virtualx-engine/thirdparty/icu4c/common/locdistance.cpp

416 lines
17 KiB
C++
Raw Normal View History

// © 2019 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
// locdistance.cpp
// created: 2019may08 Markus W. Scherer
#include "unicode/utypes.h"
#include "unicode/bytestrie.h"
#include "unicode/localematcher.h"
#include "unicode/locid.h"
#include "unicode/uobject.h"
#include "unicode/ures.h"
#include "cstring.h"
#include "locdistance.h"
#include "loclikelysubtags.h"
#include "uassert.h"
#include "ucln_cmn.h"
#include "uinvchar.h"
#include "umutex.h"
U_NAMESPACE_BEGIN
namespace {
/**
* Bit flag used on the last character of a subtag in the trie.
* Must be set consistently by the builder and the lookup code.
*/
constexpr int32_t END_OF_SUBTAG = 0x80;
/** Distance value bit flag, set by the builder. */
constexpr int32_t DISTANCE_SKIP_SCRIPT = 0x80;
/** Distance value bit flag, set by trieNext(). */
constexpr int32_t DISTANCE_IS_FINAL = 0x100;
constexpr int32_t DISTANCE_IS_FINAL_OR_SKIP_SCRIPT = DISTANCE_IS_FINAL | DISTANCE_SKIP_SCRIPT;
constexpr int32_t ABOVE_THRESHOLD = 100;
// Indexes into array of distances.
enum {
IX_DEF_LANG_DISTANCE,
IX_DEF_SCRIPT_DISTANCE,
IX_DEF_REGION_DISTANCE,
IX_MIN_REGION_DISTANCE,
IX_LIMIT
};
LocaleDistance *gLocaleDistance = nullptr;
UInitOnce gInitOnce = U_INITONCE_INITIALIZER;
UBool U_CALLCONV cleanup() {
delete gLocaleDistance;
gLocaleDistance = nullptr;
gInitOnce.reset();
return TRUE;
}
} // namespace
void U_CALLCONV LocaleDistance::initLocaleDistance(UErrorCode &errorCode) {
// This function is invoked only via umtx_initOnce().
U_ASSERT(gLocaleDistance == nullptr);
const XLikelySubtags &likely = *XLikelySubtags::getSingleton(errorCode);
if (U_FAILURE(errorCode)) { return; }
const LocaleDistanceData &data = likely.getDistanceData();
if (data.distanceTrieBytes == nullptr ||
data.regionToPartitions == nullptr || data.partitions == nullptr ||
// ok if no paradigms
data.distances == nullptr) {
errorCode = U_MISSING_RESOURCE_ERROR;
return;
}
gLocaleDistance = new LocaleDistance(data, likely);
if (gLocaleDistance == nullptr) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
ucln_common_registerCleanup(UCLN_COMMON_LOCALE_DISTANCE, cleanup);
}
const LocaleDistance *LocaleDistance::getSingleton(UErrorCode &errorCode) {
if (U_FAILURE(errorCode)) { return nullptr; }
umtx_initOnce(gInitOnce, &LocaleDistance::initLocaleDistance, errorCode);
return gLocaleDistance;
}
LocaleDistance::LocaleDistance(const LocaleDistanceData &data, const XLikelySubtags &likely) :
likelySubtags(likely),
trie(data.distanceTrieBytes),
regionToPartitionsIndex(data.regionToPartitions), partitionArrays(data.partitions),
paradigmLSRs(data.paradigms), paradigmLSRsLength(data.paradigmsLength),
defaultLanguageDistance(data.distances[IX_DEF_LANG_DISTANCE]),
defaultScriptDistance(data.distances[IX_DEF_SCRIPT_DISTANCE]),
defaultRegionDistance(data.distances[IX_DEF_REGION_DISTANCE]),
minRegionDistance(data.distances[IX_MIN_REGION_DISTANCE]) {
// For the default demotion value, use the
// default region distance between unrelated Englishes.
// Thus, unless demotion is turned off,
// a mere region difference for one desired locale
// is as good as a perfect match for the next following desired locale.
// As of CLDR 36, we have <languageMatch desired="en_*_*" supported="en_*_*" distance="5"/>.
LSR en("en", "Latn", "US", LSR::EXPLICIT_LSR);
LSR enGB("en", "Latn", "GB", LSR::EXPLICIT_LSR);
const LSR *p_enGB = &enGB;
int32_t indexAndDistance = getBestIndexAndDistance(en, &p_enGB, 1,
shiftDistance(50), ULOCMATCH_FAVOR_LANGUAGE, ULOCMATCH_DIRECTION_WITH_ONE_WAY);
defaultDemotionPerDesiredLocale = getDistanceFloor(indexAndDistance);
}
int32_t LocaleDistance::getBestIndexAndDistance(
const LSR &desired,
const LSR **supportedLSRs, int32_t supportedLSRsLength,
int32_t shiftedThreshold,
ULocMatchFavorSubtag favorSubtag, ULocMatchDirection direction) const {
BytesTrie iter(trie);
// Look up the desired language only once for all supported LSRs.
// Its "distance" is either a match point value of 0, or a non-match negative value.
// Note: The data builder verifies that there are no <*, supported> or <desired, *> rules.
int32_t desLangDistance = trieNext(iter, desired.language, false);
uint64_t desLangState = desLangDistance >= 0 && supportedLSRsLength > 1 ? iter.getState64() : 0;
// Index of the supported LSR with the lowest distance.
int32_t bestIndex = -1;
// Cached lookup info from XLikelySubtags.compareLikely().
int32_t bestLikelyInfo = -1;
for (int32_t slIndex = 0; slIndex < supportedLSRsLength; ++slIndex) {
const LSR &supported = *supportedLSRs[slIndex];
bool star = false;
int32_t distance = desLangDistance;
if (distance >= 0) {
U_ASSERT((distance & DISTANCE_IS_FINAL) == 0);
if (slIndex != 0) {
iter.resetToState64(desLangState);
}
distance = trieNext(iter, supported.language, true);
}
// Note: The data builder verifies that there are no rules with "any" (*) language and
// real (non *) script or region subtags.
// This means that if the lookup for either language fails we can use
// the default distances without further lookups.
int32_t flags;
if (distance >= 0) {
flags = distance & DISTANCE_IS_FINAL_OR_SKIP_SCRIPT;
distance &= ~DISTANCE_IS_FINAL_OR_SKIP_SCRIPT;
} else { // <*, *>
if (uprv_strcmp(desired.language, supported.language) == 0) {
distance = 0;
} else {
distance = defaultLanguageDistance;
}
flags = 0;
star = true;
}
U_ASSERT(0 <= distance && distance <= 100);
// Round up the shifted threshold (if fraction bits are not 0)
// for comparison with un-shifted distances until we need fraction bits.
// (If we simply shifted non-zero fraction bits away, then we might ignore a language
// when it's really still a micro distance below the threshold.)
int32_t roundedThreshold = (shiftedThreshold + DISTANCE_FRACTION_MASK) >> DISTANCE_SHIFT;
// We implement "favor subtag" by reducing the language subtag distance
// (unscientifically reducing it to a quarter of the normal value),
// so that the script distance is relatively more important.
// For example, given a default language distance of 80, we reduce it to 20,
// which is below the default threshold of 50, which is the default script distance.
if (favorSubtag == ULOCMATCH_FAVOR_SCRIPT) {
distance >>= 2;
}
// Let distance == roundedThreshold pass until the tie-breaker logic
// at the end of the loop.
if (distance > roundedThreshold) {
continue;
}
int32_t scriptDistance;
if (star || flags != 0) {
if (uprv_strcmp(desired.script, supported.script) == 0) {
scriptDistance = 0;
} else {
scriptDistance = defaultScriptDistance;
}
} else {
scriptDistance = getDesSuppScriptDistance(iter, iter.getState64(),
desired.script, supported.script);
flags = scriptDistance & DISTANCE_IS_FINAL;
scriptDistance &= ~DISTANCE_IS_FINAL;
}
distance += scriptDistance;
if (distance > roundedThreshold) {
continue;
}
if (uprv_strcmp(desired.region, supported.region) == 0) {
// regionDistance = 0
} else if (star || (flags & DISTANCE_IS_FINAL) != 0) {
distance += defaultRegionDistance;
} else {
int32_t remainingThreshold = roundedThreshold - distance;
if (minRegionDistance > remainingThreshold) {
continue;
}
// From here on we know the regions are not equal.
// Map each region to zero or more partitions. (zero = one non-matching string)
// (Each array of single-character partition strings is encoded as one string.)
// If either side has more than one, then we find the maximum distance.
// This could be optimized by adding some more structure, but probably not worth it.
distance += getRegionPartitionsDistance(
iter, iter.getState64(),
partitionsForRegion(desired),
partitionsForRegion(supported),
remainingThreshold);
}
int32_t shiftedDistance = shiftDistance(distance);
if (shiftedDistance == 0) {
// Distinguish between equivalent but originally unequal locales via an
// additional micro distance.
shiftedDistance |= (desired.flags ^ supported.flags);
if (shiftedDistance < shiftedThreshold) {
if (direction != ULOCMATCH_DIRECTION_ONLY_TWO_WAY ||
// Is there also a match when we swap desired/supported?
isMatch(supported, desired, shiftedThreshold, favorSubtag)) {
if (shiftedDistance == 0) {
return slIndex << INDEX_SHIFT;
}
bestIndex = slIndex;
shiftedThreshold = shiftedDistance;
bestLikelyInfo = -1;
}
}
} else {
if (shiftedDistance < shiftedThreshold) {
if (direction != ULOCMATCH_DIRECTION_ONLY_TWO_WAY ||
// Is there also a match when we swap desired/supported?
isMatch(supported, desired, shiftedThreshold, favorSubtag)) {
bestIndex = slIndex;
shiftedThreshold = shiftedDistance;
bestLikelyInfo = -1;
}
} else if (shiftedDistance == shiftedThreshold && bestIndex >= 0) {
if (direction != ULOCMATCH_DIRECTION_ONLY_TWO_WAY ||
// Is there also a match when we swap desired/supported?
isMatch(supported, desired, shiftedThreshold, favorSubtag)) {
bestLikelyInfo = likelySubtags.compareLikely(
supported, *supportedLSRs[bestIndex], bestLikelyInfo);
if ((bestLikelyInfo & 1) != 0) {
// This supported locale matches as well as the previous best match,
// and neither matches perfectly,
// but this one is "more likely" (has more-default subtags).
bestIndex = slIndex;
}
}
}
}
}
return bestIndex >= 0 ?
(bestIndex << INDEX_SHIFT) | shiftedThreshold :
INDEX_NEG_1 | shiftDistance(ABOVE_THRESHOLD);
}
int32_t LocaleDistance::getDesSuppScriptDistance(
BytesTrie &iter, uint64_t startState, const char *desired, const char *supported) {
// Note: The data builder verifies that there are no <*, supported> or <desired, *> rules.
int32_t distance = trieNext(iter, desired, false);
if (distance >= 0) {
distance = trieNext(iter, supported, true);
}
if (distance < 0) {
UStringTrieResult result = iter.resetToState64(startState).next(u'*'); // <*, *>
U_ASSERT(USTRINGTRIE_HAS_VALUE(result));
if (uprv_strcmp(desired, supported) == 0) {
distance = 0; // same script
} else {
distance = iter.getValue();
U_ASSERT(distance >= 0);
}
if (result == USTRINGTRIE_FINAL_VALUE) {
distance |= DISTANCE_IS_FINAL;
}
}
return distance;
}
int32_t LocaleDistance::getRegionPartitionsDistance(
BytesTrie &iter, uint64_t startState,
const char *desiredPartitions, const char *supportedPartitions, int32_t threshold) {
char desired = *desiredPartitions++;
char supported = *supportedPartitions++;
U_ASSERT(desired != 0 && supported != 0);
// See if we have single desired/supported partitions, from NUL-terminated
// partition strings without explicit length.
bool suppLengthGt1 = *supportedPartitions != 0; // gt1: more than 1 character
// equivalent to: if (desLength == 1 && suppLength == 1)
if (*desiredPartitions == 0 && !suppLengthGt1) {
// Fastpath for single desired/supported partitions.
UStringTrieResult result = iter.next(uprv_invCharToAscii(desired) | END_OF_SUBTAG);
if (USTRINGTRIE_HAS_NEXT(result)) {
result = iter.next(uprv_invCharToAscii(supported) | END_OF_SUBTAG);
if (USTRINGTRIE_HAS_VALUE(result)) {
return iter.getValue();
}
}
return getFallbackRegionDistance(iter, startState);
}
const char *supportedStart = supportedPartitions - 1; // for restart of inner loop
int32_t regionDistance = 0;
// Fall back to * only once, not for each pair of partition strings.
bool star = false;
for (;;) {
// Look up each desired-partition string only once,
// not for each (desired, supported) pair.
UStringTrieResult result = iter.next(uprv_invCharToAscii(desired) | END_OF_SUBTAG);
if (USTRINGTRIE_HAS_NEXT(result)) {
uint64_t desState = suppLengthGt1 ? iter.getState64() : 0;
for (;;) {
result = iter.next(uprv_invCharToAscii(supported) | END_OF_SUBTAG);
int32_t d;
if (USTRINGTRIE_HAS_VALUE(result)) {
d = iter.getValue();
} else if (star) {
d = 0;
} else {
d = getFallbackRegionDistance(iter, startState);
star = true;
}
if (d > threshold) {
return d;
} else if (regionDistance < d) {
regionDistance = d;
}
if ((supported = *supportedPartitions++) != 0) {
iter.resetToState64(desState);
} else {
break;
}
}
} else if (!star) {
int32_t d = getFallbackRegionDistance(iter, startState);
if (d > threshold) {
return d;
} else if (regionDistance < d) {
regionDistance = d;
}
star = true;
}
if ((desired = *desiredPartitions++) != 0) {
iter.resetToState64(startState);
supportedPartitions = supportedStart;
supported = *supportedPartitions++;
} else {
break;
}
}
return regionDistance;
}
int32_t LocaleDistance::getFallbackRegionDistance(BytesTrie &iter, uint64_t startState) {
#if U_DEBUG
UStringTrieResult result =
#endif
iter.resetToState64(startState).next(u'*'); // <*, *>
U_ASSERT(USTRINGTRIE_HAS_VALUE(result));
int32_t distance = iter.getValue();
U_ASSERT(distance >= 0);
return distance;
}
int32_t LocaleDistance::trieNext(BytesTrie &iter, const char *s, bool wantValue) {
uint8_t c;
if ((c = *s) == 0) {
return -1; // no empty subtags in the distance data
}
for (;;) {
c = uprv_invCharToAscii(c);
// EBCDIC: If *s is not an invariant character,
// then c is now 0 and will simply not match anything, which is harmless.
uint8_t next = *++s;
if (next != 0) {
if (!USTRINGTRIE_HAS_NEXT(iter.next(c))) {
return -1;
}
} else {
// last character of this subtag
UStringTrieResult result = iter.next(c | END_OF_SUBTAG);
if (wantValue) {
if (USTRINGTRIE_HAS_VALUE(result)) {
int32_t value = iter.getValue();
if (result == USTRINGTRIE_FINAL_VALUE) {
value |= DISTANCE_IS_FINAL;
}
return value;
}
} else {
if (USTRINGTRIE_HAS_NEXT(result)) {
return 0;
}
}
return -1;
}
c = next;
}
}
UBool LocaleDistance::isParadigmLSR(const LSR &lsr) const {
// Linear search for a very short list (length 6 as of 2019),
// because we look for equivalence not equality, and
// because it's easy.
// If there are many paradigm LSRs we should use a hash set
// with custom comparator and hasher.
U_ASSERT(paradigmLSRsLength <= 15);
for (int32_t i = 0; i < paradigmLSRsLength; ++i) {
if (lsr.isEquivalentTo(paradigmLSRs[i])) { return true; }
}
return false;
}
U_NAMESPACE_END