virtualx-engine/thirdparty/embree/kernels/common/scene_subdiv_mesh.h

327 lines
10 KiB
C++
Raw Normal View History

2020-12-19 14:50:20 +01:00
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "geometry.h"
#include "buffer.h"
#include "../subdiv/half_edge.h"
#include "../subdiv/tessellation_cache.h"
#include "../subdiv/catmullclark_coefficients.h"
#include "../subdiv/patch.h"
#include "../../common/algorithms/parallel_map.h"
#include "../../common/algorithms/parallel_set.h"
namespace embree
{
class SubdivMesh : public Geometry
{
ALIGNED_CLASS_(16);
public:
typedef HalfEdge::Edge Edge;
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_SUBDIV_MESH;
/*! structure used to sort half edges using radix sort by their key */
struct KeyHalfEdge
{
KeyHalfEdge() {}
KeyHalfEdge (uint64_t key, HalfEdge* edge)
: key(key), edge(edge) {}
__forceinline operator uint64_t() const {
return key;
}
friend __forceinline bool operator<(const KeyHalfEdge& e0, const KeyHalfEdge& e1) {
return e0.key < e1.key;
}
public:
uint64_t key;
HalfEdge* edge;
};
public:
/*! subdiv mesh construction */
SubdivMesh(Device* device);
public:
void setMask (unsigned mask);
void setSubdivisionMode (unsigned int topologyID, RTCSubdivisionMode mode);
void setVertexAttributeTopology(unsigned int vertexAttribID, unsigned int topologyID);
void setNumTimeSteps (unsigned int numTimeSteps);
void setVertexAttributeCount (unsigned int N);
void setTopologyCount (unsigned int N);
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void setTessellationRate(float N);
bool verify();
void commit();
void addElementsToCount (GeometryCounts & counts) const;
void setDisplacementFunction (RTCDisplacementFunctionN func);
unsigned int getFirstHalfEdge(unsigned int faceID);
unsigned int getFace(unsigned int edgeID);
unsigned int getNextHalfEdge(unsigned int edgeID);
unsigned int getPreviousHalfEdge(unsigned int edgeID);
unsigned int getOppositeHalfEdge(unsigned int topologyID, unsigned int edgeID);
public:
/*! return the number of faces */
size_t numFaces() const {
return faceVertices.size();
}
/*! return the number of edges */
size_t numEdges() const {
return topology[0].vertexIndices.size();
}
/*! return the number of vertices */
size_t numVertices() const {
return vertices[0].size();
}
/*! calculates the bounds of the i'th subdivision patch at the j'th timestep */
__forceinline BBox3fa bounds(size_t i, size_t j = 0) const {
return topology[0].getHalfEdge(i)->bounds(vertices[j]);
}
/*! check if the i'th primitive is valid */
__forceinline bool valid(size_t i) const {
return topology[0].valid(i) && !invalidFace(i);
}
/*! check if the i'th primitive is valid for the j'th time range */
__forceinline bool valid(size_t i, size_t j) const {
return topology[0].valid(i) && !invalidFace(i,j);
}
/*! prints some statistics */
void printStatistics();
/*! initializes the half edge data structure */
void initializeHalfEdgeStructures ();
public:
/*! returns the vertex buffer for some time step */
__forceinline const BufferView<Vec3fa>& getVertexBuffer( const size_t t = 0 ) const {
return vertices[t];
}
/* returns tessellation level of edge */
__forceinline float getEdgeLevel(const size_t i) const
{
if (levels) return clamp(levels[i],1.0f,4096.0f); // FIXME: do we want to limit edge level?
else return clamp(tessellationRate,1.0f,4096.0f); // FIXME: do we want to limit edge level?
}
public:
RTCDisplacementFunctionN displFunc; //!< displacement function
/*! all buffers in this section are provided by the application */
public:
/*! the topology contains all data that may differ when
* interpolating different user data buffers */
struct Topology
{
public:
/*! Default topology construction */
Topology () : halfEdges(nullptr,0) {}
/*! Topology initialization */
Topology (SubdivMesh* mesh);
/*! make the class movable */
public:
Topology (Topology&& other) // FIXME: this is only required to workaround compilation issues under Windows
: mesh(std::move(other.mesh)),
vertexIndices(std::move(other.vertexIndices)),
subdiv_mode(std::move(other.subdiv_mode)),
halfEdges(std::move(other.halfEdges)),
halfEdges0(std::move(other.halfEdges0)),
halfEdges1(std::move(other.halfEdges1)) {}
Topology& operator= (Topology&& other) // FIXME: this is only required to workaround compilation issues under Windows
{
mesh = std::move(other.mesh);
vertexIndices = std::move(other.vertexIndices);
subdiv_mode = std::move(other.subdiv_mode);
halfEdges = std::move(other.halfEdges);
halfEdges0 = std::move(other.halfEdges0);
halfEdges1 = std::move(other.halfEdges1);
return *this;
}
public:
/*! check if the i'th primitive is valid in this topology */
__forceinline bool valid(size_t i) const
{
if (unlikely(subdiv_mode == RTC_SUBDIVISION_MODE_NO_BOUNDARY)) {
if (getHalfEdge(i)->faceHasBorder()) return false;
}
return true;
}
/*! updates the interpolation mode for the topology */
void setSubdivisionMode (RTCSubdivisionMode mode);
/*! marks all buffers as modified */
void update ();
/*! verifies index array */
bool verify (size_t numVertices);
/*! initializes the half edge data structure */
void initializeHalfEdgeStructures ();
private:
/*! recalculates the half edges */
void calculateHalfEdges();
/*! updates half edges when recalculation is not necessary */
void updateHalfEdges();
/*! user input data */
public:
SubdivMesh* mesh;
/*! indices of the vertices composing each face */
BufferView<unsigned int> vertexIndices;
/*! subdiv interpolation mode */
RTCSubdivisionMode subdiv_mode;
/*! generated data */
public:
/*! returns the start half edge for face f */
__forceinline const HalfEdge* getHalfEdge ( const size_t f ) const {
return &halfEdges[mesh->faceStartEdge[f]];
}
/*! Half edge structure, generated by initHalfEdgeStructures */
mvector<HalfEdge> halfEdges;
/*! the following data is only required during construction of the
* half edge structure and can be cleared for static scenes */
private:
/*! two arrays used to sort the half edges */
std::vector<KeyHalfEdge> halfEdges0;
std::vector<KeyHalfEdge> halfEdges1;
};
/*! returns the start half edge for topology t and face f */
__forceinline const HalfEdge* getHalfEdge ( const size_t t , const size_t f ) const {
return topology[t].getHalfEdge(f);
}
/*! buffer containing the number of vertices for each face */
BufferView<unsigned int> faceVertices;
/*! array of topologies */
vector<Topology> topology;
/*! vertex buffer (one buffer for each time step) */
vector<BufferView<Vec3fa>> vertices;
/*! user data buffers */
vector<RawBufferView> vertexAttribs;
/*! edge crease buffer containing edges (pairs of vertices) that carry edge crease weights */
BufferView<Edge> edge_creases;
/*! edge crease weights for each edge of the edge_creases buffer */
BufferView<float> edge_crease_weights;
/*! vertex crease buffer containing all vertices that carry vertex crease weights */
BufferView<unsigned int> vertex_creases;
/*! vertex crease weights for each vertex of the vertex_creases buffer */
BufferView<float> vertex_crease_weights;
/*! subdivision level for each half edge of the vertexIndices buffer */
BufferView<float> levels;
float tessellationRate; // constant rate that is used when levels is not set
/*! buffer that marks specific faces as holes */
BufferView<unsigned> holes;
/*! all data in this section is generated by initializeHalfEdgeStructures function */
private:
/*! number of half edges used by faces */
size_t numHalfEdges;
/*! fast lookup table to find the first half edge for some face */
mvector<uint32_t> faceStartEdge;
/*! fast lookup table to find the face for some half edge */
mvector<uint32_t> halfEdgeFace;
/*! set with all holes */
parallel_set<uint32_t> holeSet;
/*! fast lookup table to detect invalid faces */
mvector<char> invalid_face;
/*! test if face i is invalid in timestep j */
__forceinline char& invalidFace(size_t i, size_t j = 0) { return invalid_face[i*numTimeSteps+j]; }
__forceinline const char& invalidFace(size_t i, size_t j = 0) const { return invalid_face[i*numTimeSteps+j]; }
/*! interpolation cache */
public:
static __forceinline size_t numInterpolationSlots4(size_t stride) { return (stride+15)/16; }
static __forceinline size_t numInterpolationSlots8(size_t stride) { return (stride+31)/32; }
static __forceinline size_t interpolationSlot(size_t prim, size_t slot, size_t stride) {
const size_t slots = numInterpolationSlots4(stride);
assert(slot < slots);
return slots*prim+slot;
}
std::vector<std::vector<SharedLazyTessellationCache::CacheEntry>> vertex_buffer_tags;
std::vector<std::vector<SharedLazyTessellationCache::CacheEntry>> vertex_attrib_buffer_tags;
std::vector<Patch3fa::Ref> patch_eval_trees;
/*! the following data is only required during construction of the
* half edge structure and can be cleared for static scenes */
private:
/*! map with all vertex creases */
parallel_map<uint32_t,float> vertexCreaseMap;
/*! map with all edge creases */
parallel_map<uint64_t,float> edgeCreaseMap;
protected:
/*! counts number of geometry commits */
size_t commitCounter;
};
namespace isa
{
struct SubdivMeshISA : public SubdivMesh
{
SubdivMeshISA (Device* device)
: SubdivMesh(device) {}
void interpolate(const RTCInterpolateArguments* const args);
void interpolateN(const RTCInterpolateNArguments* const args);
};
}
DECLARE_ISA_FUNCTION(SubdivMesh*, createSubdivMesh, Device*);
};