virtualx-engine/scene/resources/immediate_mesh.cpp

417 lines
13 KiB
C++
Raw Normal View History

/*************************************************************************/
/* immediate_mesh.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "immediate_mesh.h"
void ImmediateMesh::surface_begin(PrimitiveType p_primitive, const Ref<Material> &p_material) {
ERR_FAIL_COND_MSG(surface_active, "Already creating a new surface.");
active_surface_data.primitive = p_primitive;
active_surface_data.material = p_material;
surface_active = true;
}
void ImmediateMesh::surface_set_color(const Color &p_color) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
if (!uses_colors) {
colors.resize(vertices.size());
for (uint32_t i = 0; i < colors.size(); i++) {
colors[i] = p_color;
}
uses_colors = true;
}
current_color = p_color;
}
void ImmediateMesh::surface_set_normal(const Vector3 &p_normal) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
if (!uses_normals) {
normals.resize(vertices.size());
for (uint32_t i = 0; i < normals.size(); i++) {
normals[i] = p_normal;
}
uses_normals = true;
}
current_normal = p_normal;
}
void ImmediateMesh::surface_set_tangent(const Plane &p_tangent) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
if (!uses_tangents) {
tangents.resize(vertices.size());
for (uint32_t i = 0; i < tangents.size(); i++) {
tangents[i] = p_tangent;
}
uses_tangents = true;
}
current_tangent = p_tangent;
}
void ImmediateMesh::surface_set_uv(const Vector2 &p_uv) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
if (!uses_uvs) {
uvs.resize(vertices.size());
for (uint32_t i = 0; i < uvs.size(); i++) {
uvs[i] = p_uv;
}
uses_uvs = true;
}
current_uv = p_uv;
}
void ImmediateMesh::surface_set_uv2(const Vector2 &p_uv2) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
if (!uses_uv2s) {
uv2s.resize(vertices.size());
for (uint32_t i = 0; i < uv2s.size(); i++) {
uv2s[i] = p_uv2;
}
uses_uv2s = true;
}
current_uv2 = p_uv2;
}
void ImmediateMesh::surface_add_vertex(const Vector3 &p_vertex) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
ERR_FAIL_COND_MSG(vertices.size() && active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface.");
if (uses_colors) {
colors.push_back(current_color);
}
if (uses_normals) {
normals.push_back(current_normal);
}
if (uses_tangents) {
tangents.push_back(current_tangent);
}
if (uses_uvs) {
uvs.push_back(current_uv);
}
if (uses_uv2s) {
uv2s.push_back(current_uv2);
}
vertices.push_back(p_vertex);
}
void ImmediateMesh::surface_add_vertex_2d(const Vector2 &p_vertex) {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
ERR_FAIL_COND_MSG(vertices.size() && !active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface.");
if (uses_colors) {
colors.push_back(current_color);
}
if (uses_normals) {
normals.push_back(current_normal);
}
if (uses_tangents) {
tangents.push_back(current_tangent);
}
if (uses_uvs) {
uvs.push_back(current_uv);
}
if (uses_uv2s) {
uv2s.push_back(current_uv2);
}
Vector3 v(p_vertex.x, p_vertex.y, 0);
vertices.push_back(v);
active_surface_data.vertex_2d = true;
}
void ImmediateMesh::surface_end() {
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
ERR_FAIL_COND_MSG(!vertices.size(), "No vertices were added, surface can't be created.");
uint32_t format = ARRAY_FORMAT_VERTEX;
uint32_t vertex_stride = 0;
if (active_surface_data.vertex_2d) {
format |= ARRAY_FLAG_USE_2D_VERTICES;
vertex_stride = sizeof(float) * 2;
} else {
vertex_stride = sizeof(float) * 3;
}
uint32_t normal_offset = 0;
if (uses_normals) {
format |= ARRAY_FORMAT_NORMAL;
normal_offset = vertex_stride;
vertex_stride += sizeof(uint32_t);
}
uint32_t tangent_offset = 0;
if (uses_tangents) {
format |= ARRAY_FORMAT_TANGENT;
tangent_offset += vertex_stride;
vertex_stride += sizeof(uint32_t);
}
AABB aabb;
{
surface_vertex_create_cache.resize(vertex_stride * vertices.size());
uint8_t *surface_vertex_ptr = surface_vertex_create_cache.ptrw();
for (uint32_t i = 0; i < vertices.size(); i++) {
{
float *vtx = (float *)&surface_vertex_ptr[i * vertex_stride];
vtx[0] = vertices[i].x;
vtx[1] = vertices[i].y;
if (!active_surface_data.vertex_2d) {
vtx[2] = vertices[i].z;
}
if (i == 0) {
aabb.position = vertices[i];
} else {
aabb.expand_to(vertices[i]);
}
}
if (uses_normals) {
uint32_t *normal = (uint32_t *)&surface_vertex_ptr[i * vertex_stride + normal_offset];
Vector3 n = normals[i] * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
uint32_t value = 0;
value |= CLAMP(int(n.x * 1023.0), 0, 1023);
value |= CLAMP(int(n.y * 1023.0), 0, 1023) << 10;
value |= CLAMP(int(n.z * 1023.0), 0, 1023) << 20;
*normal = value;
}
if (uses_tangents) {
uint32_t *tangent = (uint32_t *)&surface_vertex_ptr[i * vertex_stride + tangent_offset];
Plane t = tangents[i];
uint32_t value = 0;
value |= CLAMP(int((t.normal.x * 0.5 + 0.5) * 1023.0), 0, 1023);
value |= CLAMP(int((t.normal.y * 0.5 + 0.5) * 1023.0), 0, 1023) << 10;
value |= CLAMP(int((t.normal.z * 0.5 + 0.5) * 1023.0), 0, 1023) << 20;
if (t.d > 0) {
value |= 3 << 30;
}
*tangent = value;
}
}
}
if (uses_colors || uses_uvs || uses_uv2s) {
uint32_t attribute_stride = 0;
if (uses_colors) {
format |= ARRAY_FORMAT_COLOR;
attribute_stride += sizeof(uint8_t) * 4;
}
uint32_t uv_offset = 0;
if (uses_uvs) {
format |= ARRAY_FORMAT_TEX_UV;
uv_offset = attribute_stride;
attribute_stride += sizeof(float) * 2;
}
uint32_t uv2_offset = 0;
if (uses_uv2s) {
format |= ARRAY_FORMAT_TEX_UV2;
uv2_offset = attribute_stride;
attribute_stride += sizeof(float) * 2;
}
surface_attribute_create_cache.resize(vertices.size() * attribute_stride);
uint8_t *surface_attribute_ptr = surface_attribute_create_cache.ptrw();
for (uint32_t i = 0; i < vertices.size(); i++) {
if (uses_colors) {
uint8_t *color8 = (uint8_t *)&surface_attribute_ptr[i * attribute_stride];
color8[0] = uint8_t(CLAMP(colors[i].r * 255.0, 0.0, 255.0));
color8[1] = uint8_t(CLAMP(colors[i].g * 255.0, 0.0, 255.0));
color8[2] = uint8_t(CLAMP(colors[i].b * 255.0, 0.0, 255.0));
color8[3] = uint8_t(CLAMP(colors[i].a * 255.0, 0.0, 255.0));
}
if (uses_uvs) {
float *uv = (float *)&surface_attribute_ptr[i * attribute_stride + uv_offset];
uv[0] = uvs[i].x;
uv[1] = uvs[i].y;
}
if (uses_uv2s) {
float *uv2 = (float *)&surface_attribute_ptr[i * attribute_stride + uv2_offset];
uv2[0] = uv2s[i].x;
uv2[1] = uv2s[i].y;
}
}
}
RS::SurfaceData sd;
sd.primitive = RS::PrimitiveType(active_surface_data.primitive);
sd.format = format;
sd.vertex_data = surface_vertex_create_cache;
if (uses_colors || uses_uvs || uses_uv2s) {
sd.attribute_data = surface_attribute_create_cache;
}
sd.vertex_count = vertices.size();
sd.aabb = aabb;
if (active_surface_data.material.is_valid()) {
sd.material = active_surface_data.material->get_rid();
}
RS::get_singleton()->mesh_add_surface(mesh, sd);
active_surface_data.aabb = aabb;
active_surface_data.format = format;
active_surface_data.array_len = vertices.size();
surfaces.push_back(active_surface_data);
colors.clear();
normals.clear();
tangents.clear();
uvs.clear();
uv2s.clear();
vertices.clear();
uses_colors = false;
uses_normals = false;
uses_tangents = false;
uses_uvs = false;
uses_uv2s = false;
surface_active = false;
}
void ImmediateMesh::clear_surfaces() {
RS::get_singleton()->mesh_clear(mesh);
surfaces.clear();
surface_active = false;
colors.clear();
normals.clear();
tangents.clear();
uvs.clear();
uv2s.clear();
vertices.clear();
uses_colors = false;
uses_normals = false;
uses_tangents = false;
uses_uvs = false;
uses_uv2s = false;
}
int ImmediateMesh::get_surface_count() const {
return surfaces.size();
}
int ImmediateMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), -1);
return surfaces[p_idx].array_len;
}
int ImmediateMesh::surface_get_array_index_len(int p_idx) const {
return 0;
}
bool ImmediateMesh::surface_is_softbody_friendly(int p_idx) const {
return false;
}
Array ImmediateMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, int(surfaces.size()), Array());
return RS::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
}
Array ImmediateMesh::surface_get_blend_shape_arrays(int p_surface) const {
return Array();
}
Dictionary ImmediateMesh::surface_get_lods(int p_surface) const {
return Dictionary();
}
uint32_t ImmediateMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), 0);
return surfaces[p_idx].format;
}
Mesh::PrimitiveType ImmediateMesh::surface_get_primitive_type(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), PRIMITIVE_MAX);
return surfaces[p_idx].primitive;
}
void ImmediateMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_idx, int(surfaces.size()));
surfaces[p_idx].material = p_material;
RID mat;
if (p_material.is_valid()) {
mat = p_material->get_rid();
}
RS::get_singleton()->mesh_surface_set_material(mesh, p_idx, mat);
}
Ref<Material> ImmediateMesh::surface_get_material(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), Ref<Material>());
return surfaces[p_idx].material;
}
int ImmediateMesh::get_blend_shape_count() const {
return 0;
}
StringName ImmediateMesh::get_blend_shape_name(int p_index) const {
return StringName();
}
void ImmediateMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
}
AABB ImmediateMesh::get_aabb() const {
AABB aabb;
for (uint32_t i = 0; i < surfaces.size(); i++) {
if (i == 0) {
aabb = surfaces[i].aabb;
} else {
aabb.merge(surfaces[i].aabb);
}
}
return aabb;
}
void ImmediateMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("surface_begin", "primitive", "material"), &ImmediateMesh::surface_begin, DEFVAL(Ref<Material>()));
ClassDB::bind_method(D_METHOD("surface_set_color", "color"), &ImmediateMesh::surface_set_color);
ClassDB::bind_method(D_METHOD("surface_set_normal", "normal"), &ImmediateMesh::surface_set_normal);
ClassDB::bind_method(D_METHOD("surface_set_tangent", "tangent"), &ImmediateMesh::surface_set_tangent);
ClassDB::bind_method(D_METHOD("surface_set_uv", "uv"), &ImmediateMesh::surface_set_uv);
ClassDB::bind_method(D_METHOD("surface_set_uv2", "uv2"), &ImmediateMesh::surface_set_uv2);
ClassDB::bind_method(D_METHOD("surface_add_vertex", "vertex"), &ImmediateMesh::surface_add_vertex);
ClassDB::bind_method(D_METHOD("surface_add_vertex_2d", "vertex"), &ImmediateMesh::surface_add_vertex_2d);
ClassDB::bind_method(D_METHOD("surface_end"), &ImmediateMesh::surface_end);
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ImmediateMesh::clear_surfaces);
}
RID ImmediateMesh::get_rid() const {
return mesh;
}
ImmediateMesh::ImmediateMesh() {
mesh = RS::get_singleton()->mesh_create();
}
ImmediateMesh::~ImmediateMesh() {
RS::get_singleton()->free(mesh);
}