2022-07-04 20:42:47 +02:00
/*************************************************************************/
/* a_star_grid_2d.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
# include "a_star_grid_2d.h"
static real_t heuristic_manhattan ( const Vector2i & p_from , const Vector2i & p_to ) {
real_t dx = ( real_t ) ABS ( p_to . x - p_from . x ) ;
real_t dy = ( real_t ) ABS ( p_to . y - p_from . y ) ;
return dx + dy ;
}
static real_t heuristic_euclidian ( const Vector2i & p_from , const Vector2i & p_to ) {
real_t dx = ( real_t ) ABS ( p_to . x - p_from . x ) ;
real_t dy = ( real_t ) ABS ( p_to . y - p_from . y ) ;
return ( real_t ) Math : : sqrt ( dx * dx + dy * dy ) ;
}
static real_t heuristic_octile ( const Vector2i & p_from , const Vector2i & p_to ) {
real_t dx = ( real_t ) ABS ( p_to . x - p_from . x ) ;
real_t dy = ( real_t ) ABS ( p_to . y - p_from . y ) ;
real_t F = Math_SQRT2 - 1 ;
return ( dx < dy ) ? F * dx + dy : F * dy + dx ;
}
static real_t heuristic_chebyshev ( const Vector2i & p_from , const Vector2i & p_to ) {
real_t dx = ( real_t ) ABS ( p_to . x - p_from . x ) ;
real_t dy = ( real_t ) ABS ( p_to . y - p_from . y ) ;
return MAX ( dx , dy ) ;
}
static real_t ( * heuristics [ AStarGrid2D : : HEURISTIC_MAX ] ) ( const Vector2i & , const Vector2i & ) = { heuristic_manhattan , heuristic_euclidian , heuristic_octile , heuristic_chebyshev } ;
2022-09-01 11:34:15 +02:00
void AStarGrid2D : : set_size ( const Size2i & p_size ) {
2022-07-04 20:42:47 +02:00
ERR_FAIL_COND ( p_size . x < 0 | | p_size . y < 0 ) ;
if ( p_size ! = size ) {
size = p_size ;
dirty = true ;
}
}
2022-09-01 11:34:15 +02:00
Size2i AStarGrid2D : : get_size ( ) const {
2022-07-04 20:42:47 +02:00
return size ;
}
void AStarGrid2D : : set_offset ( const Vector2 & p_offset ) {
if ( ! offset . is_equal_approx ( p_offset ) ) {
offset = p_offset ;
dirty = true ;
}
}
Vector2 AStarGrid2D : : get_offset ( ) const {
return offset ;
}
2022-09-01 11:34:15 +02:00
void AStarGrid2D : : set_cell_size ( const Size2 & p_cell_size ) {
2022-07-04 20:42:47 +02:00
if ( ! cell_size . is_equal_approx ( p_cell_size ) ) {
cell_size = p_cell_size ;
dirty = true ;
}
}
2022-09-01 11:34:15 +02:00
Size2 AStarGrid2D : : get_cell_size ( ) const {
2022-07-04 20:42:47 +02:00
return cell_size ;
}
void AStarGrid2D : : update ( ) {
points . clear ( ) ;
for ( int64_t y = 0 ; y < size . y ; y + + ) {
LocalVector < Point > line ;
for ( int64_t x = 0 ; x < size . x ; x + + ) {
line . push_back ( Point ( Vector2i ( x , y ) , offset + Vector2 ( x , y ) * cell_size ) ) ;
}
points . push_back ( line ) ;
}
dirty = false ;
}
bool AStarGrid2D : : is_in_bounds ( int p_x , int p_y ) const {
return p_x > = 0 & & p_x < size . width & & p_y > = 0 & & p_y < size . height ;
}
bool AStarGrid2D : : is_in_boundsv ( const Vector2i & p_id ) const {
return p_id . x > = 0 & & p_id . x < size . width & & p_id . y > = 0 & & p_id . y < size . height ;
}
bool AStarGrid2D : : is_dirty ( ) const {
return dirty ;
}
void AStarGrid2D : : set_jumping_enabled ( bool p_enabled ) {
jumping_enabled = p_enabled ;
}
bool AStarGrid2D : : is_jumping_enabled ( ) const {
return jumping_enabled ;
}
void AStarGrid2D : : set_diagonal_mode ( DiagonalMode p_diagonal_mode ) {
ERR_FAIL_INDEX ( ( int ) p_diagonal_mode , ( int ) DIAGONAL_MODE_MAX ) ;
diagonal_mode = p_diagonal_mode ;
}
AStarGrid2D : : DiagonalMode AStarGrid2D : : get_diagonal_mode ( ) const {
return diagonal_mode ;
}
void AStarGrid2D : : set_default_heuristic ( Heuristic p_heuristic ) {
ERR_FAIL_INDEX ( ( int ) p_heuristic , ( int ) HEURISTIC_MAX ) ;
default_heuristic = p_heuristic ;
}
AStarGrid2D : : Heuristic AStarGrid2D : : get_default_heuristic ( ) const {
return default_heuristic ;
}
void AStarGrid2D : : set_point_solid ( const Vector2i & p_id , bool p_solid ) {
ERR_FAIL_COND_MSG ( dirty , " Grid is not initialized. Call the update method. " ) ;
ERR_FAIL_COND_MSG ( ! is_in_boundsv ( p_id ) , vformat ( " Can't set if point is disabled. Point out of bounds (%s/%s, %s/%s). " , p_id . x , size . width , p_id . y , size . height ) ) ;
points [ p_id . y ] [ p_id . x ] . solid = p_solid ;
}
bool AStarGrid2D : : is_point_solid ( const Vector2i & p_id ) const {
ERR_FAIL_COND_V_MSG ( dirty , false , " Grid is not initialized. Call the update method. " ) ;
ERR_FAIL_COND_V_MSG ( ! is_in_boundsv ( p_id ) , false , vformat ( " Can't get if point is disabled. Point out of bounds (%s/%s, %s/%s). " , p_id . x , size . width , p_id . y , size . height ) ) ;
return points [ p_id . y ] [ p_id . x ] . solid ;
}
AStarGrid2D : : Point * AStarGrid2D : : _jump ( Point * p_from , Point * p_to ) {
if ( ! p_to | | p_to - > solid ) {
return nullptr ;
}
if ( p_to = = end ) {
return p_to ;
}
int64_t from_x = p_from - > id . x ;
int64_t from_y = p_from - > id . y ;
int64_t to_x = p_to - > id . x ;
int64_t to_y = p_to - > id . y ;
int64_t dx = to_x - from_x ;
int64_t dy = to_y - from_y ;
if ( diagonal_mode = = DIAGONAL_MODE_ALWAYS | | diagonal_mode = = DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE ) {
if ( dx ! = 0 & & dy ! = 0 ) {
if ( ( _is_walkable ( to_x - dx , to_y + dy ) & & ! _is_walkable ( to_x - dx , to_y ) ) | | ( _is_walkable ( to_x + dx , to_y - dy ) & & ! _is_walkable ( to_x , to_y - dy ) ) ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x + dx , to_y ) ) ! = nullptr ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x , to_y + dy ) ) ! = nullptr ) {
return p_to ;
}
} else {
if ( dx ! = 0 ) {
if ( ( _is_walkable ( to_x + dx , to_y + 1 ) & & ! _is_walkable ( to_x , to_y + 1 ) ) | | ( _is_walkable ( to_x + dx , to_y - 1 ) & & ! _is_walkable ( to_x , to_y - 1 ) ) ) {
return p_to ;
}
} else {
if ( ( _is_walkable ( to_x + 1 , to_y + dy ) & & ! _is_walkable ( to_x + 1 , to_y ) ) | | ( _is_walkable ( to_x - 1 , to_y + dy ) & & ! _is_walkable ( to_x - 1 , to_y ) ) ) {
return p_to ;
}
}
}
if ( _is_walkable ( to_x + dx , to_y + dy ) & & ( diagonal_mode = = DIAGONAL_MODE_ALWAYS | | ( _is_walkable ( to_x + dx , to_y ) | | _is_walkable ( to_x , to_y + dy ) ) ) ) {
return _jump ( p_to , _get_point ( to_x + dx , to_y + dy ) ) ;
}
} else if ( diagonal_mode = = DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES ) {
if ( dx ! = 0 & & dy ! = 0 ) {
if ( ( _is_walkable ( to_x + dx , to_y + dy ) & & ! _is_walkable ( to_x , to_y + dy ) ) | | ! _is_walkable ( to_x + dx , to_y ) ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x + dx , to_y ) ) ! = nullptr ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x , to_y + dy ) ) ! = nullptr ) {
return p_to ;
}
} else {
if ( dx ! = 0 ) {
if ( ( _is_walkable ( to_x , to_y + 1 ) & & ! _is_walkable ( to_x - dx , to_y + 1 ) ) | | ( _is_walkable ( to_x , to_y - 1 ) & & ! _is_walkable ( to_x - dx , to_y - 1 ) ) ) {
return p_to ;
}
} else {
if ( ( _is_walkable ( to_x + 1 , to_y ) & & ! _is_walkable ( to_x + 1 , to_y - dy ) ) | | ( _is_walkable ( to_x - 1 , to_y ) & & ! _is_walkable ( to_x - 1 , to_y - dy ) ) ) {
return p_to ;
}
}
}
if ( _is_walkable ( to_x + dx , to_y + dy ) & & _is_walkable ( to_x + dx , to_y ) & & _is_walkable ( to_x , to_y + dy ) ) {
return _jump ( p_to , _get_point ( to_x + dx , to_y + dy ) ) ;
}
} else { // DIAGONAL_MODE_NEVER
if ( dx ! = 0 ) {
if ( ! _is_walkable ( to_x + dx , to_y ) ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x , to_y + 1 ) ) ! = nullptr ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x , to_y - 1 ) ) ! = nullptr ) {
return p_to ;
}
} else {
if ( ! _is_walkable ( to_x , to_y + dy ) ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x + 1 , to_y ) ) ! = nullptr ) {
return p_to ;
}
if ( _jump ( p_to , _get_point ( to_x - 1 , to_y ) ) ! = nullptr ) {
return p_to ;
}
}
if ( _is_walkable ( to_x + dx , to_y + dy ) & & _is_walkable ( to_x + dx , to_y ) & & _is_walkable ( to_x , to_y + dy ) ) {
return _jump ( p_to , _get_point ( to_x + dx , to_y + dy ) ) ;
}
}
return nullptr ;
}
void AStarGrid2D : : _get_nbors ( Point * p_point , List < Point * > & r_nbors ) {
bool ts0 = false , td0 = false ,
ts1 = false , td1 = false ,
ts2 = false , td2 = false ,
ts3 = false , td3 = false ;
Point * left = nullptr ;
Point * right = nullptr ;
Point * top = nullptr ;
Point * bottom = nullptr ;
Point * top_left = nullptr ;
Point * top_right = nullptr ;
Point * bottom_left = nullptr ;
Point * bottom_right = nullptr ;
{
bool has_left = false ;
bool has_right = false ;
if ( p_point - > id . x - 1 > = 0 ) {
left = _get_point_unchecked ( p_point - > id . x - 1 , p_point - > id . y ) ;
has_left = true ;
}
if ( p_point - > id . x + 1 < size . width ) {
right = _get_point_unchecked ( p_point - > id . x + 1 , p_point - > id . y ) ;
has_right = true ;
}
if ( p_point - > id . y - 1 > = 0 ) {
top = _get_point_unchecked ( p_point - > id . x , p_point - > id . y - 1 ) ;
if ( has_left ) {
top_left = _get_point_unchecked ( p_point - > id . x - 1 , p_point - > id . y - 1 ) ;
}
if ( has_right ) {
top_right = _get_point_unchecked ( p_point - > id . x + 1 , p_point - > id . y - 1 ) ;
}
}
if ( p_point - > id . y + 1 < size . height ) {
bottom = _get_point_unchecked ( p_point - > id . x , p_point - > id . y + 1 ) ;
if ( has_left ) {
bottom_left = _get_point_unchecked ( p_point - > id . x - 1 , p_point - > id . y + 1 ) ;
}
if ( has_right ) {
bottom_right = _get_point_unchecked ( p_point - > id . x + 1 , p_point - > id . y + 1 ) ;
}
}
}
if ( top & & ! top - > solid ) {
r_nbors . push_back ( top ) ;
ts0 = true ;
}
if ( right & & ! right - > solid ) {
r_nbors . push_back ( right ) ;
ts1 = true ;
}
if ( bottom & & ! bottom - > solid ) {
r_nbors . push_back ( bottom ) ;
ts2 = true ;
}
if ( left & & ! left - > solid ) {
r_nbors . push_back ( left ) ;
ts3 = true ;
}
switch ( diagonal_mode ) {
case DIAGONAL_MODE_ALWAYS : {
td0 = true ;
td1 = true ;
td2 = true ;
td3 = true ;
} break ;
case DIAGONAL_MODE_NEVER : {
} break ;
case DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE : {
td0 = ts3 | | ts0 ;
td1 = ts0 | | ts1 ;
td2 = ts1 | | ts2 ;
td3 = ts2 | | ts3 ;
} break ;
case DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES : {
td0 = ts3 & & ts0 ;
td1 = ts0 & & ts1 ;
td2 = ts1 & & ts2 ;
td3 = ts2 & & ts3 ;
} break ;
default :
break ;
}
if ( td0 & & ( top_left & & ! top_left - > solid ) ) {
r_nbors . push_back ( top_left ) ;
}
if ( td1 & & ( top_right & & ! top_right - > solid ) ) {
r_nbors . push_back ( top_right ) ;
}
if ( td2 & & ( bottom_right & & ! bottom_right - > solid ) ) {
r_nbors . push_back ( bottom_right ) ;
}
if ( td3 & & ( bottom_left & & ! bottom_left - > solid ) ) {
r_nbors . push_back ( bottom_left ) ;
}
}
bool AStarGrid2D : : _solve ( Point * p_begin_point , Point * p_end_point ) {
pass + + ;
if ( p_end_point - > solid ) {
return false ;
}
bool found_route = false ;
Vector < Point * > open_list ;
SortArray < Point * , SortPoints > sorter ;
p_begin_point - > g_score = 0 ;
p_begin_point - > f_score = _estimate_cost ( p_begin_point - > id , p_end_point - > id ) ;
open_list . push_back ( p_begin_point ) ;
end = p_end_point ;
while ( ! open_list . is_empty ( ) ) {
Point * p = open_list [ 0 ] ; // The currently processed point.
if ( p = = p_end_point ) {
found_route = true ;
break ;
}
sorter . pop_heap ( 0 , open_list . size ( ) , open_list . ptrw ( ) ) ; // Remove the current point from the open list.
open_list . remove_at ( open_list . size ( ) - 1 ) ;
p - > closed_pass = pass ; // Mark the point as closed.
List < Point * > nbors ;
_get_nbors ( p , nbors ) ;
for ( List < Point * > : : Element * E = nbors . front ( ) ; E ; E = E - > next ( ) ) {
Point * e = E - > get ( ) ; // The neighbour point.
if ( jumping_enabled ) {
e = _jump ( p , e ) ;
if ( ! e | | e - > closed_pass = = pass ) {
continue ;
}
} else {
if ( e - > solid | | e - > closed_pass = = pass ) {
continue ;
}
}
real_t tentative_g_score = p - > g_score + _compute_cost ( p - > id , e - > id ) ;
bool new_point = false ;
if ( e - > open_pass ! = pass ) { // The point wasn't inside the open list.
e - > open_pass = pass ;
open_list . push_back ( e ) ;
new_point = true ;
} else if ( tentative_g_score > = e - > g_score ) { // The new path is worse than the previous.
continue ;
}
e - > prev_point = p ;
e - > g_score = tentative_g_score ;
e - > f_score = e - > g_score + _estimate_cost ( e - > id , p_end_point - > id ) ;
if ( new_point ) { // The position of the new points is already known.
sorter . push_heap ( 0 , open_list . size ( ) - 1 , 0 , e , open_list . ptrw ( ) ) ;
} else {
sorter . push_heap ( 0 , open_list . find ( e ) , 0 , e , open_list . ptrw ( ) ) ;
}
}
}
return found_route ;
}
real_t AStarGrid2D : : _estimate_cost ( const Vector2i & p_from_id , const Vector2i & p_to_id ) {
real_t scost ;
if ( GDVIRTUAL_CALL ( _estimate_cost , p_from_id , p_to_id , scost ) ) {
return scost ;
}
return heuristics [ default_heuristic ] ( p_from_id , p_to_id ) ;
}
real_t AStarGrid2D : : _compute_cost ( const Vector2i & p_from_id , const Vector2i & p_to_id ) {
real_t scost ;
if ( GDVIRTUAL_CALL ( _compute_cost , p_from_id , p_to_id , scost ) ) {
return scost ;
}
return heuristics [ default_heuristic ] ( p_from_id , p_to_id ) ;
}
void AStarGrid2D : : clear ( ) {
points . clear ( ) ;
size = Vector2i ( ) ;
}
Vector < Vector2 > AStarGrid2D : : get_point_path ( const Vector2i & p_from_id , const Vector2i & p_to_id ) {
ERR_FAIL_COND_V_MSG ( dirty , Vector < Vector2 > ( ) , " Grid is not initialized. Call the update method. " ) ;
ERR_FAIL_COND_V_MSG ( ! is_in_boundsv ( p_from_id ) , Vector < Vector2 > ( ) , vformat ( " Can't get id path. Point out of bounds (%s/%s, %s/%s) " , p_from_id . x , size . width , p_from_id . y , size . height ) ) ;
ERR_FAIL_COND_V_MSG ( ! is_in_boundsv ( p_to_id ) , Vector < Vector2 > ( ) , vformat ( " Can't get id path. Point out of bounds (%s/%s, %s/%s) " , p_to_id . x , size . width , p_to_id . y , size . height ) ) ;
Point * a = _get_point ( p_from_id . x , p_from_id . y ) ;
Point * b = _get_point ( p_to_id . x , p_to_id . y ) ;
if ( a = = b ) {
Vector < Vector2 > ret ;
ret . push_back ( a - > pos ) ;
return ret ;
}
Point * begin_point = a ;
Point * end_point = b ;
bool found_route = _solve ( begin_point , end_point ) ;
if ( ! found_route ) {
return Vector < Vector2 > ( ) ;
}
Point * p = end_point ;
int64_t pc = 1 ;
while ( p ! = begin_point ) {
pc + + ;
p = p - > prev_point ;
}
Vector < Vector2 > path ;
path . resize ( pc ) ;
{
Vector2 * w = path . ptrw ( ) ;
p = end_point ;
int64_t idx = pc - 1 ;
while ( p ! = begin_point ) {
w [ idx - - ] = p - > pos ;
p = p - > prev_point ;
}
w [ 0 ] = p - > pos ;
}
return path ;
}
Vector < Vector2 > AStarGrid2D : : get_id_path ( const Vector2i & p_from_id , const Vector2i & p_to_id ) {
ERR_FAIL_COND_V_MSG ( dirty , Vector < Vector2 > ( ) , " Grid is not initialized. Call the update method. " ) ;
ERR_FAIL_COND_V_MSG ( ! is_in_boundsv ( p_from_id ) , Vector < Vector2 > ( ) , vformat ( " Can't get id path. Point out of bounds (%s/%s, %s/%s) " , p_from_id . x , size . width , p_from_id . y , size . height ) ) ;
ERR_FAIL_COND_V_MSG ( ! is_in_boundsv ( p_to_id ) , Vector < Vector2 > ( ) , vformat ( " Can't get id path. Point out of bounds (%s/%s, %s/%s) " , p_to_id . x , size . width , p_to_id . y , size . height ) ) ;
Point * a = _get_point ( p_from_id . x , p_from_id . y ) ;
Point * b = _get_point ( p_to_id . x , p_to_id . y ) ;
if ( a = = b ) {
Vector < Vector2 > ret ;
ret . push_back ( Vector2 ( ( float ) a - > id . x , ( float ) a - > id . y ) ) ;
return ret ;
}
Point * begin_point = a ;
Point * end_point = b ;
bool found_route = _solve ( begin_point , end_point ) ;
if ( ! found_route ) {
return Vector < Vector2 > ( ) ;
}
Point * p = end_point ;
int64_t pc = 1 ;
while ( p ! = begin_point ) {
pc + + ;
p = p - > prev_point ;
}
Vector < Vector2 > path ;
path . resize ( pc ) ;
{
Vector2 * w = path . ptrw ( ) ;
p = end_point ;
int64_t idx = pc - 1 ;
while ( p ! = begin_point ) {
w [ idx - - ] = Vector2 ( ( float ) p - > id . x , ( float ) p - > id . y ) ;
p = p - > prev_point ;
}
w [ 0 ] = p - > id ;
}
return path ;
}
void AStarGrid2D : : _bind_methods ( ) {
ClassDB : : bind_method ( D_METHOD ( " set_size " , " size " ) , & AStarGrid2D : : set_size ) ;
ClassDB : : bind_method ( D_METHOD ( " get_size " ) , & AStarGrid2D : : get_size ) ;
ClassDB : : bind_method ( D_METHOD ( " set_offset " , " offset " ) , & AStarGrid2D : : set_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " get_offset " ) , & AStarGrid2D : : get_offset ) ;
ClassDB : : bind_method ( D_METHOD ( " set_cell_size " , " cell_size " ) , & AStarGrid2D : : set_cell_size ) ;
ClassDB : : bind_method ( D_METHOD ( " get_cell_size " ) , & AStarGrid2D : : get_cell_size ) ;
ClassDB : : bind_method ( D_METHOD ( " is_in_bounds " , " x " , " y " ) , & AStarGrid2D : : is_in_bounds ) ;
ClassDB : : bind_method ( D_METHOD ( " is_in_boundsv " , " id " ) , & AStarGrid2D : : is_in_boundsv ) ;
ClassDB : : bind_method ( D_METHOD ( " is_dirty " ) , & AStarGrid2D : : is_dirty ) ;
ClassDB : : bind_method ( D_METHOD ( " update " ) , & AStarGrid2D : : update ) ;
ClassDB : : bind_method ( D_METHOD ( " set_jumping_enabled " , " enabled " ) , & AStarGrid2D : : set_jumping_enabled ) ;
ClassDB : : bind_method ( D_METHOD ( " is_jumping_enabled " ) , & AStarGrid2D : : is_jumping_enabled ) ;
ClassDB : : bind_method ( D_METHOD ( " set_diagonal_mode " , " mode " ) , & AStarGrid2D : : set_diagonal_mode ) ;
ClassDB : : bind_method ( D_METHOD ( " get_diagonal_mode " ) , & AStarGrid2D : : get_diagonal_mode ) ;
ClassDB : : bind_method ( D_METHOD ( " set_default_heuristic " , " heuristic " ) , & AStarGrid2D : : set_default_heuristic ) ;
ClassDB : : bind_method ( D_METHOD ( " get_default_heuristic " ) , & AStarGrid2D : : get_default_heuristic ) ;
ClassDB : : bind_method ( D_METHOD ( " set_point_solid " , " id " , " solid " ) , & AStarGrid2D : : set_point_solid , DEFVAL ( true ) ) ;
ClassDB : : bind_method ( D_METHOD ( " is_point_solid " , " id " ) , & AStarGrid2D : : is_point_solid ) ;
ClassDB : : bind_method ( D_METHOD ( " clear " ) , & AStarGrid2D : : clear ) ;
ClassDB : : bind_method ( D_METHOD ( " get_point_path " , " from_id " , " to_id " ) , & AStarGrid2D : : get_point_path ) ;
ClassDB : : bind_method ( D_METHOD ( " get_id_path " , " from_id " , " to_id " ) , & AStarGrid2D : : get_id_path ) ;
GDVIRTUAL_BIND ( _estimate_cost , " from_id " , " to_id " )
GDVIRTUAL_BIND ( _compute_cost , " from_id " , " to_id " )
ADD_PROPERTY ( PropertyInfo ( Variant : : VECTOR2I , " size " ) , " set_size " , " get_size " ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : VECTOR2 , " offset " ) , " set_offset " , " get_offset " ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : VECTOR2 , " cell_size " ) , " set_cell_size " , " get_cell_size " ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : BOOL , " jumping_enabled " ) , " set_jumping_enabled " , " is_jumping_enabled " ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " default_heuristic " , PROPERTY_HINT_ENUM , " Manhattan,Euclidean,Octile,Chebyshev,Max " ) , " set_default_heuristic " , " get_default_heuristic " ) ;
ADD_PROPERTY ( PropertyInfo ( Variant : : INT , " diagonal_mode " , PROPERTY_HINT_ENUM , " Never,Always,At Least One Walkable,Only If No Obstacles,Max " ) , " set_diagonal_mode " , " get_diagonal_mode " ) ;
BIND_ENUM_CONSTANT ( HEURISTIC_EUCLIDEAN ) ;
BIND_ENUM_CONSTANT ( HEURISTIC_MANHATTAN ) ;
BIND_ENUM_CONSTANT ( HEURISTIC_OCTILE ) ;
BIND_ENUM_CONSTANT ( HEURISTIC_CHEBYSHEV ) ;
BIND_ENUM_CONSTANT ( HEURISTIC_MAX ) ;
BIND_ENUM_CONSTANT ( DIAGONAL_MODE_ALWAYS ) ;
BIND_ENUM_CONSTANT ( DIAGONAL_MODE_NEVER ) ;
BIND_ENUM_CONSTANT ( DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE ) ;
BIND_ENUM_CONSTANT ( DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES ) ;
BIND_ENUM_CONSTANT ( DIAGONAL_MODE_MAX ) ;
}