virtualx-engine/modules/bullet/shape_bullet.cpp

597 lines
18 KiB
C++
Raw Normal View History

/*************************************************************************/
/* shape_bullet.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "shape_bullet.h"
#include "btRayShape.h"
#include "bullet_physics_server.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "core/config/project_settings.h"
#include "shape_owner_bullet.h"
2018-08-31 09:40:50 +02:00
#include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
#include <BulletCollision/CollisionShapes/btConvexPointCloudShape.h>
#include <BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h>
#include <btBulletCollisionCommon.h>
/**
@author AndreaCatania
*/
ShapeBullet::ShapeBullet() {}
ShapeBullet::~ShapeBullet() {}
btCollisionShape *ShapeBullet::create_bt_shape(const Vector3 &p_implicit_scale, real_t p_extra_edge) {
btVector3 s;
G_TO_B(p_implicit_scale, s);
return create_bt_shape(s, p_extra_edge);
}
btCollisionShape *ShapeBullet::prepare(btCollisionShape *p_btShape) const {
p_btShape->setUserPointer(const_cast<ShapeBullet *>(this));
p_btShape->setMargin(margin);
return p_btShape;
}
void ShapeBullet::notifyShapeChanged() {
for (Map<ShapeOwnerBullet *, int>::Element *E = owners.front(); E; E = E->next()) {
ShapeOwnerBullet *owner = static_cast<ShapeOwnerBullet *>(E->key());
owner->shape_changed(owner->find_shape(this));
}
}
void ShapeBullet::add_owner(ShapeOwnerBullet *p_owner) {
Map<ShapeOwnerBullet *, int>::Element *E = owners.find(p_owner);
if (E) {
E->get()++;
} else {
owners[p_owner] = 1; // add new owner
}
}
void ShapeBullet::remove_owner(ShapeOwnerBullet *p_owner, bool p_permanentlyFromThisBody) {
Map<ShapeOwnerBullet *, int>::Element *E = owners.find(p_owner);
if (!E) {
return;
}
E->get()--;
if (p_permanentlyFromThisBody || 0 >= E->get()) {
owners.erase(E);
}
}
bool ShapeBullet::is_owner(ShapeOwnerBullet *p_owner) const {
return owners.has(p_owner);
}
const Map<ShapeOwnerBullet *, int> &ShapeBullet::get_owners() const {
return owners;
}
void ShapeBullet::set_margin(real_t p_margin) {
margin = p_margin;
notifyShapeChanged();
}
real_t ShapeBullet::get_margin() const {
return margin;
}
btEmptyShape *ShapeBullet::create_shape_empty() {
return bulletnew(btEmptyShape);
}
btStaticPlaneShape *ShapeBullet::create_shape_plane(const btVector3 &planeNormal, btScalar planeConstant) {
return bulletnew(btStaticPlaneShape(planeNormal, planeConstant));
}
btSphereShape *ShapeBullet::create_shape_sphere(btScalar radius) {
return bulletnew(btSphereShape(radius));
}
btBoxShape *ShapeBullet::create_shape_box(const btVector3 &boxHalfExtents) {
return bulletnew(btBoxShape(boxHalfExtents));
}
btCapsuleShape *ShapeBullet::create_shape_capsule(btScalar radius, btScalar height) {
return bulletnew(btCapsuleShape(radius, height));
}
2018-06-13 00:53:28 +02:00
btCylinderShape *ShapeBullet::create_shape_cylinder(btScalar radius, btScalar height) {
return bulletnew(btCylinderShape(btVector3(radius, height / 2.0, radius)));
}
btConvexPointCloudShape *ShapeBullet::create_shape_convex(btAlignedObjectArray<btVector3> &p_vertices, const btVector3 &p_local_scaling) {
return bulletnew(btConvexPointCloudShape(&p_vertices[0], p_vertices.size(), p_local_scaling));
}
btScaledBvhTriangleMeshShape *ShapeBullet::create_shape_concave(btBvhTriangleMeshShape *p_mesh_shape, const btVector3 &p_local_scaling) {
if (p_mesh_shape) {
return bulletnew(btScaledBvhTriangleMeshShape(p_mesh_shape, p_local_scaling));
} else {
2020-04-02 01:20:12 +02:00
return nullptr;
}
}
btHeightfieldTerrainShape *ShapeBullet::create_shape_height_field(Vector<real_t> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) {
const btScalar ignoredHeightScale(1);
const int YAxis = 1; // 0=X, 1=Y, 2=Z
const bool flipQuadEdges = false;
const void *heightsPtr = p_heights.ptr();
btHeightfieldTerrainShape *heightfield = bulletnew(btHeightfieldTerrainShape(p_width, p_depth, heightsPtr, ignoredHeightScale, p_min_height, p_max_height, YAxis, PHY_FLOAT, flipQuadEdges));
// The shape can be created without params when you do PhysicsServer3D.shape_create(PhysicsServer3D.SHAPE_HEIGHTMAP)
if (heightsPtr) {
heightfield->buildAccelerator(16);
}
return heightfield;
}
btRayShape *ShapeBullet::create_shape_ray(real_t p_length, bool p_slips_on_slope) {
btRayShape *r(bulletnew(btRayShape(p_length)));
r->setSlipsOnSlope(p_slips_on_slope);
return r;
}
/* PLANE */
PlaneShapeBullet::PlaneShapeBullet() :
ShapeBullet() {}
void PlaneShapeBullet::set_data(const Variant &p_data) {
setup(p_data);
}
Variant PlaneShapeBullet::get_data() const {
return plane;
}
PhysicsServer3D::ShapeType PlaneShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_PLANE;
}
void PlaneShapeBullet::setup(const Plane &p_plane) {
plane = p_plane;
notifyShapeChanged();
}
btCollisionShape *PlaneShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
btVector3 btPlaneNormal;
G_TO_B(plane.normal, btPlaneNormal);
return prepare(PlaneShapeBullet::create_shape_plane(btPlaneNormal, plane.d));
}
/* Sphere */
SphereShapeBullet::SphereShapeBullet() :
ShapeBullet() {}
void SphereShapeBullet::set_data(const Variant &p_data) {
setup(p_data);
}
Variant SphereShapeBullet::get_data() const {
return radius;
}
PhysicsServer3D::ShapeType SphereShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_SPHERE;
}
void SphereShapeBullet::setup(real_t p_radius) {
radius = p_radius;
notifyShapeChanged();
}
btCollisionShape *SphereShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
return prepare(ShapeBullet::create_shape_sphere(radius * p_implicit_scale[0] + p_extra_edge));
}
/* Box */
BoxShapeBullet::BoxShapeBullet() :
ShapeBullet() {}
void BoxShapeBullet::set_data(const Variant &p_data) {
setup(p_data);
}
Variant BoxShapeBullet::get_data() const {
Vector3 g_half_extents;
B_TO_G(half_extents, g_half_extents);
return g_half_extents;
}
PhysicsServer3D::ShapeType BoxShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_BOX;
}
void BoxShapeBullet::setup(const Vector3 &p_half_extents) {
G_TO_B(p_half_extents, half_extents);
notifyShapeChanged();
}
btCollisionShape *BoxShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
return prepare(ShapeBullet::create_shape_box((half_extents * p_implicit_scale) + btVector3(p_extra_edge, p_extra_edge, p_extra_edge)));
}
/* Capsule */
CapsuleShapeBullet::CapsuleShapeBullet() :
ShapeBullet() {}
void CapsuleShapeBullet::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
setup(d["height"], d["radius"]);
}
Variant CapsuleShapeBullet::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
PhysicsServer3D::ShapeType CapsuleShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_CAPSULE;
}
void CapsuleShapeBullet::setup(real_t p_height, real_t p_radius) {
radius = p_radius;
height = p_height;
notifyShapeChanged();
}
btCollisionShape *CapsuleShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
return prepare(ShapeBullet::create_shape_capsule(radius * p_implicit_scale[0] + p_extra_edge, height * p_implicit_scale[1]));
}
2018-06-13 00:53:28 +02:00
/* Cylinder */
CylinderShapeBullet::CylinderShapeBullet() :
ShapeBullet() {}
void CylinderShapeBullet::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
setup(d["height"], d["radius"]);
}
Variant CylinderShapeBullet::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
PhysicsServer3D::ShapeType CylinderShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_CYLINDER;
2018-06-13 00:53:28 +02:00
}
void CylinderShapeBullet::setup(real_t p_height, real_t p_radius) {
radius = p_radius;
height = p_height;
notifyShapeChanged();
}
btCollisionShape *CylinderShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) {
2018-06-13 00:53:28 +02:00
return prepare(ShapeBullet::create_shape_cylinder(radius * p_implicit_scale[0] + p_margin, height * p_implicit_scale[1] + p_margin));
}
/* Convex polygon */
ConvexPolygonShapeBullet::ConvexPolygonShapeBullet() :
ShapeBullet() {}
void ConvexPolygonShapeBullet::set_data(const Variant &p_data) {
setup(p_data);
}
void ConvexPolygonShapeBullet::get_vertices(Vector<Vector3> &out_vertices) {
const int n_of_vertices = vertices.size();
out_vertices.resize(n_of_vertices);
for (int i = n_of_vertices - 1; 0 <= i; --i) {
B_TO_G(vertices[i], out_vertices.write[i]);
}
}
Variant ConvexPolygonShapeBullet::get_data() const {
ConvexPolygonShapeBullet *variable_self = const_cast<ConvexPolygonShapeBullet *>(this);
Vector<Vector3> out_vertices;
variable_self->get_vertices(out_vertices);
return out_vertices;
}
PhysicsServer3D::ShapeType ConvexPolygonShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_CONVEX_POLYGON;
}
void ConvexPolygonShapeBullet::setup(const Vector<Vector3> &p_vertices) {
// Make a copy of vertices
const int n_of_vertices = p_vertices.size();
vertices.resize(n_of_vertices);
for (int i = n_of_vertices - 1; 0 <= i; --i) {
G_TO_B(p_vertices[i], vertices[i]);
}
notifyShapeChanged();
}
btCollisionShape *ConvexPolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
if (!vertices.size()) {
2018-08-29 17:34:26 +02:00
// This is necessary since 0 vertices
return prepare(ShapeBullet::create_shape_empty());
}
btCollisionShape *cs(ShapeBullet::create_shape_convex(vertices));
cs->setLocalScaling(p_implicit_scale);
prepare(cs);
return cs;
}
/* Concave polygon */
ConcavePolygonShapeBullet::ConcavePolygonShapeBullet() :
ShapeBullet() {}
ConcavePolygonShapeBullet::~ConcavePolygonShapeBullet() {
if (meshShape) {
delete meshShape->getMeshInterface();
2018-08-31 09:40:50 +02:00
delete meshShape->getTriangleInfoMap();
bulletdelete(meshShape);
}
faces = Vector<Vector3>();
}
void ConcavePolygonShapeBullet::set_data(const Variant &p_data) {
setup(p_data);
}
Variant ConcavePolygonShapeBullet::get_data() const {
return faces;
}
PhysicsServer3D::ShapeType ConcavePolygonShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_CONCAVE_POLYGON;
}
void ConcavePolygonShapeBullet::setup(Vector<Vector3> p_faces) {
faces = p_faces;
if (meshShape) {
/// Clear previous created shape
delete meshShape->getMeshInterface();
2018-08-31 09:40:50 +02:00
delete meshShape->getTriangleInfoMap();
bulletdelete(meshShape);
}
int src_face_count = faces.size();
if (0 < src_face_count) {
// It counts the faces and assert the array contains the correct number of vertices.
ERR_FAIL_COND(src_face_count % 3);
btTriangleMesh *shapeInterface = bulletnew(btTriangleMesh);
src_face_count /= 3;
const Vector3 *r = p_faces.ptr();
const Vector3 *facesr = r;
btVector3 supVec_0;
btVector3 supVec_1;
btVector3 supVec_2;
for (int i = 0; i < src_face_count; ++i) {
2018-10-05 15:15:54 +02:00
G_TO_B(facesr[i * 3 + 0], supVec_0);
G_TO_B(facesr[i * 3 + 1], supVec_1);
G_TO_B(facesr[i * 3 + 2], supVec_2);
2018-10-05 15:15:54 +02:00
// Inverted from standard godot otherwise btGenerateInternalEdgeInfo generates wrong edge info
shapeInterface->addTriangle(supVec_2, supVec_1, supVec_0);
}
const bool useQuantizedAabbCompression = true;
meshShape = bulletnew(btBvhTriangleMeshShape(shapeInterface, useQuantizedAabbCompression));
2018-10-05 15:15:54 +02:00
if (GLOBAL_DEF("physics/3d/smooth_trimesh_collision", false)) {
btTriangleInfoMap *triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(meshShape, triangleInfoMap);
}
} else {
2020-04-02 01:20:12 +02:00
meshShape = nullptr;
ERR_PRINT("The faces count are 0, the mesh shape cannot be created");
}
notifyShapeChanged();
}
btCollisionShape *ConcavePolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
btCollisionShape *cs = ShapeBullet::create_shape_concave(meshShape);
if (!cs) {
2020-04-02 01:20:12 +02:00
// This is necessary since if 0 faces the creation of concave return null
cs = ShapeBullet::create_shape_empty();
}
cs->setLocalScaling(p_implicit_scale);
prepare(cs);
2018-10-05 15:15:54 +02:00
cs->setMargin(0);
return cs;
}
/* Height map shape */
HeightMapShapeBullet::HeightMapShapeBullet() :
ShapeBullet() {}
void HeightMapShapeBullet::set_data(const Variant &p_data) {
ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("width"));
ERR_FAIL_COND(!d.has("depth"));
ERR_FAIL_COND(!d.has("heights"));
real_t l_min_height = 0.0;
real_t l_max_height = 0.0;
// If specified, min and max height will be used as precomputed values
if (d.has("min_height")) {
l_min_height = d["min_height"];
}
if (d.has("max_height")) {
l_max_height = d["max_height"];
}
ERR_FAIL_COND(l_min_height > l_max_height);
int l_width = d["width"];
int l_depth = d["depth"];
ERR_FAIL_COND_MSG(l_width < 2, "Map width must be at least 2.");
ERR_FAIL_COND_MSG(l_depth < 2, "Map depth must be at least 2.");
// TODO This code will need adjustments if real_t is set to `double`,
// because that precision is unnecessary for a heightmap and Bullet doesn't support it...
Vector<real_t> l_heights;
Variant l_heights_v = d["heights"];
if (l_heights_v.get_type() == Variant::PACKED_FLOAT32_ARRAY) {
// Ready-to-use heights can be passed
l_heights = l_heights_v;
} else if (l_heights_v.get_type() == Variant::OBJECT) {
// If an image is passed, we have to convert it to a format Bullet supports.
// this would be expensive to do with a script, so it's nice to have it here.
Ref<Image> l_image = l_heights_v;
ERR_FAIL_COND(l_image.is_null());
// Float is the only common format between Godot and Bullet that can be used for decent collision.
// (Int16 would be nice too but we still don't have it)
// We could convert here automatically but it's better to not be intrusive and let the caller do it if necessary.
ERR_FAIL_COND(l_image->get_format() != Image::FORMAT_RF);
PackedByteArray im_data = l_image->get_data();
l_heights.resize(l_image->get_width() * l_image->get_height());
real_t *w = l_heights.ptrw();
const uint8_t *r = im_data.ptr();
float *rp = (float *)r;
// At this point, `rp` could be used directly for Bullet, but I don't know how safe it would be.
for (int i = 0; i < l_heights.size(); ++i) {
w[i] = rp[i];
}
} else {
ERR_FAIL_MSG("Expected PackedFloat32Array or float Image.");
}
ERR_FAIL_COND(l_width <= 0);
ERR_FAIL_COND(l_depth <= 0);
ERR_FAIL_COND(l_heights.size() != (l_width * l_depth));
// Compute min and max heights if not specified.
if (!d.has("min_height") && !d.has("max_height")) {
const real_t *r = l_heights.ptr();
int heights_size = l_heights.size();
for (int i = 0; i < heights_size; ++i) {
real_t h = r[i];
if (h < l_min_height) {
l_min_height = h;
} else if (h > l_max_height) {
l_max_height = h;
}
}
}
setup(l_heights, l_width, l_depth, l_min_height, l_max_height);
}
Variant HeightMapShapeBullet::get_data() const {
ERR_FAIL_V(Variant());
}
PhysicsServer3D::ShapeType HeightMapShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_HEIGHTMAP;
}
void HeightMapShapeBullet::setup(Vector<real_t> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) {
// TODO cell size must be tweaked using localScaling, which is a shared property for all Bullet shapes
// If this array is resized outside of here, it should be preserved due to CoW
heights = p_heights;
width = p_width;
depth = p_depth;
min_height = p_min_height;
max_height = p_max_height;
notifyShapeChanged();
}
btCollisionShape *HeightMapShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
btCollisionShape *cs(ShapeBullet::create_shape_height_field(heights, width, depth, min_height, max_height));
cs->setLocalScaling(p_implicit_scale);
prepare(cs);
return cs;
}
/* Ray shape */
RayShapeBullet::RayShapeBullet() :
ShapeBullet() {}
void RayShapeBullet::set_data(const Variant &p_data) {
Dictionary d = p_data;
setup(d["length"], d["slips_on_slope"]);
}
Variant RayShapeBullet::get_data() const {
Dictionary d;
d["length"] = length;
d["slips_on_slope"] = slips_on_slope;
return d;
}
PhysicsServer3D::ShapeType RayShapeBullet::get_type() const {
return PhysicsServer3D::SHAPE_RAY;
}
void RayShapeBullet::setup(real_t p_length, bool p_slips_on_slope) {
length = p_length;
slips_on_slope = p_slips_on_slope;
notifyShapeChanged();
}
btCollisionShape *RayShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_extra_edge) {
return prepare(ShapeBullet::create_shape_ray(length * p_implicit_scale[1] + p_extra_edge, slips_on_slope));
}