virtualx-engine/editor/import/scene_importer_mesh.cpp

818 lines
28 KiB
C++
Raw Normal View History

/*************************************************************************/
/* scene_importer_mesh.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "scene_importer_mesh.h"
#include "scene/resources/surface_tool.h"
void EditorSceneImporterMesh::add_blend_shape(const String &p_name) {
ERR_FAIL_COND(surfaces.size() > 0);
blend_shapes.push_back(p_name);
}
int EditorSceneImporterMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
String EditorSceneImporterMesh::get_blend_shape_name(int p_blend_shape) const {
ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String());
return blend_shapes[p_blend_shape];
}
void EditorSceneImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) {
blend_shape_mode = p_blend_shape_mode;
}
Mesh::BlendShapeMode EditorSceneImporterMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
void EditorSceneImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name) {
ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX);
Surface s;
s.primitive = p_primitive;
s.arrays = p_arrays;
s.name = p_name;
Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX];
int vertex_count = vertex_array.size();
ERR_FAIL_COND(vertex_count == 0);
for (int i = 0; i < blend_shapes.size(); i++) {
Array bsdata = p_blend_shapes[i];
ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX);
Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND(vertex_data.size() != vertex_count);
Surface::BlendShape bs;
bs.arrays = bsdata;
s.blend_shape_data.push_back(bs);
}
List<Variant> lods;
p_lods.get_key_list(&lods);
for (List<Variant>::Element *E = lods.front(); E; E = E->next()) {
ERR_CONTINUE(!E->get().is_num());
Surface::LOD lod;
lod.distance = E->get();
lod.indices = p_lods[E->get()];
ERR_CONTINUE(lod.indices.size() == 0);
s.lods.push_back(lod);
}
s.material = p_material;
surfaces.push_back(s);
mesh.unref();
}
int EditorSceneImporterMesh::get_surface_count() const {
return surfaces.size();
}
Mesh::PrimitiveType EditorSceneImporterMesh::get_surface_primitive_type(int p_surface) {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX);
return surfaces[p_surface].primitive;
}
Array EditorSceneImporterMesh::get_surface_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return surfaces[p_surface].arrays;
}
String EditorSceneImporterMesh::get_surface_name(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String());
return surfaces[p_surface].name;
}
Array EditorSceneImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array());
return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays;
}
int EditorSceneImporterMesh::get_surface_lod_count(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
return surfaces[p_surface].lods.size();
}
Vector<int> EditorSceneImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>());
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>());
return surfaces[p_surface].lods[p_lod].indices;
}
float EditorSceneImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0);
return surfaces[p_surface].lods[p_lod].distance;
}
Ref<Material> EditorSceneImporterMesh::get_surface_material(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>());
return surfaces[p_surface].material;
}
void EditorSceneImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
surfaces.write[p_surface].material = p_material;
}
void EditorSceneImporterMesh::generate_lods() {
if (!SurfaceTool::simplify_func) {
return;
}
if (!SurfaceTool::simplify_scale_func) {
return;
}
if (!SurfaceTool::simplify_sloppy_func) {
return;
}
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
surfaces.write[i].lods.clear();
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
if (indices.size() == 0) {
continue; //no lods if no indices
}
uint32_t vertex_count = vertices.size();
const Vector3 *vertices_ptr = vertices.ptr();
int min_indices = 10;
int index_target = indices.size() / 2;
print_line("Total indices: " + itos(indices.size()));
float mesh_scale = SurfaceTool::simplify_scale_func((const float *)vertices_ptr, vertex_count, sizeof(Vector3));
const float target_error = 1e-3f;
float abs_target_error = target_error / mesh_scale;
while (index_target > min_indices) {
float error;
Vector<int> new_indices;
new_indices.resize(indices.size());
size_t new_len = SurfaceTool::simplify_func((unsigned int *)new_indices.ptrw(), (const unsigned int *)indices.ptr(), indices.size(), (const float *)vertices_ptr, vertex_count, sizeof(Vector3), index_target, abs_target_error, &error);
if ((int)new_len > (index_target * 120 / 100)) {
// Attribute discontinuities break normals.
bool is_sloppy = false;
if (is_sloppy) {
abs_target_error = target_error / mesh_scale;
index_target = new_len;
while (index_target > min_indices) {
Vector<int> sloppy_new_indices;
sloppy_new_indices.resize(indices.size());
new_len = SurfaceTool::simplify_sloppy_func((unsigned int *)sloppy_new_indices.ptrw(), (const unsigned int *)indices.ptr(), indices.size(), (const float *)vertices_ptr, vertex_count, sizeof(Vector3), index_target, abs_target_error, &error);
if ((int)new_len > (index_target * 120 / 100)) {
break; // 20 percent tolerance
}
sloppy_new_indices.resize(new_len);
Surface::LOD lod;
lod.distance = error * mesh_scale;
abs_target_error = lod.distance;
if (Math::is_equal_approx(abs_target_error, 0.0f)) {
return;
}
lod.indices = sloppy_new_indices;
print_line("Lod " + itos(surfaces.write[i].lods.size()) + " shoot for " + itos(index_target / 3) + " triangles, got " + itos(new_len / 3) + " triangles. Distance " + rtos(lod.distance) + ". Use simplify sloppy.");
surfaces.write[i].lods.push_back(lod);
index_target /= 2;
}
}
break; // 20 percent tolerance
}
new_indices.resize(new_len);
Surface::LOD lod;
lod.distance = error * mesh_scale;
abs_target_error = lod.distance;
if (Math::is_equal_approx(abs_target_error, 0.0f)) {
return;
}
lod.indices = new_indices;
print_line("Lod " + itos(surfaces.write[i].lods.size()) + " shoot for " + itos(index_target / 3) + " triangles, got " + itos(new_len / 3) + " triangles. Distance " + rtos(lod.distance));
surfaces.write[i].lods.push_back(lod);
index_target /= 2;
}
}
}
bool EditorSceneImporterMesh::has_mesh() const {
return mesh.is_valid();
}
Ref<ArrayMesh> EditorSceneImporterMesh::get_mesh(const Ref<Mesh> &p_base) {
ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>());
if (mesh.is_null()) {
if (p_base.is_valid()) {
mesh = p_base;
}
if (mesh.is_null()) {
mesh.instance();
}
mesh->set_name(get_name());
if (has_meta("import_id")) {
mesh->set_meta("import_id", get_meta("import_id"));
}
for (int i = 0; i < blend_shapes.size(); i++) {
mesh->add_blend_shape(blend_shapes[i]);
}
mesh->set_blend_shape_mode(blend_shape_mode);
for (int i = 0; i < surfaces.size(); i++) {
Array bs_data;
if (surfaces[i].blend_shape_data.size()) {
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
}
}
Dictionary lods;
if (surfaces[i].lods.size()) {
for (int j = 0; j < surfaces[i].lods.size(); j++) {
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
}
}
mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods);
if (surfaces[i].material.is_valid()) {
mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material);
}
if (surfaces[i].name != String()) {
mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name);
}
}
mesh->set_lightmap_size_hint(lightmap_size_hint);
if (shadow_mesh.is_valid()) {
Ref<ArrayMesh> shadow = shadow_mesh->get_mesh();
mesh->set_shadow_mesh(shadow);
}
}
return mesh;
}
void EditorSceneImporterMesh::clear() {
surfaces.clear();
blend_shapes.clear();
mesh.unref();
}
void EditorSceneImporterMesh::create_shadow_mesh() {
if (shadow_mesh.is_valid()) {
shadow_mesh.unref();
}
//no shadow mesh for blendshapes
if (blend_shapes.size() > 0) {
return;
}
//no shadow mesh for skeletons
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) {
return;
}
if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) {
return;
}
}
shadow_mesh.instance();
for (int i = 0; i < surfaces.size(); i++) {
LocalVector<int> vertex_remap;
Vector<Vector3> new_vertices;
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
int vertex_count = vertices.size();
{
Map<Vector3, int> unique_vertices;
const Vector3 *vptr = vertices.ptr();
for (int j = 0; j < vertex_count; j++) {
Vector3 v = vptr[j];
Map<Vector3, int>::Element *E = unique_vertices.find(v);
if (E) {
vertex_remap.push_back(E->get());
} else {
int vcount = unique_vertices.size();
unique_vertices[v] = vcount;
vertex_remap.push_back(vcount);
new_vertices.push_back(v);
}
}
}
Array new_surface;
new_surface.resize(RS::ARRAY_MAX);
Dictionary lods;
// print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size()));
new_surface[RS::ARRAY_VERTEX] = new_vertices;
Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
if (indices.size()) {
int index_count = indices.size();
const int *index_rptr = indices.ptr();
Vector<int> new_indices;
new_indices.resize(indices.size());
int *index_wptr = new_indices.ptrw();
for (int j = 0; j < index_count; j++) {
int index = index_rptr[j];
ERR_FAIL_INDEX(index, vertex_count);
index_wptr[j] = vertex_remap[index];
}
new_surface[RS::ARRAY_INDEX] = new_indices;
// Make sure the same LODs as the full version are used.
// This makes it more coherent between rendered model and its shadows.
for (int j = 0; j < surfaces[i].lods.size(); j++) {
indices = surfaces[i].lods[j].indices;
index_count = indices.size();
index_rptr = indices.ptr();
new_indices.resize(indices.size());
index_wptr = new_indices.ptrw();
for (int k = 0; k < index_count; k++) {
int index = index_rptr[j];
ERR_FAIL_INDEX(index, vertex_count);
index_wptr[j] = vertex_remap[index];
}
lods[surfaces[i].lods[j].distance] = new_indices;
}
}
shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name);
}
}
Ref<EditorSceneImporterMesh> EditorSceneImporterMesh::get_shadow_mesh() const {
return shadow_mesh;
}
void EditorSceneImporterMesh::_set_data(const Dictionary &p_data) {
clear();
if (p_data.has("blend_shape_names")) {
blend_shapes = p_data["blend_shape_names"];
}
if (p_data.has("surfaces")) {
Array surface_arr = p_data["surfaces"];
for (int i = 0; i < surface_arr.size(); i++) {
Dictionary s = surface_arr[i];
ERR_CONTINUE(!s.has("primitive"));
ERR_CONTINUE(!s.has("arrays"));
Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"]));
ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX);
Array arr = s["arrays"];
Dictionary lods;
String name;
if (s.has("name")) {
name = s["name"];
}
if (s.has("lods")) {
lods = s["lods"];
}
Array blend_shapes;
if (s.has("blend_shapes")) {
blend_shapes = s["blend_shapes"];
}
Ref<Material> material;
if (s.has("material")) {
material = s["material"];
}
add_surface(prim, arr, blend_shapes, lods, material, name);
}
}
}
Dictionary EditorSceneImporterMesh::_get_data() const {
Dictionary data;
if (blend_shapes.size()) {
data["blend_shape_names"] = blend_shapes;
}
Array surface_arr;
for (int i = 0; i < surfaces.size(); i++) {
Dictionary d;
d["primitive"] = surfaces[i].primitive;
d["arrays"] = surfaces[i].arrays;
if (surfaces[i].blend_shape_data.size()) {
Array bs_data;
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
}
d["blend_shapes"] = bs_data;
}
if (surfaces[i].lods.size()) {
Dictionary lods;
for (int j = 0; j < surfaces[i].lods.size(); j++) {
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
}
d["lods"] = lods;
}
if (surfaces[i].material.is_valid()) {
d["material"] = surfaces[i].material;
}
if (surfaces[i].name != String()) {
d["name"] = surfaces[i].name;
}
surface_arr.push_back(d);
}
data["surfaces"] = surface_arr;
return data;
}
Vector<Face3> EditorSceneImporterMesh::get_faces() const {
Vector<Face3> faces;
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) {
Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX];
Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX];
if (indices.size()) {
for (int j = 0; j < indices.size(); j += 3) {
Face3 f;
f.vertex[0] = vertices[indices[j + 0]];
f.vertex[1] = vertices[indices[j + 1]];
f.vertex[2] = vertices[indices[j + 2]];
faces.push_back(f);
}
} else {
for (int j = 0; j < vertices.size(); j += 3) {
Face3 f;
f.vertex[0] = vertices[j + 0];
f.vertex[1] = vertices[j + 1];
f.vertex[2] = vertices[j + 2];
faces.push_back(f);
}
}
}
}
return faces;
}
Vector<Ref<Shape3D>> EditorSceneImporterMesh::convex_decompose() const {
ERR_FAIL_COND_V(!Mesh::convex_composition_function, Vector<Ref<Shape3D>>());
const Vector<Face3> faces = get_faces();
Vector<Vector<Face3>> decomposed = Mesh::convex_composition_function(faces);
Vector<Ref<Shape3D>> ret;
for (int i = 0; i < decomposed.size(); i++) {
Set<Vector3> points;
for (int j = 0; j < decomposed[i].size(); j++) {
points.insert(decomposed[i][j].vertex[0]);
points.insert(decomposed[i][j].vertex[1]);
points.insert(decomposed[i][j].vertex[2]);
}
Vector<Vector3> convex_points;
convex_points.resize(points.size());
{
Vector3 *w = convex_points.ptrw();
int idx = 0;
for (Set<Vector3>::Element *E = points.front(); E; E = E->next()) {
w[idx++] = E->get();
}
}
Ref<ConvexPolygonShape3D> shape;
shape.instance();
shape->set_points(convex_points);
ret.push_back(shape);
}
return ret;
}
Ref<Shape3D> EditorSceneImporterMesh::create_trimesh_shape() const {
Vector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<Shape3D>();
}
Vector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i += 3) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[0]);
face_points.set(i + 1, f.vertex[1]);
face_points.set(i + 2, f.vertex[2]);
}
Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
shape->set_faces(face_points);
return shape;
}
Ref<NavigationMesh> EditorSceneImporterMesh::create_navigation_mesh() {
Vector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<NavigationMesh>();
}
Map<Vector3, int> unique_vertices;
LocalVector<int> face_indices;
for (int i = 0; i < faces.size(); i++) {
for (int j = 0; j < 3; j++) {
Vector3 v = faces[i].vertex[j];
int idx;
if (unique_vertices.has(v)) {
idx = unique_vertices[v];
} else {
idx = unique_vertices.size();
unique_vertices[v] = idx;
}
face_indices.push_back(idx);
}
}
Vector<Vector3> vertices;
vertices.resize(unique_vertices.size());
for (Map<Vector3, int>::Element *E = unique_vertices.front(); E; E = E->next()) {
vertices.write[E->get()] = E->key();
}
Ref<NavigationMesh> nm;
nm.instance();
nm->set_vertices(vertices);
Vector<int> v3;
v3.resize(3);
for (uint32_t i = 0; i < face_indices.size(); i += 3) {
v3.write[0] = face_indices[i + 0];
v3.write[1] = face_indices[i + 1];
v3.write[2] = face_indices[i + 2];
nm->add_polygon(v3);
}
return nm;
}
extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y, int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache);
struct EditorSceneImporterMeshLightmapSurface {
Ref<Material> material;
LocalVector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
uint32_t format = 0;
String name;
};
Error EditorSceneImporterMesh::lightmap_unwrap_cached(int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache, const Transform &p_base_transform, float p_texel_size) {
ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
Vector<float> vertices;
Vector<float> normals;
Vector<int> indices;
Vector<float> uv;
Vector<Pair<int, int>> uv_indices;
Vector<EditorSceneImporterMeshLightmapSurface> lightmap_surfaces;
// Keep only the scale
Transform transform = p_base_transform;
transform.origin = Vector3();
transform.looking_at(Vector3(1, 0, 0), Vector3(0, 1, 0));
Basis normal_basis = transform.basis.inverse().transposed();
for (int i = 0; i < get_surface_count(); i++) {
EditorSceneImporterMeshLightmapSurface s;
s.primitive = get_surface_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
Array arrays = get_surface_arrays(i);
s.material = get_surface_material(i);
s.name = get_surface_name(i);
SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format);
Vector<Vector3> rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
const Vector3 *r = rvertices.ptr();
Vector<Vector3> rnormals = arrays[Mesh::ARRAY_NORMAL];
ERR_FAIL_COND_V_MSG(rnormals.size() == 0, ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
const Vector3 *rn = rnormals.ptr();
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_indices.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = transform.xform(r[j]);
Vector3 n = normal_basis.xform(rn[j]).normalized();
vertices.write[(j + vertex_ofs) * 3 + 0] = v.x;
vertices.write[(j + vertex_ofs) * 3 + 1] = v.y;
vertices.write[(j + vertex_ofs) * 3 + 2] = v.z;
normals.write[(j + vertex_ofs) * 3 + 0] = n.x;
normals.write[(j + vertex_ofs) * 3 + 1] = n.y;
normals.write[(j + vertex_ofs) * 3 + 2] = n.z;
uv_indices.write[j + vertex_ofs] = Pair<int, int>(i, j);
}
Vector<int> rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
if (Face3(r[j * 3 + 0], r[j * 3 + 1], r[j * 3 + 2]).is_degenerate()) {
continue;
}
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
}
} else {
const int *ri = rindices.ptr();
for (int j = 0; j < ic / 3; j++) {
if (Face3(r[ri[j * 3 + 0]], r[ri[j * 3 + 1]], r[ri[j * 3 + 2]]).is_degenerate()) {
continue;
}
indices.push_back(vertex_ofs + ri[j * 3 + 0]);
indices.push_back(vertex_ofs + ri[j * 3 + 1]);
indices.push_back(vertex_ofs + ri[j * 3 + 2]);
}
}
lightmap_surfaces.push_back(s);
}
//unwrap
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y, r_cache_data, r_cache_size, r_used_cache);
if (!ok) {
return ERR_CANT_CREATE;
}
//remove surfaces
clear();
//create surfacetools for each surface..
Vector<Ref<SurfaceTool>> surfaces_tools;
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(lightmap_surfaces[i].material);
st->set_meta("name", lightmap_surfaces[i].name);
surfaces_tools.push_back(st); //stay there
}
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], uv_indices.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) {
surfaces_tools.write[surface]->set_color(v.color);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) {
surfaces_tools.write[surface]->set_uv(v.uv);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) {
surfaces_tools.write[surface]->set_normal(v.normal);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools.write[surface]->set_tangent(t);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) {
surfaces_tools.write[surface]->set_bones(v.bones);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) {
surfaces_tools.write[surface]->set_weights(v.weights);
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools.write[surface]->set_uv2(uv2);
surfaces_tools.write[surface]->add_vertex(v.vertex);
}
}
//generate surfaces
for (int i = 0; i < surfaces_tools.size(); i++) {
surfaces_tools.write[i]->index();
Array arrays = surfaces_tools.write[i]->commit_to_arrays();
add_surface(surfaces_tools.write[i]->get_primitive(), arrays, Array(), Dictionary(), surfaces_tools.write[i]->get_material(), surfaces_tools.write[i]->get_meta("name"));
}
set_lightmap_size_hint(Size2(size_x, size_y));
if (!r_used_cache) {
//free stuff
::free(gen_vertices);
::free(gen_indices);
::free(gen_uvs);
}
return OK;
}
void EditorSceneImporterMesh::set_lightmap_size_hint(const Size2i &p_size) {
lightmap_size_hint = p_size;
}
Size2i EditorSceneImporterMesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
void EditorSceneImporterMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &EditorSceneImporterMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &EditorSceneImporterMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &EditorSceneImporterMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &EditorSceneImporterMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &EditorSceneImporterMesh::get_blend_shape_mode);
2021-02-18 08:47:06 +01:00
ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name"), &EditorSceneImporterMesh::add_surface, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()));
ClassDB::bind_method(D_METHOD("get_surface_count"), &EditorSceneImporterMesh::get_surface_count);
ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &EditorSceneImporterMesh::get_surface_primitive_type);
ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &EditorSceneImporterMesh::get_surface_name);
ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &EditorSceneImporterMesh::get_surface_arrays);
ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &EditorSceneImporterMesh::get_surface_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &EditorSceneImporterMesh::get_surface_lod_count);
ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &EditorSceneImporterMesh::get_surface_lod_size);
ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &EditorSceneImporterMesh::get_surface_lod_indices);
ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &EditorSceneImporterMesh::get_surface_material);
ClassDB::bind_method(D_METHOD("get_mesh"), &EditorSceneImporterMesh::get_mesh);
ClassDB::bind_method(D_METHOD("clear"), &EditorSceneImporterMesh::clear);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &EditorSceneImporterMesh::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &EditorSceneImporterMesh::_get_data);
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &EditorSceneImporterMesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &EditorSceneImporterMesh::get_lightmap_size_hint);
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_data", "_get_data");
}