 01:30:03 +01:00
nbStreams, oldHufTable, bmi2);
2018-05-15 19:45:22 +02:00
} }
/* Use the new huffman table */
if (hSize + 12ul >= srcSize) { return 0; }
op += hSize;
if (repeat) { *repeat = HUF_repeat_none; }
2018-05-15 19:45:22 +02:00
if (oldHufTable)
2021-01-08 11:21:43 +01:00
ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
}
2018-05-15 19:45:22 +02:00
return HUF_compressCTable_internal(ostart, op, oend,
src, srcSize,
2019-01-04 01:30:03 +01:00
nbStreams, table->CTable, bmi2);
}
size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
2018-05-15 19:45:22 +02:00
return HUF_compress_internal(dst, dstSize, src, srcSize,
2019-01-04 01:30:03 +01:00
maxSymbolValue, huffLog, HUF_singleStream,
2018-05-15 19:45:22 +02:00
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
2018-05-15 19:45:22 +02:00
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
2018-05-15 19:45:22 +02:00
return HUF_compress_internal(dst, dstSize, src, srcSize,
2019-01-04 01:30:03 +01:00
maxSymbolValue, huffLog, HUF_singleStream,
2018-05-15 19:45:22 +02:00
workSpace, wkspSize, hufTable,
repeat, preferRepeat, bmi2);
}
2018-05-15 19:45:22 +02:00
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* provide workspace to generate compression tables */
size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize)
{
2018-05-15 19:45:22 +02:00
return HUF_compress_internal(dst, dstSize, src, srcSize,
2019-01-04 01:30:03 +01:00
maxSymbolValue, huffLog, HUF_fourStreams,
2018-05-15 19:45:22 +02:00
workSpace, wkspSize,
NULL, NULL, 0, 0 /*bmi2*/);
}
2018-05-15 19:45:22 +02:00
/* HUF_compress4X_repeat():
* compress input using 4 streams.
* re-use an existing huffman compression table */
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog,
void* workSpace, size_t wkspSize,
2018-05-15 19:45:22 +02:00
HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
{
2018-05-15 19:45:22 +02:00
return HUF_compress_internal(dst, dstSize, src, srcSize,
2019-01-04 01:30:03 +01:00
maxSymbolValue, huffLog, HUF_fourStreams,
2018-05-15 19:45:22 +02:00
workSpace, wkspSize,
hufTable, repeat, preferRepeat, bmi2);
}
2021-01-08 11:21:43 +01:00
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/** HUF_buildCTable() :
* @return : maxNbBits
* Note : count is used before tree is written, so they can safely overlap
*/
size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
{
HUF_buildCTable_wksp_tables workspace;
return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
}
size_t HUF_compress1X (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress2 (void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned huffLog)
{
2018-05-15 19:45:22 +02:00
unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
2018-05-15 19:45:22 +02:00
return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
}
2021-01-08 11:21:43 +01:00
#endif