virtualx-engine/scene/3d/cpu_particles.cpp

1418 lines
49 KiB
C++
Raw Normal View History

#include "cpu_particles.h"
#include "particles.h"
#include "scene/3d/camera.h"
#include "scene/main/viewport.h"
#include "scene/resources/surface_tool.h"
#include "servers/visual_server.h"
AABB CPUParticles::get_aabb() const {
return AABB();
}
PoolVector<Face3> CPUParticles::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void CPUParticles::set_emitting(bool p_emitting) {
emitting = p_emitting;
if (!is_processing_internal()) {
set_process_internal(true);
if (is_inside_tree()) {
#ifndef NO_THREADS
update_mutex->lock();
#endif
VS::get_singleton()->connect("frame_pre_draw", this, "_update_render_thread");
2018-07-27 13:58:56 +02:00
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, true);
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
}
}
void CPUParticles::set_amount(int p_amount) {
ERR_FAIL_COND(p_amount < 1);
particles.resize(p_amount);
{
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < p_amount; i++) {
w[i].active = false;
}
}
particle_data.resize((12 + 4 + 1) * p_amount);
VS::get_singleton()->multimesh_allocate(multimesh, p_amount, VS::MULTIMESH_TRANSFORM_3D, VS::MULTIMESH_COLOR_8BIT, VS::MULTIMESH_CUSTOM_DATA_FLOAT);
particle_order.resize(p_amount);
}
void CPUParticles::set_lifetime(float p_lifetime) {
ERR_FAIL_COND(p_lifetime <= 0);
lifetime = p_lifetime;
}
void CPUParticles::set_one_shot(bool p_one_shot) {
one_shot = p_one_shot;
}
void CPUParticles::set_pre_process_time(float p_time) {
pre_process_time = p_time;
}
void CPUParticles::set_explosiveness_ratio(float p_ratio) {
explosiveness_ratio = p_ratio;
}
void CPUParticles::set_randomness_ratio(float p_ratio) {
randomness_ratio = p_ratio;
}
void CPUParticles::set_use_local_coordinates(bool p_enable) {
local_coords = p_enable;
}
void CPUParticles::set_speed_scale(float p_scale) {
speed_scale = p_scale;
}
bool CPUParticles::is_emitting() const {
return emitting;
}
int CPUParticles::get_amount() const {
return particles.size();
}
float CPUParticles::get_lifetime() const {
return lifetime;
}
bool CPUParticles::get_one_shot() const {
return one_shot;
}
float CPUParticles::get_pre_process_time() const {
return pre_process_time;
}
float CPUParticles::get_explosiveness_ratio() const {
return explosiveness_ratio;
}
float CPUParticles::get_randomness_ratio() const {
return randomness_ratio;
}
bool CPUParticles::get_use_local_coordinates() const {
return local_coords;
}
float CPUParticles::get_speed_scale() const {
return speed_scale;
}
void CPUParticles::set_draw_order(DrawOrder p_order) {
draw_order = p_order;
}
CPUParticles::DrawOrder CPUParticles::get_draw_order() const {
return draw_order;
}
void CPUParticles::set_mesh(const Ref<Mesh> &p_mesh) {
mesh = p_mesh;
if (mesh.is_valid()) {
VS::get_singleton()->multimesh_set_mesh(multimesh, mesh->get_rid());
} else {
VS::get_singleton()->multimesh_set_mesh(multimesh, RID());
}
}
Ref<Mesh> CPUParticles::get_mesh() const {
return mesh;
}
void CPUParticles::set_fixed_fps(int p_count) {
fixed_fps = p_count;
}
int CPUParticles::get_fixed_fps() const {
return fixed_fps;
}
void CPUParticles::set_fractional_delta(bool p_enable) {
fractional_delta = p_enable;
}
bool CPUParticles::get_fractional_delta() const {
return fractional_delta;
}
String CPUParticles::get_configuration_warning() const {
String warnings;
return warnings;
}
void CPUParticles::restart() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
{
int pc = particles.size();
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < pc; i++) {
w[i].active = false;
}
}
}
void CPUParticles::set_spread(float p_spread) {
spread = p_spread;
}
float CPUParticles::get_spread() const {
return spread;
}
void CPUParticles::set_flatness(float p_flatness) {
flatness = p_flatness;
}
float CPUParticles::get_flatness() const {
return flatness;
}
void CPUParticles::set_param(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
parameters[p_param] = p_value;
}
float CPUParticles::get_param(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return parameters[p_param];
}
void CPUParticles::set_param_randomness(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
randomness[p_param] = p_value;
}
float CPUParticles::get_param_randomness(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return randomness[p_param];
}
static void _adjust_curve_range(const Ref<Curve> &p_curve, float p_min, float p_max) {
Ref<Curve> curve = p_curve;
if (!curve.is_valid())
return;
curve->ensure_default_setup(p_min, p_max);
}
void CPUParticles::set_param_curve(Parameter p_param, const Ref<Curve> &p_curve) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
curve_parameters[p_param] = p_curve;
switch (p_param) {
case PARAM_INITIAL_LINEAR_VELOCITY: {
//do none for this one
} break;
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
/*case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
} break;*/
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_RADIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_TANGENTIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_DAMPING: {
_adjust_curve_range(p_curve, 0, 100);
} break;
case PARAM_ANGLE: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_SCALE: {
} break;
case PARAM_HUE_VARIATION: {
_adjust_curve_range(p_curve, -1, 1);
} break;
case PARAM_ANIM_SPEED: {
_adjust_curve_range(p_curve, 0, 200);
} break;
case PARAM_ANIM_OFFSET: {
} break;
default: {}
}
}
Ref<Curve> CPUParticles::get_param_curve(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref<Curve>());
return curve_parameters[p_param];
}
void CPUParticles::set_color(const Color &p_color) {
color = p_color;
}
Color CPUParticles::get_color() const {
return color;
}
void CPUParticles::set_color_ramp(const Ref<Gradient> &p_ramp) {
color_ramp = p_ramp;
}
Ref<Gradient> CPUParticles::get_color_ramp() const {
return color_ramp;
}
void CPUParticles::set_particle_flag(Flags p_flag, bool p_enable) {
ERR_FAIL_INDEX(p_flag, FLAG_MAX);
flags[p_flag] = p_enable;
if (p_flag == FLAG_DISABLE_Z) {
_change_notify();
}
}
bool CPUParticles::get_particle_flag(Flags p_flag) const {
ERR_FAIL_INDEX_V(p_flag, FLAG_MAX, false);
return flags[p_flag];
}
void CPUParticles::set_emission_shape(EmissionShape p_shape) {
emission_shape = p_shape;
}
void CPUParticles::set_emission_sphere_radius(float p_radius) {
emission_sphere_radius = p_radius;
}
void CPUParticles::set_emission_box_extents(Vector3 p_extents) {
emission_box_extents = p_extents;
}
void CPUParticles::set_emission_points(const PoolVector<Vector3> &p_points) {
emission_points = p_points;
}
void CPUParticles::set_emission_normals(const PoolVector<Vector3> &p_normals) {
emission_normals = p_normals;
}
void CPUParticles::set_emission_colors(const PoolVector<Color> &p_colors) {
emission_colors = p_colors;
}
float CPUParticles::get_emission_sphere_radius() const {
return emission_sphere_radius;
}
Vector3 CPUParticles::get_emission_box_extents() const {
return emission_box_extents;
}
PoolVector<Vector3> CPUParticles::get_emission_points() const {
return emission_points;
}
PoolVector<Vector3> CPUParticles::get_emission_normals() const {
return emission_normals;
}
PoolVector<Color> CPUParticles::get_emission_colors() const {
return emission_colors;
}
CPUParticles::EmissionShape CPUParticles::get_emission_shape() const {
return emission_shape;
}
void CPUParticles::set_gravity(const Vector3 &p_gravity) {
gravity = p_gravity;
}
Vector3 CPUParticles::get_gravity() const {
return gravity;
}
void CPUParticles::_validate_property(PropertyInfo &property) const {
if (property.name == "color" && color_ramp.is_valid()) {
property.usage = 0;
}
if (property.name == "emission_sphere_radius" && emission_shape != EMISSION_SHAPE_SPHERE) {
property.usage = 0;
}
if (property.name == "emission_box_extents" && emission_shape != EMISSION_SHAPE_BOX) {
property.usage = 0;
}
if ((property.name == "emission_point_texture" || property.name == "emission_color_texture") && (emission_shape < EMISSION_SHAPE_POINTS)) {
property.usage = 0;
}
if (property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
property.usage = 0;
}
/*
if (property.name.begins_with("orbit_") && !flags[FLAG_DISABLE_Z]) {
property.usage = 0;
}
*/
}
static uint32_t idhash(uint32_t x) {
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = (x >> uint32_t(16)) ^ x;
return x;
}
static float rand_from_seed(uint32_t &seed) {
int k;
int s = int(seed);
if (s == 0)
s = 305420679;
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0)
s += 2147483647;
seed = uint32_t(s);
return float(seed % uint32_t(65536)) / 65535.0;
}
float rand_from_seed_m1_p1(uint32_t &seed) {
return rand_from_seed(seed) * 2.0 - 1.0;
}
void CPUParticles::_particles_process(float p_delta) {
p_delta *= speed_scale;
int pcount = particles.size();
PoolVector<Particle>::Write w = particles.write();
Particle *parray = w.ptr();
float prev_time = time;
time += p_delta;
if (time > lifetime) {
time = Math::fmod(time, lifetime);
cycle++;
if (one_shot && cycle > 0) {
emitting = false;
}
}
Transform emission_xform;
Basis velocity_xform;
if (!local_coords) {
emission_xform = get_global_transform();
velocity_xform = emission_xform.basis.inverse().transposed();
}
for (int i = 0; i < pcount; i++) {
Particle &p = parray[i];
if (!emitting && !p.active)
continue;
float restart_time = (float(i) / float(pcount)) * lifetime;
float local_delta = p_delta;
if (randomness_ratio > 0.0) {
uint32_t seed = cycle;
if (restart_time >= time) {
seed -= uint32_t(1);
}
seed *= uint32_t(pcount);
seed += uint32_t(i);
float random = float(idhash(seed) % uint32_t(65536)) / 65536.0;
restart_time += randomness_ratio * random * 1.0 / float(pcount);
}
restart_time *= (1.0 - explosiveness_ratio);
bool restart = false;
if (time > prev_time) {
// restart_time >= prev_time is used so particles emit in the first frame they are processed
if (restart_time >= prev_time && restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = (time - restart_time) * lifetime;
}
}
} else if (local_delta > 0.0) {
if (restart_time >= prev_time) {
restart = true;
if (fractional_delta) {
local_delta = (1.0 - restart_time + time) * lifetime;
}
} else if (restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = (time - restart_time) * lifetime;
}
}
}
if (restart) {
if (!emitting) {
p.active = false;
continue;
}
p.active = true;
/*float tex_linear_velocity = 0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(0);
}*/
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(0);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANGLE]->interpolate(0);
}
p.seed = Math::rand();
p.angle_rand = Math::randf();
p.scale_rand = Math::randf();
p.hue_rot_rand = Math::randf();
p.anim_offset_rand = Math::randf();
float angle1_rad;
float angle2_rad;
if (flags[FLAG_DISABLE_Z]) {
angle1_rad = (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
Vector3 rot = Vector3(Math::cos(angle1_rad), Math::sin(angle1_rad), 0.0);
p.velocity = rot * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
} else {
//initiate velocity spread in 3D
angle1_rad = (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
angle2_rad = (Math::randf() * 2.0 - 1.0) * (1.0 - flatness) * Math_PI * spread / 180.0;
Vector3 direction_xz = Vector3(Math::sin(angle1_rad), 0, Math::cos(angle1_rad));
Vector3 direction_yz = Vector3(0, Math::sin(angle2_rad), Math::cos(angle2_rad));
direction_yz.z = direction_yz.z / Math::sqrt(direction_yz.z); //better uniform distribution
Vector3 direction = Vector3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);
direction.normalize();
p.velocity = direction * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]);
p.custom[0] = Math::deg2rad(base_angle); //angle
p.custom[1] = 0.0; //phase
p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]); //animation offset (0-1)
p.transform = Transform();
p.time = 0;
p.base_color = Color(1, 1, 1, 1);
switch (emission_shape) {
case EMISSION_SHAPE_POINT: {
//do none
} break;
case EMISSION_SHAPE_SPHERE: {
p.transform.origin = Vector3(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0).normalized() * emission_sphere_radius;
} break;
case EMISSION_SHAPE_BOX: {
p.transform.origin = Vector3(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0) * emission_box_extents;
} break;
case EMISSION_SHAPE_POINTS:
case EMISSION_SHAPE_DIRECTED_POINTS: {
int pc = emission_points.size();
if (pc == 0)
break;
int random_idx = Math::rand() % pc;
p.transform.origin = emission_points.get(random_idx);
if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS && emission_normals.size() == pc) {
if (flags[FLAG_DISABLE_Z]) {
/*
mat2 rotm;
";
rotm[0] = texelFetch(emission_texture_normal, emission_tex_ofs, 0).xy;
rotm[1] = rotm[0].yx * vec2(1.0, -1.0);
VELOCITY.xy = rotm * VELOCITY.xy;
*/
} else {
Vector3 normal = emission_normals.get(random_idx);
Vector3 v0 = Math::abs(normal.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(0, 1.0, 0.0);
Vector3 tangent = v0.cross(normal).normalized();
Vector3 bitangent = tangent.cross(normal).normalized();
Basis m3;
m3.set_axis(0, tangent);
m3.set_axis(1, bitangent);
m3.set_axis(2, normal);
p.velocity = m3.xform(p.velocity);
}
}
if (emission_colors.size() == pc) {
p.base_color = emission_colors.get(random_idx);
}
} break;
}
if (!local_coords) {
p.velocity = velocity_xform.xform(p.velocity);
p.transform = emission_xform * p.transform;
}
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.velocity.z = 0.0;
}
} else if (!p.active) {
continue;
} else {
uint32_t alt_seed = p.seed;
p.time += local_delta;
p.custom[1] = p.time / lifetime;
float tex_linear_velocity = 0.0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(p.custom[1]);
}
/*
float tex_orbit_velocity = 0.0;
if (flags[FLAG_DISABLE_Z]) {
if (curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY].is_valid()) {
tex_orbit_velocity = curve_parameters[PARAM_INITIAL_ORBIT_VELOCITY]->interpolate(p.custom[1]);
}
}
*/
float tex_angular_velocity = 0.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(p.custom[1]);
}
float tex_linear_accel = 0.0;
if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) {
tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->interpolate(p.custom[1]);
}
float tex_tangential_accel = 0.0;
if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) {
tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->interpolate(p.custom[1]);
}
float tex_radial_accel = 0.0;
if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) {
tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->interpolate(p.custom[1]);
}
float tex_damping = 0.0;
if (curve_parameters[PARAM_DAMPING].is_valid()) {
tex_damping = curve_parameters[PARAM_DAMPING]->interpolate(p.custom[1]);
}
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(p.custom[1]);
}
float tex_anim_speed = 0.0;
if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) {
tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->interpolate(p.custom[1]);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->interpolate(p.custom[1]);
}
Vector3 force = gravity;
Vector3 pos = p.transform.origin;
if (flags[FLAG_DISABLE_Z]) {
pos.z = 0.0;
}
//apply linear acceleration
force += p.velocity.length() > 0.0 ? p.velocity.normalized() * (parameters[PARAM_LINEAR_ACCEL] + tex_linear_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_LINEAR_ACCEL]) : Vector3();
//apply radial acceleration
Vector3 org = emission_xform.origin;
Vector3 diff = pos - org;
force += diff.length() > 0.0 ? diff.normalized() * (parameters[PARAM_RADIAL_ACCEL] + tex_radial_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_RADIAL_ACCEL]) : Vector3();
//apply tangential acceleration;
if (flags[FLAG_DISABLE_Z]) {
Vector3 yx = Vector3(diff.y, 0, diff.x);
force += yx.length() > 0.0 ? (yx * Vector3(-1.0, 0, 1.0)) * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
} else {
Vector3 crossDiff = diff.normalized().cross(gravity.normalized());
force += crossDiff.length() > 0.0 ? crossDiff.normalized() * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
}
//apply attractor forces
p.velocity += force * local_delta;
//orbit velocity
#if 0
if (flags[FLAG_DISABLE_Z]) {
float orbit_amount = (orbit_velocity + tex_orbit_velocity) * mix(1.0, rand_from_seed(alt_seed), orbit_velocity_random);
if (orbit_amount != 0.0) {
float ang = orbit_amount * DELTA * pi * 2.0;
mat2 rot = mat2(vec2(cos(ang), -sin(ang)), vec2(sin(ang), cos(ang)));
TRANSFORM[3].xy -= diff.xy;
TRANSFORM[3].xy += rot * diff.xy;
}
}
#endif
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
p.velocity = p.velocity.normalized() * tex_linear_velocity;
}
if (parameters[PARAM_DAMPING] + tex_damping > 0.0) {
float v = p.velocity.length();
float damp = (parameters[PARAM_DAMPING] + tex_damping) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_DAMPING]);
v -= damp * local_delta;
if (v < 0.0) {
p.velocity = Vector3();
} else {
p.velocity = p.velocity.normalized() * v;
}
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]);
base_angle += p.custom[1] * lifetime * (parameters[PARAM_ANGULAR_VELOCITY] + tex_angular_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed) * 2.0f - 1.0f, randomness[PARAM_ANGULAR_VELOCITY]);
p.custom[0] = Math::deg2rad(base_angle); //angle
p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]) + p.custom[1] * (parameters[PARAM_ANIM_SPEED] + tex_anim_speed) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ANIM_SPEED]); //angle
if (flags[FLAG_ANIM_LOOP]) {
p.custom[2] = Math::fmod(p.custom[2], 1.0f); //loop
} else {
p.custom[2] = CLAMP(p.custom[2], 0.0f, 1.0); //0 to 1 only
}
}
//apply color
//apply hue rotation
float tex_scale = 1.0;
if (curve_parameters[PARAM_SCALE].is_valid()) {
tex_scale = curve_parameters[PARAM_SCALE]->interpolate(p.custom[1]);
}
float tex_hue_variation = 0.0;
if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) {
tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->interpolate(p.custom[1]);
}
float hue_rot_angle = (parameters[PARAM_HUE_VARIATION] + tex_hue_variation) * Math_PI * 2.0 * Math::lerp(1.0f, p.hue_rot_rand * 2.0f - 1.0f, randomness[PARAM_HUE_VARIATION]);
float hue_rot_c = Math::cos(hue_rot_angle);
float hue_rot_s = Math::sin(hue_rot_angle);
Basis hue_rot_mat;
{
Basis mat1(0.299, 0.587, 0.114, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114);
Basis mat2(0.701, -0.587, -0.114, -0.299, 0.413, -0.114, -0.300, -0.588, 0.886);
Basis mat3(0.168, 0.330, -0.497, -0.328, 0.035, 0.292, 1.250, -1.050, -0.203);
for (int j = 0; j < 3; j++) {
hue_rot_mat[j] = mat1[j] + mat2[j] * hue_rot_c + mat3[j] * hue_rot_s;
}
}
if (color_ramp.is_valid()) {
p.color = color_ramp->get_color_at_offset(p.custom[1]) * color;
} else {
p.color = color;
}
Vector3 color_rgb = hue_rot_mat.xform_inv(Vector3(p.color.r, p.color.g, p.color.b));
p.color.r = color_rgb.x;
p.color.g = color_rgb.y;
p.color.b = color_rgb.z;
p.color *= p.base_color;
if (flags[FLAG_DISABLE_Z]) {
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1));
}
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
} else {
p.transform.basis.set_axis(0, Vector3(Math::cos(p.custom[0]), -Math::sin(p.custom[0]), 0.0));
p.transform.basis.set_axis(1, Vector3(Math::sin(p.custom[0]), Math::cos(p.custom[0]), 0.0));
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
}
} else {
//orient particle Y towards velocity
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1).normalized());
}
if (p.transform.basis.get_axis(1) == p.transform.basis.get_axis(0)) {
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
} else {
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
}
} else {
p.transform.basis.orthonormalize();
}
//turn particle by rotation in Y
if (flags[FLAG_ROTATE_Y]) {
Basis rot_y(Vector3(0, 1, 0), p.custom[0]);
p.transform.basis = p.transform.basis * rot_y;
}
}
//scale by scale
float base_scale = Math::lerp(parameters[PARAM_SCALE] * tex_scale, 1.0f, p.scale_rand * randomness[PARAM_SCALE]);
if (base_scale == 0.0) base_scale = 0.000001;
p.transform.basis.scale(Vector3(1, 1, 1) * base_scale);
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
p.transform.origin += p.velocity * local_delta;
}
}
void CPUParticles::_update_particle_data_buffer() {
#ifndef NO_THREADS
update_mutex->lock();
#endif
{
int pc = particles.size();
PoolVector<int>::Write ow;
int *order = NULL;
PoolVector<float>::Write w = particle_data.write();
PoolVector<Particle>::Read r = particles.read();
float *ptr = w.ptr();
Transform un_transform;
if (!local_coords) {
un_transform = get_global_transform().affine_inverse();
}
if (draw_order != DRAW_ORDER_INDEX) {
ow = particle_order.write();
order = ow.ptr();
for (int i = 0; i < pc; i++) {
order[i] = i;
}
if (draw_order == DRAW_ORDER_LIFETIME) {
SortArray<int, SortLifetime> sorter;
sorter.compare.particles = r.ptr();
sorter.sort(order, pc);
} else if (draw_order == DRAW_ORDER_VIEW_DEPTH) {
Camera *c = get_viewport()->get_camera();
if (c) {
Vector3 dir = c->get_global_transform().basis.get_axis(2); //far away to close
if (local_coords) {
dir = un_transform.basis.xform(dir).normalized();
}
SortArray<int, SortAxis> sorter;
sorter.compare.particles = r.ptr();
sorter.compare.axis = dir;
sorter.sort(order, pc);
}
}
}
for (int i = 0; i < pc; i++) {
int idx = order ? order[i] : i;
Transform t = r[idx].transform;
if (!local_coords) {
t = un_transform * t;
}
// print_line(" particle " + itos(i) + ": " + String(r[idx].active ? "[x]" : "[ ]") + "\n\txform " + r[idx].transform + "\n\t" + r[idx].velocity + "\n\tcolor: " + r[idx].color);
if (r[idx].active) {
ptr[0] = t.basis.elements[0][0];
ptr[1] = t.basis.elements[0][1];
ptr[2] = t.basis.elements[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.elements[1][0];
ptr[5] = t.basis.elements[1][1];
ptr[6] = t.basis.elements[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.elements[2][0];
ptr[9] = t.basis.elements[2][1];
ptr[10] = t.basis.elements[2][2];
ptr[11] = t.origin.z;
} else {
zeromem(ptr, sizeof(float) * 12);
}
Color c = r[idx].color;
uint8_t *data8 = (uint8_t *)&ptr[12];
data8[0] = CLAMP(c.r * 255.0, 0, 255);
data8[1] = CLAMP(c.g * 255.0, 0, 255);
data8[2] = CLAMP(c.b * 255.0, 0, 255);
data8[3] = CLAMP(c.a * 255.0, 0, 255);
ptr[13] = r[idx].custom[0];
ptr[14] = r[idx].custom[1];
ptr[15] = r[idx].custom[2];
ptr[16] = r[idx].custom[3];
ptr += 17;
}
}
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
void CPUParticles::_update_render_thread() {
#ifndef NO_THREADS
update_mutex->lock();
#endif
VS::get_singleton()->multimesh_set_as_bulk_array(multimesh, particle_data);
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
void CPUParticles::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
if (is_processing_internal()) {
#ifndef NO_THREADS
update_mutex->lock();
#endif
VS::get_singleton()->connect("frame_pre_draw", this, "_update_render_thread");
2018-07-27 13:58:56 +02:00
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, true);
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
}
if (p_what == NOTIFICATION_EXIT_TREE) {
if (is_processing_internal()) {
#ifndef NO_THREADS
update_mutex->lock();
#endif
VS::get_singleton()->disconnect("frame_pre_draw", this, "_update_render_thread");
2018-07-27 13:58:56 +02:00
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, false);
#ifndef NO_THREADS
update_mutex->unlock();
#endif
}
}
if (p_what == NOTIFICATION_PAUSED || p_what == NOTIFICATION_UNPAUSED) {
}
if (p_what == NOTIFICATION_INTERNAL_PROCESS) {
if (particles.size() == 0)
return;
float delta = get_process_delta_time();
if (emitting) {
inactive_time = 0;
} else {
inactive_time += delta;
if (inactive_time > lifetime * 1.2) {
set_process_internal(false);
#ifndef NO_THREADS
update_mutex->lock();
#endif
VS::get_singleton()->disconnect("frame_pre_draw", this, "_update_render_thread");
2018-07-27 13:58:56 +02:00
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, false);
#ifndef NO_THREADS
update_mutex->unlock();
#endif
//reset variables
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
return;
}
}
if (time == 0 && pre_process_time > 0.0) {
float frame_time;
if (fixed_fps > 0)
frame_time = 1.0 / fixed_fps;
else
frame_time = 1.0 / 30.0;
float todo = pre_process_time;
while (todo >= 0) {
_particles_process(frame_time);
todo -= frame_time;
}
}
if (fixed_fps > 0) {
float frame_time = 1.0 / fixed_fps;
float decr = frame_time;
float ldelta = delta;
if (ldelta > 0.1) { //avoid recursive stalls if fps goes below 10
ldelta = 0.1;
} else if (ldelta <= 0.0) { //unlikely but..
ldelta = 0.001;
}
float todo = frame_remainder + ldelta;
while (todo >= frame_time) {
_particles_process(frame_time);
todo -= decr;
}
frame_remainder = todo;
} else {
_particles_process(delta);
}
_update_particle_data_buffer();
}
}
void CPUParticles::convert_from_particles(Node *p_particles) {
Particles *particles = Object::cast_to<Particles>(p_particles);
ERR_FAIL_COND(!particles);
set_emitting(particles->is_emitting());
set_amount(particles->get_amount());
set_lifetime(particles->get_lifetime());
set_one_shot(particles->get_one_shot());
set_pre_process_time(particles->get_pre_process_time());
set_explosiveness_ratio(particles->get_explosiveness_ratio());
set_randomness_ratio(particles->get_randomness_ratio());
set_use_local_coordinates(particles->get_use_local_coordinates());
set_fixed_fps(particles->get_fixed_fps());
set_fractional_delta(particles->get_fractional_delta());
set_speed_scale(particles->get_speed_scale());
set_draw_order(DrawOrder(particles->get_draw_order()));
set_mesh(particles->get_draw_pass_mesh(0));
Ref<ParticlesMaterial> material = particles->get_process_material();
if (material.is_null())
return;
set_spread(material->get_spread());
set_flatness(material->get_flatness());
set_color(material->get_color());
Ref<GradientTexture> gt = material->get_color_ramp();
if (gt.is_valid()) {
set_color_ramp(gt->get_gradient());
}
set_particle_flag(FLAG_ALIGN_Y_TO_VELOCITY, material->get_flag(ParticlesMaterial::FLAG_ALIGN_Y_TO_VELOCITY));
set_particle_flag(FLAG_ROTATE_Y, material->get_flag(ParticlesMaterial::FLAG_ROTATE_Y));
set_particle_flag(FLAG_DISABLE_Z, material->get_flag(ParticlesMaterial::FLAG_DISABLE_Z));
set_particle_flag(FLAG_ANIM_LOOP, material->get_flag(ParticlesMaterial::FLAG_ANIM_LOOP));
set_emission_shape(EmissionShape(material->get_emission_shape()));
set_emission_sphere_radius(material->get_emission_sphere_radius());
set_emission_box_extents(material->get_emission_box_extents());
set_gravity(material->get_gravity());
#define CONVERT_PARAM(m_param) \
set_param(m_param, material->get_param(ParticlesMaterial::m_param)); \
{ \
Ref<CurveTexture> ctex = material->get_param_texture(ParticlesMaterial::m_param); \
if (ctex.is_valid()) set_param_curve(m_param, ctex->get_curve()); \
} \
set_param_randomness(m_param, material->get_param_randomness(ParticlesMaterial::m_param));
CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY);
CONVERT_PARAM(PARAM_ANGULAR_VELOCITY);
// CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
CONVERT_PARAM(PARAM_LINEAR_ACCEL);
CONVERT_PARAM(PARAM_RADIAL_ACCEL);
CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL);
CONVERT_PARAM(PARAM_DAMPING);
CONVERT_PARAM(PARAM_ANGLE);
CONVERT_PARAM(PARAM_SCALE);
CONVERT_PARAM(PARAM_HUE_VARIATION);
CONVERT_PARAM(PARAM_ANIM_SPEED);
CONVERT_PARAM(PARAM_ANIM_OFFSET);
#undef CONVERT_PARAM
}
void CPUParticles::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_emitting", "emitting"), &CPUParticles::set_emitting);
ClassDB::bind_method(D_METHOD("set_amount", "amount"), &CPUParticles::set_amount);
ClassDB::bind_method(D_METHOD("set_lifetime", "secs"), &CPUParticles::set_lifetime);
ClassDB::bind_method(D_METHOD("set_one_shot", "enable"), &CPUParticles::set_one_shot);
ClassDB::bind_method(D_METHOD("set_pre_process_time", "secs"), &CPUParticles::set_pre_process_time);
ClassDB::bind_method(D_METHOD("set_explosiveness_ratio", "ratio"), &CPUParticles::set_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("set_randomness_ratio", "ratio"), &CPUParticles::set_randomness_ratio);
ClassDB::bind_method(D_METHOD("set_use_local_coordinates", "enable"), &CPUParticles::set_use_local_coordinates);
ClassDB::bind_method(D_METHOD("set_fixed_fps", "fps"), &CPUParticles::set_fixed_fps);
ClassDB::bind_method(D_METHOD("set_fractional_delta", "enable"), &CPUParticles::set_fractional_delta);
ClassDB::bind_method(D_METHOD("set_speed_scale", "scale"), &CPUParticles::set_speed_scale);
ClassDB::bind_method(D_METHOD("is_emitting"), &CPUParticles::is_emitting);
ClassDB::bind_method(D_METHOD("get_amount"), &CPUParticles::get_amount);
ClassDB::bind_method(D_METHOD("get_lifetime"), &CPUParticles::get_lifetime);
ClassDB::bind_method(D_METHOD("get_one_shot"), &CPUParticles::get_one_shot);
ClassDB::bind_method(D_METHOD("get_pre_process_time"), &CPUParticles::get_pre_process_time);
ClassDB::bind_method(D_METHOD("get_explosiveness_ratio"), &CPUParticles::get_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("get_randomness_ratio"), &CPUParticles::get_randomness_ratio);
ClassDB::bind_method(D_METHOD("get_use_local_coordinates"), &CPUParticles::get_use_local_coordinates);
ClassDB::bind_method(D_METHOD("get_fixed_fps"), &CPUParticles::get_fixed_fps);
ClassDB::bind_method(D_METHOD("get_fractional_delta"), &CPUParticles::get_fractional_delta);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &CPUParticles::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_draw_order", "order"), &CPUParticles::set_draw_order);
ClassDB::bind_method(D_METHOD("get_draw_order"), &CPUParticles::get_draw_order);
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CPUParticles::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CPUParticles::get_mesh);
ClassDB::bind_method(D_METHOD("restart"), &CPUParticles::restart);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emitting"), "set_emitting", "is_emitting");
ADD_PROPERTY(PropertyInfo(Variant::INT, "amount", PROPERTY_HINT_EXP_RANGE, "1,1000000,1"), "set_amount", "get_amount");
ADD_GROUP("Time", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lifetime", PROPERTY_HINT_EXP_RANGE, "0.01,600.0,0.01"), "set_lifetime", "get_lifetime");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "one_shot"), "set_one_shot", "get_one_shot");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "preprocess", PROPERTY_HINT_EXP_RANGE, "0.00,600.0,0.01"), "set_pre_process_time", "get_pre_process_time");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "speed_scale", PROPERTY_HINT_RANGE, "0.01,64,0.01"), "set_speed_scale", "get_speed_scale");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_explosiveness_ratio", "get_explosiveness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_randomness_ratio", "get_randomness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fixed_fps", PROPERTY_HINT_RANGE, "0,1000,1"), "set_fixed_fps", "get_fixed_fps");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fract_delta"), "set_fractional_delta", "get_fractional_delta");
ADD_GROUP("Drawing", "");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "local_coords"), "set_use_local_coordinates", "get_use_local_coordinates");
ADD_PROPERTY(PropertyInfo(Variant::INT, "draw_order", PROPERTY_HINT_ENUM, "Index,Lifetime,View Depth"), "set_draw_order", "get_draw_order");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
BIND_ENUM_CONSTANT(DRAW_ORDER_INDEX);
BIND_ENUM_CONSTANT(DRAW_ORDER_LIFETIME);
BIND_ENUM_CONSTANT(DRAW_ORDER_VIEW_DEPTH);
////////////////////////////////
ClassDB::bind_method(D_METHOD("set_spread", "degrees"), &CPUParticles::set_spread);
ClassDB::bind_method(D_METHOD("get_spread"), &CPUParticles::get_spread);
ClassDB::bind_method(D_METHOD("set_flatness", "amount"), &CPUParticles::set_flatness);
ClassDB::bind_method(D_METHOD("get_flatness"), &CPUParticles::get_flatness);
ClassDB::bind_method(D_METHOD("set_param", "param", "value"), &CPUParticles::set_param);
ClassDB::bind_method(D_METHOD("get_param", "param"), &CPUParticles::get_param);
ClassDB::bind_method(D_METHOD("set_param_randomness", "param", "randomness"), &CPUParticles::set_param_randomness);
ClassDB::bind_method(D_METHOD("get_param_randomness", "param"), &CPUParticles::get_param_randomness);
ClassDB::bind_method(D_METHOD("set_param_curve", "param", "curve"), &CPUParticles::set_param_curve);
ClassDB::bind_method(D_METHOD("get_param_curve", "param"), &CPUParticles::get_param_curve);
ClassDB::bind_method(D_METHOD("set_color", "color"), &CPUParticles::set_color);
ClassDB::bind_method(D_METHOD("get_color"), &CPUParticles::get_color);
ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &CPUParticles::set_color_ramp);
ClassDB::bind_method(D_METHOD("get_color_ramp"), &CPUParticles::get_color_ramp);
ClassDB::bind_method(D_METHOD("set_particle_flag", "flag", "enable"), &CPUParticles::set_particle_flag);
ClassDB::bind_method(D_METHOD("get_particle_flag", "flag"), &CPUParticles::get_particle_flag);
ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &CPUParticles::set_emission_shape);
ClassDB::bind_method(D_METHOD("get_emission_shape"), &CPUParticles::get_emission_shape);
ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &CPUParticles::set_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &CPUParticles::get_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("set_emission_box_extents", "extents"), &CPUParticles::set_emission_box_extents);
ClassDB::bind_method(D_METHOD("get_emission_box_extents"), &CPUParticles::get_emission_box_extents);
ClassDB::bind_method(D_METHOD("set_emission_points", "array"), &CPUParticles::set_emission_points);
ClassDB::bind_method(D_METHOD("get_emission_points"), &CPUParticles::get_emission_points);
ClassDB::bind_method(D_METHOD("set_emission_normals", "array"), &CPUParticles::set_emission_normals);
ClassDB::bind_method(D_METHOD("get_emission_normals"), &CPUParticles::get_emission_normals);
ClassDB::bind_method(D_METHOD("set_emission_colors", "array"), &CPUParticles::set_emission_colors);
ClassDB::bind_method(D_METHOD("get_emission_colors"), &CPUParticles::get_emission_colors);
ClassDB::bind_method(D_METHOD("get_gravity"), &CPUParticles::get_gravity);
ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &CPUParticles::set_gravity);
ClassDB::bind_method(D_METHOD("convert_from_particles", "particles"), &CPUParticles::convert_from_particles);
ClassDB::bind_method(D_METHOD("_update_render_thread"), &CPUParticles::_update_render_thread);
ADD_GROUP("Emission Shape", "emission_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Box,Points,Directed Points"), "set_emission_shape", "get_emission_shape");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01"), "set_emission_sphere_radius", "get_emission_sphere_radius");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_box_extents"), "set_emission_box_extents", "get_emission_box_extents");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_points"), "set_emission_points", "get_emission_points");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_normals"), "set_emission_normals", "get_emission_normals");
ADD_PROPERTY(PropertyInfo(Variant::POOL_COLOR_ARRAY, "emission_colors"), "set_emission_colors", "get_emission_colors");
ADD_GROUP("Flags", "flag_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_align_y"), "set_particle_flag", "get_particle_flag", FLAG_ALIGN_Y_TO_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_rotate_y"), "set_particle_flag", "get_particle_flag", FLAG_ROTATE_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_disable_z"), "set_particle_flag", "get_particle_flag", FLAG_DISABLE_Z);
ADD_GROUP("Spread", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "spread", PROPERTY_HINT_RANGE, "0,180,0.01"), "set_spread", "get_spread");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "flatness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_flatness", "get_flatness");
ADD_GROUP("Gravity", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "gravity"), "set_gravity", "get_gravity");
ADD_GROUP("Initial Velocity", "initial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param", "get_param", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_GROUP("Angular Velocity", "angular_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity", PROPERTY_HINT_RANGE, "-360,360,0.01"), "set_param", "get_param", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
/*
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
*/
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_LINEAR_ACCEL);
ADD_GROUP("Radial Accel", "radial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_RADIAL_ACCEL);
ADD_GROUP("Tangential Accel", "tangential_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_TANGENTIAL_ACCEL);
ADD_GROUP("Damping", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping", PROPERTY_HINT_RANGE, "0,100,0.01"), "set_param", "get_param", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_DAMPING);
ADD_GROUP("Angle", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle", PROPERTY_HINT_RANGE, "-720,720,0.1,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGLE);
ADD_GROUP("Scale", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param", "get_param", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_SCALE);
ADD_GROUP("Color", "");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "GradientTexture"), "set_color_ramp", "get_color_ramp");
ADD_GROUP("Hue Variation", "hue_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation", PROPERTY_HINT_RANGE, "-1,1,0.1"), "set_param", "get_param", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_HUE_VARIATION);
ADD_GROUP("Animation", "anim_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater"), "set_param", "get_param", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "anim_loop"), "set_particle_flag", "get_particle_flag", FLAG_ANIM_LOOP);
BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY);
//BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL);
BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_DAMPING);
BIND_ENUM_CONSTANT(PARAM_ANGLE);
BIND_ENUM_CONSTANT(PARAM_SCALE);
BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION);
BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED);
BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_MAX);
BIND_ENUM_CONSTANT(FLAG_ALIGN_Y_TO_VELOCITY);
BIND_ENUM_CONSTANT(FLAG_ROTATE_Y);
BIND_ENUM_CONSTANT(FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_BOX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS);
}
CPUParticles::CPUParticles() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
multimesh = VisualServer::get_singleton()->multimesh_create();
set_base(multimesh);
set_emitting(true);
set_one_shot(false);
set_amount(8);
set_lifetime(1);
set_fixed_fps(0);
set_fractional_delta(true);
set_pre_process_time(0);
set_explosiveness_ratio(0);
set_randomness_ratio(0);
set_use_local_coordinates(true);
set_draw_order(DRAW_ORDER_INDEX);
set_speed_scale(1);
set_spread(45);
set_flatness(0);
set_param(PARAM_INITIAL_LINEAR_VELOCITY, 1);
//set_param(PARAM_ORBIT_VELOCITY, 0);
set_param(PARAM_LINEAR_ACCEL, 0);
set_param(PARAM_RADIAL_ACCEL, 0);
set_param(PARAM_TANGENTIAL_ACCEL, 0);
set_param(PARAM_DAMPING, 0);
set_param(PARAM_ANGLE, 0);
set_param(PARAM_SCALE, 1);
set_param(PARAM_HUE_VARIATION, 0);
set_param(PARAM_ANIM_SPEED, 0);
set_param(PARAM_ANIM_OFFSET, 0);
set_emission_shape(EMISSION_SHAPE_POINT);
set_emission_sphere_radius(1);
set_emission_box_extents(Vector3(1, 1, 1));
set_gravity(Vector3(0, -9.8, 0));
for (int i = 0; i < PARAM_MAX; i++) {
set_param_randomness(Parameter(i), 0);
}
for (int i = 0; i < FLAG_MAX; i++) {
flags[i] = false;
}
set_color(Color(1, 1, 1, 1));
#ifndef NO_THREADS
update_mutex = Mutex::create();
#endif
}
CPUParticles::~CPUParticles() {
VS::get_singleton()->free(multimesh);
#ifndef NO_THREADS
memdelete(update_mutex);
#endif
}