536 lines
19 KiB
C++
536 lines
19 KiB
C++
|
// ======================================================================== //
|
||
|
// Copyright 2009-2019 Intel Corporation //
|
||
|
// //
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License"); //
|
||
|
// you may not use this file except in compliance with the License. //
|
||
|
// You may obtain a copy of the License at //
|
||
|
// //
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0 //
|
||
|
// //
|
||
|
// Unless required by applicable law or agreed to in writing, software //
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS, //
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
|
||
|
// See the License for the specific language governing permissions and //
|
||
|
// limitations under the License. //
|
||
|
// ======================================================================== //
|
||
|
|
||
|
#include "autoencoder.h"
|
||
|
|
||
|
namespace oidn {
|
||
|
|
||
|
// --------------------------------------------------------------------------
|
||
|
// AutoencoderFilter
|
||
|
// --------------------------------------------------------------------------
|
||
|
|
||
|
AutoencoderFilter::AutoencoderFilter(const Ref<Device>& device)
|
||
|
: Filter(device)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::setImage(const std::string& name, const Image& data)
|
||
|
{
|
||
|
if (name == "color")
|
||
|
color = data;
|
||
|
else if (name == "albedo")
|
||
|
albedo = data;
|
||
|
else if (name == "normal")
|
||
|
normal = data;
|
||
|
else if (name == "output")
|
||
|
output = data;
|
||
|
|
||
|
dirty = true;
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::set1i(const std::string& name, int value)
|
||
|
{
|
||
|
if (name == "hdr")
|
||
|
hdr = value;
|
||
|
else if (name == "srgb")
|
||
|
srgb = value;
|
||
|
else if (name == "maxMemoryMB")
|
||
|
maxMemoryMB = value;
|
||
|
|
||
|
dirty = true;
|
||
|
}
|
||
|
|
||
|
int AutoencoderFilter::get1i(const std::string& name)
|
||
|
{
|
||
|
if (name == "hdr")
|
||
|
return hdr;
|
||
|
else if (name == "srgb")
|
||
|
return srgb;
|
||
|
else if (name == "maxMemoryMB")
|
||
|
return maxMemoryMB;
|
||
|
else if (name == "alignment")
|
||
|
return alignment;
|
||
|
else if (name == "overlap")
|
||
|
return overlap;
|
||
|
else
|
||
|
throw Exception(Error::InvalidArgument, "invalid parameter");
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::set1f(const std::string& name, float value)
|
||
|
{
|
||
|
if (name == "hdrScale")
|
||
|
hdrScale = value;
|
||
|
|
||
|
dirty = true;
|
||
|
}
|
||
|
|
||
|
float AutoencoderFilter::get1f(const std::string& name)
|
||
|
{
|
||
|
if (name == "hdrScale")
|
||
|
return hdrScale;
|
||
|
else
|
||
|
throw Exception(Error::InvalidArgument, "invalid parameter");
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::commit()
|
||
|
{
|
||
|
if (!dirty)
|
||
|
return;
|
||
|
|
||
|
// -- GODOT start --
|
||
|
//device->executeTask([&]()
|
||
|
//{
|
||
|
// GODOT end --
|
||
|
|
||
|
if (mayiuse(avx512_common))
|
||
|
net = buildNet<16>();
|
||
|
else
|
||
|
net = buildNet<8>();
|
||
|
|
||
|
// GODOT start --
|
||
|
//});
|
||
|
// GODOT end --
|
||
|
|
||
|
dirty = false;
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::execute()
|
||
|
{
|
||
|
if (dirty)
|
||
|
throw Exception(Error::InvalidOperation, "changes to the filter are not committed");
|
||
|
|
||
|
if (!net)
|
||
|
return;
|
||
|
// -- GODOT start --
|
||
|
//device->executeTask([&]()
|
||
|
//{
|
||
|
// -- GODOT end --
|
||
|
Progress progress;
|
||
|
progress.func = progressFunc;
|
||
|
progress.userPtr = progressUserPtr;
|
||
|
progress.taskCount = tileCountH * tileCountW;
|
||
|
|
||
|
// Iterate over the tiles
|
||
|
int tileIndex = 0;
|
||
|
|
||
|
for (int i = 0; i < tileCountH; ++i)
|
||
|
{
|
||
|
const int h = i * (tileH - 2*overlap); // input tile position (including overlap)
|
||
|
const int overlapBeginH = i > 0 ? overlap : 0; // overlap on the top
|
||
|
const int overlapEndH = i < tileCountH-1 ? overlap : 0; // overlap on the bottom
|
||
|
const int tileH1 = min(H - h, tileH); // input tile size (including overlap)
|
||
|
const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size
|
||
|
const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer
|
||
|
|
||
|
for (int j = 0; j < tileCountW; ++j)
|
||
|
{
|
||
|
const int w = j * (tileW - 2*overlap); // input tile position (including overlap)
|
||
|
const int overlapBeginW = j > 0 ? overlap : 0; // overlap on the left
|
||
|
const int overlapEndW = j < tileCountW-1 ? overlap : 0; // overlap on the right
|
||
|
const int tileW1 = min(W - w, tileW); // input tile size (including overlap)
|
||
|
const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size
|
||
|
const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer
|
||
|
|
||
|
// Set the input tile
|
||
|
inputReorder->setTile(h, w,
|
||
|
alignOffsetH, alignOffsetW,
|
||
|
tileH1, tileW1);
|
||
|
|
||
|
// Set the output tile
|
||
|
outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW,
|
||
|
h + overlapBeginH, w + overlapBeginW,
|
||
|
tileH2, tileW2);
|
||
|
|
||
|
//printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2);
|
||
|
|
||
|
// Denoise the tile
|
||
|
net->execute(progress, tileIndex);
|
||
|
|
||
|
// Next tile
|
||
|
tileIndex++;
|
||
|
}
|
||
|
}
|
||
|
// -- GODOT start --
|
||
|
//});
|
||
|
// -- GODOT end --
|
||
|
}
|
||
|
|
||
|
void AutoencoderFilter::computeTileSize()
|
||
|
{
|
||
|
const int minTileSize = 3*overlap;
|
||
|
const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8;
|
||
|
const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel;
|
||
|
|
||
|
tileCountH = 1;
|
||
|
tileCountW = 1;
|
||
|
tileH = roundUp(H, alignment);
|
||
|
tileW = roundUp(W, alignment);
|
||
|
|
||
|
// Divide the image into tiles until the tile size gets below the threshold
|
||
|
while (int64_t(tileH) * tileW > maxTilePixels)
|
||
|
{
|
||
|
if (tileH > minTileSize && tileH > tileW)
|
||
|
{
|
||
|
tileCountH++;
|
||
|
tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize);
|
||
|
}
|
||
|
else if (tileW > minTileSize)
|
||
|
{
|
||
|
tileCountW++;
|
||
|
tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize);
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Compute the final number of tiles
|
||
|
tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1;
|
||
|
tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1;
|
||
|
|
||
|
if (device->isVerbose(2))
|
||
|
{
|
||
|
std::cout << "Tile size : " << tileW << "x" << tileH << std::endl;
|
||
|
std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<int K>
|
||
|
std::shared_ptr<Executable> AutoencoderFilter::buildNet()
|
||
|
{
|
||
|
H = color.height;
|
||
|
W = color.width;
|
||
|
|
||
|
// Configure the network
|
||
|
int inputC;
|
||
|
void* weightPtr;
|
||
|
|
||
|
if (srgb && hdr)
|
||
|
throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time");
|
||
|
|
||
|
if (color && !albedo && !normal && weightData.hdr)
|
||
|
{
|
||
|
inputC = 3;
|
||
|
weightPtr = hdr ? weightData.hdr : weightData.ldr;
|
||
|
}
|
||
|
else if (color && albedo && !normal && weightData.hdr_alb)
|
||
|
{
|
||
|
inputC = 6;
|
||
|
weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb;
|
||
|
}
|
||
|
else if (color && albedo && normal && weightData.hdr_alb_nrm)
|
||
|
{
|
||
|
inputC = 9;
|
||
|
weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
throw Exception(Error::InvalidOperation, "unsupported combination of input features");
|
||
|
}
|
||
|
|
||
|
if (!output)
|
||
|
throw Exception(Error::InvalidOperation, "output image not specified");
|
||
|
|
||
|
if ((color.format != Format::Float3)
|
||
|
|| (albedo && albedo.format != Format::Float3)
|
||
|
|| (normal && normal.format != Format::Float3)
|
||
|
|| (output.format != Format::Float3))
|
||
|
throw Exception(Error::InvalidOperation, "unsupported image format");
|
||
|
|
||
|
if ((albedo && (albedo.width != W || albedo.height != H))
|
||
|
|| (normal && (normal.width != W || normal.height != H))
|
||
|
|| (output.width != W || output.height != H))
|
||
|
throw Exception(Error::InvalidOperation, "image size mismatch");
|
||
|
|
||
|
// Compute the tile size
|
||
|
computeTileSize();
|
||
|
|
||
|
// If the image size is zero, there is nothing else to do
|
||
|
if (H <= 0 || W <= 0)
|
||
|
return nullptr;
|
||
|
|
||
|
// Parse the weights
|
||
|
const auto weightMap = parseTensors(weightPtr);
|
||
|
|
||
|
// Create the network
|
||
|
std::shared_ptr<Network<K>> net = std::make_shared<Network<K>>(device, weightMap);
|
||
|
|
||
|
// Compute the tensor sizes
|
||
|
const auto inputDims = memory::dims({1, inputC, tileH, tileW});
|
||
|
const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment); //-> concat0
|
||
|
|
||
|
const auto conv1Dims = net->getConvDims("conv1", inputReorderDims); //-> temp0
|
||
|
const auto conv1bDims = net->getConvDims("conv1b", conv1Dims); //-> temp1
|
||
|
const auto pool1Dims = net->getPoolDims(conv1bDims); //-> concat1
|
||
|
const auto conv2Dims = net->getConvDims("conv2", pool1Dims); //-> temp0
|
||
|
const auto pool2Dims = net->getPoolDims(conv2Dims); //-> concat2
|
||
|
const auto conv3Dims = net->getConvDims("conv3", pool2Dims); //-> temp0
|
||
|
const auto pool3Dims = net->getPoolDims(conv3Dims); //-> concat3
|
||
|
const auto conv4Dims = net->getConvDims("conv4", pool3Dims); //-> temp0
|
||
|
const auto pool4Dims = net->getPoolDims(conv4Dims); //-> concat4
|
||
|
const auto conv5Dims = net->getConvDims("conv5", pool4Dims); //-> temp0
|
||
|
const auto pool5Dims = net->getPoolDims(conv5Dims); //-> temp1
|
||
|
const auto upsample4Dims = net->getUpsampleDims(pool5Dims); //-> concat4
|
||
|
const auto concat4Dims = net->getConcatDims(upsample4Dims, pool4Dims);
|
||
|
const auto conv6Dims = net->getConvDims("conv6", concat4Dims); //-> temp0
|
||
|
const auto conv6bDims = net->getConvDims("conv6b", conv6Dims); //-> temp1
|
||
|
const auto upsample3Dims = net->getUpsampleDims(conv6bDims); //-> concat3
|
||
|
const auto concat3Dims = net->getConcatDims(upsample3Dims, pool3Dims);
|
||
|
const auto conv7Dims = net->getConvDims("conv7", concat3Dims); //-> temp0
|
||
|
const auto conv7bDims = net->getConvDims("conv7b", conv7Dims); //-> temp1
|
||
|
const auto upsample2Dims = net->getUpsampleDims(conv7bDims); //-> concat2
|
||
|
const auto concat2Dims = net->getConcatDims(upsample2Dims, pool2Dims);
|
||
|
const auto conv8Dims = net->getConvDims("conv8", concat2Dims); //-> temp0
|
||
|
const auto conv8bDims = net->getConvDims("conv8b", conv8Dims); //-> temp1
|
||
|
const auto upsample1Dims = net->getUpsampleDims(conv8bDims); //-> concat1
|
||
|
const auto concat1Dims = net->getConcatDims(upsample1Dims, pool1Dims);
|
||
|
const auto conv9Dims = net->getConvDims("conv9", concat1Dims); //-> temp0
|
||
|
const auto conv9bDims = net->getConvDims("conv9b", conv9Dims); //-> temp1
|
||
|
const auto upsample0Dims = net->getUpsampleDims(conv9bDims); //-> concat0
|
||
|
const auto concat0Dims = net->getConcatDims(upsample0Dims, inputReorderDims);
|
||
|
const auto conv10Dims = net->getConvDims("conv10", concat0Dims); //-> temp0
|
||
|
const auto conv10bDims = net->getConvDims("conv10b", conv10Dims); //-> temp1
|
||
|
const auto conv11Dims = net->getConvDims("conv11", conv10bDims); //-> temp0
|
||
|
|
||
|
const auto outputDims = memory::dims({1, 3, tileH, tileW});
|
||
|
|
||
|
// Allocate two temporary ping-pong buffers to decrease memory usage
|
||
|
const auto temp0Dims = getMaxTensorDims({
|
||
|
conv1Dims,
|
||
|
conv2Dims,
|
||
|
conv3Dims,
|
||
|
conv4Dims,
|
||
|
conv5Dims,
|
||
|
conv6Dims,
|
||
|
conv7Dims,
|
||
|
conv8Dims,
|
||
|
conv9Dims,
|
||
|
conv10Dims,
|
||
|
conv11Dims
|
||
|
});
|
||
|
|
||
|
const auto temp1Dims = getMaxTensorDims({
|
||
|
conv1bDims,
|
||
|
pool5Dims,
|
||
|
conv6bDims,
|
||
|
conv7bDims,
|
||
|
conv8bDims,
|
||
|
conv9bDims,
|
||
|
conv10bDims,
|
||
|
});
|
||
|
|
||
|
auto temp0 = net->allocTensor(temp0Dims);
|
||
|
auto temp1 = net->allocTensor(temp1Dims);
|
||
|
|
||
|
// Allocate enough memory to hold the concat outputs. Then use the first
|
||
|
// half to hold the previous conv output and the second half to hold the
|
||
|
// pool/orig image output. This works because everything is C dimension
|
||
|
// outermost, padded to K floats, and all the concats are on the C dimension.
|
||
|
auto concat0Dst = net->allocTensor(concat0Dims);
|
||
|
auto concat1Dst = net->allocTensor(concat1Dims);
|
||
|
auto concat2Dst = net->allocTensor(concat2Dims);
|
||
|
auto concat3Dst = net->allocTensor(concat3Dims);
|
||
|
auto concat4Dst = net->allocTensor(concat4Dims);
|
||
|
|
||
|
// Transfer function
|
||
|
std::shared_ptr<TransferFunction> transferFunc = makeTransferFunc();
|
||
|
|
||
|
// Autoexposure
|
||
|
if (auto tf = std::dynamic_pointer_cast<HDRTransferFunction>(transferFunc))
|
||
|
{
|
||
|
if (isnan(hdrScale))
|
||
|
net->addAutoexposure(color, tf);
|
||
|
else
|
||
|
tf->setExposure(hdrScale);
|
||
|
}
|
||
|
|
||
|
// Input reorder
|
||
|
auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims);
|
||
|
inputReorder = net->addInputReorder(color, albedo, normal,
|
||
|
transferFunc,
|
||
|
alignment, inputReorderDst);
|
||
|
|
||
|
// conv1
|
||
|
auto conv1 = net->addConv("conv1", inputReorder->getDst(), temp0);
|
||
|
|
||
|
// conv1b
|
||
|
auto conv1b = net->addConv("conv1b", conv1->getDst(), temp1);
|
||
|
|
||
|
// pool1
|
||
|
// Adjust pointer for pool1 to eliminate concat1
|
||
|
auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims);
|
||
|
auto pool1 = net->addPool(conv1b->getDst(), pool1Dst);
|
||
|
|
||
|
// conv2
|
||
|
auto conv2 = net->addConv("conv2", pool1->getDst(), temp0);
|
||
|
|
||
|
// pool2
|
||
|
// Adjust pointer for pool2 to eliminate concat2
|
||
|
auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims);
|
||
|
auto pool2 = net->addPool(conv2->getDst(), pool2Dst);
|
||
|
|
||
|
// conv3
|
||
|
auto conv3 = net->addConv("conv3", pool2->getDst(), temp0);
|
||
|
|
||
|
// pool3
|
||
|
// Adjust pointer for pool3 to eliminate concat3
|
||
|
auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims);
|
||
|
auto pool3 = net->addPool(conv3->getDst(), pool3Dst);
|
||
|
|
||
|
// conv4
|
||
|
auto conv4 = net->addConv("conv4", pool3->getDst(), temp0);
|
||
|
|
||
|
// pool4
|
||
|
// Adjust pointer for pool4 to eliminate concat4
|
||
|
auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims);
|
||
|
auto pool4 = net->addPool(conv4->getDst(), pool4Dst);
|
||
|
|
||
|
// conv5
|
||
|
auto conv5 = net->addConv("conv5", pool4->getDst(), temp0);
|
||
|
|
||
|
// pool5
|
||
|
auto pool5 = net->addPool(conv5->getDst(), temp1);
|
||
|
|
||
|
// upsample4
|
||
|
auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst);
|
||
|
auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst);
|
||
|
|
||
|
// conv6
|
||
|
auto conv6 = net->addConv("conv6", concat4Dst, temp0);
|
||
|
|
||
|
// conv6b
|
||
|
auto conv6b = net->addConv("conv6b", conv6->getDst(), temp1);
|
||
|
|
||
|
// upsample3
|
||
|
auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst);
|
||
|
auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst);
|
||
|
|
||
|
// conv7
|
||
|
auto conv7 = net->addConv("conv7", concat3Dst, temp0);
|
||
|
|
||
|
// conv7b
|
||
|
auto conv7b = net->addConv("conv7b", conv7->getDst(), temp1);
|
||
|
|
||
|
// upsample2
|
||
|
auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst);
|
||
|
auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst);
|
||
|
|
||
|
// conv8
|
||
|
auto conv8 = net->addConv("conv8", concat2Dst, temp0);
|
||
|
|
||
|
// conv8b
|
||
|
auto conv8b = net->addConv("conv8b", conv8->getDst(), temp1);
|
||
|
|
||
|
// upsample1
|
||
|
auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst);
|
||
|
auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst);
|
||
|
|
||
|
// conv9
|
||
|
auto conv9 = net->addConv("conv9", concat1Dst, temp0);
|
||
|
|
||
|
// conv9b
|
||
|
auto conv9b = net->addConv("conv9b", conv9->getDst(), temp1);
|
||
|
|
||
|
// upsample0
|
||
|
auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst);
|
||
|
auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst);
|
||
|
|
||
|
// conv10
|
||
|
auto conv10 = net->addConv("conv10", concat0Dst, temp0);
|
||
|
|
||
|
// conv10b
|
||
|
auto conv10b = net->addConv("conv10b", conv10->getDst(), temp1);
|
||
|
|
||
|
// conv11
|
||
|
auto conv11 = net->addConv("conv11", conv10b->getDst(), temp0, false /* no relu */);
|
||
|
|
||
|
// Output reorder
|
||
|
outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output);
|
||
|
|
||
|
net->finalize();
|
||
|
return net;
|
||
|
}
|
||
|
|
||
|
std::shared_ptr<TransferFunction> AutoencoderFilter::makeTransferFunc()
|
||
|
{
|
||
|
if (hdr)
|
||
|
return std::make_shared<PQXTransferFunction>();
|
||
|
else if (srgb)
|
||
|
return std::make_shared<LinearTransferFunction>();
|
||
|
else
|
||
|
return std::make_shared<GammaTransferFunction>();
|
||
|
}
|
||
|
|
||
|
// -- GODOT start --
|
||
|
// Godot doesn't need Raytracing filters. Removing them saves space in the weights files.
|
||
|
#if 0
|
||
|
// -- GODOT end --
|
||
|
|
||
|
// --------------------------------------------------------------------------
|
||
|
// RTFilter
|
||
|
// --------------------------------------------------------------------------
|
||
|
|
||
|
namespace weights
|
||
|
{
|
||
|
// LDR
|
||
|
extern unsigned char rt_ldr[]; // color
|
||
|
extern unsigned char rt_ldr_alb[]; // color, albedo
|
||
|
extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal
|
||
|
|
||
|
// HDR
|
||
|
extern unsigned char rt_hdr[]; // color
|
||
|
extern unsigned char rt_hdr_alb[]; // color, albedo
|
||
|
extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal
|
||
|
}
|
||
|
|
||
|
RTFilter::RTFilter(const Ref<Device>& device)
|
||
|
: AutoencoderFilter(device)
|
||
|
{
|
||
|
weightData.ldr = weights::rt_ldr;
|
||
|
weightData.ldr_alb = weights::rt_ldr_alb;
|
||
|
weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm;
|
||
|
weightData.hdr = weights::rt_hdr;
|
||
|
weightData.hdr_alb = weights::rt_hdr_alb;
|
||
|
weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm;
|
||
|
}
|
||
|
// -- GODOT start --
|
||
|
#endif
|
||
|
// -- GODOT end --
|
||
|
|
||
|
// --------------------------------------------------------------------------
|
||
|
// RTLightmapFilter
|
||
|
// --------------------------------------------------------------------------
|
||
|
|
||
|
namespace weights
|
||
|
{
|
||
|
// HDR
|
||
|
extern unsigned char rtlightmap_hdr[]; // color
|
||
|
}
|
||
|
|
||
|
RTLightmapFilter::RTLightmapFilter(const Ref<Device>& device)
|
||
|
: AutoencoderFilter(device)
|
||
|
{
|
||
|
weightData.hdr = weights::rtlightmap_hdr;
|
||
|
|
||
|
hdr = true;
|
||
|
}
|
||
|
|
||
|
std::shared_ptr<TransferFunction> RTLightmapFilter::makeTransferFunc()
|
||
|
{
|
||
|
return std::make_shared<LogTransferFunction>();
|
||
|
}
|
||
|
|
||
|
} // namespace oidn
|