virtualx-engine/servers/physics_2d/joints_2d_sw.cpp

442 lines
13 KiB
C++
Raw Normal View History

2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* joints_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2014-02-10 02:10:30 +01:00
#include "joints_2d_sw.h"
2017-08-27 21:07:15 +02:00
2014-02-10 02:10:30 +01:00
#include "space_2d_sw.h"
//based on chipmunk joint constraints
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
static inline real_t k_scalar(Body2DSW *a, Body2DSW *b, const Vector2 &rA, const Vector2 &rB, const Vector2 &n) {
real_t value = 0;
2014-02-10 02:10:30 +01:00
{
value += a->get_inv_mass();
2014-02-10 02:10:30 +01:00
real_t rcn = rA.cross(n);
value += a->get_inv_inertia() * rcn * rcn;
2014-02-10 02:10:30 +01:00
}
if (b) {
value += b->get_inv_mass();
2014-02-10 02:10:30 +01:00
real_t rcn = rB.cross(n);
value += b->get_inv_inertia() * rcn * rcn;
2014-02-10 02:10:30 +01:00
}
return value;
}
static inline Vector2
relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB) {
Vector2 sum = a->get_linear_velocity() - rA.tangent() * a->get_angular_velocity();
if (b) {
return (b->get_linear_velocity() - rB.tangent() * b->get_angular_velocity()) - sum;
} else {
2014-02-10 02:10:30 +01:00
return -sum;
}
2014-02-10 02:10:30 +01:00
}
static inline real_t
normal_relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB, Vector2 n) {
2014-02-10 02:10:30 +01:00
return relative_velocity(a, b, rA, rB).dot(n);
}
bool PinJoint2DSW::setup(real_t p_step) {
2014-02-10 02:10:30 +01:00
Space2DSW *space = A->get_space();
ERR_FAIL_COND_V(!space, false);
2014-02-10 02:10:30 +01:00
rA = A->get_transform().basis_xform(anchor_A);
rB = B ? B->get_transform().basis_xform(anchor_B) : anchor_B;
2014-02-10 02:10:30 +01:00
real_t B_inv_mass = B ? B->get_inv_mass() : 0.0;
2014-02-10 02:10:30 +01:00
Transform2D K1;
K1[0].x = A->get_inv_mass() + B_inv_mass;
K1[1].x = 0.0f;
K1[0].y = 0.0f;
K1[1].y = A->get_inv_mass() + B_inv_mass;
2014-02-10 02:10:30 +01:00
Transform2D K2;
K2[0].x = A->get_inv_inertia() * rA.y * rA.y;
K2[1].x = -A->get_inv_inertia() * rA.x * rA.y;
K2[0].y = -A->get_inv_inertia() * rA.x * rA.y;
K2[1].y = A->get_inv_inertia() * rA.x * rA.x;
2014-02-10 02:10:30 +01:00
Transform2D K;
K[0] = K1[0] + K2[0];
K[1] = K1[1] + K2[1];
2014-02-10 02:10:30 +01:00
if (B) {
Transform2D K3;
K3[0].x = B->get_inv_inertia() * rB.y * rB.y;
K3[1].x = -B->get_inv_inertia() * rB.x * rB.y;
K3[0].y = -B->get_inv_inertia() * rB.x * rB.y;
K3[1].y = B->get_inv_inertia() * rB.x * rB.x;
2014-02-10 02:10:30 +01:00
K[0] += K3[0];
K[1] += K3[1];
2014-02-10 02:10:30 +01:00
}
K[0].x += softness;
K[1].y += softness;
M = K.affine_inverse();
Vector2 gA = rA + A->get_transform().get_origin();
Vector2 gB = B ? rB + B->get_transform().get_origin() : rB;
2014-02-10 02:10:30 +01:00
Vector2 delta = gB - gA;
bias = delta * -(get_bias() == 0 ? space->get_constraint_bias() : get_bias()) * (1.0 / p_step);
2014-02-10 02:10:30 +01:00
// apply accumulated impulse
A->apply_impulse(-P, rA);
if (B) {
B->apply_impulse(P, rB);
}
2014-02-10 02:10:30 +01:00
return true;
}
2018-02-08 08:48:14 +01:00
inline Vector2 custom_cross(const Vector2 &p_vec, real_t p_other) {
return Vector2(p_other * p_vec.y, -p_other * p_vec.x);
}
void PinJoint2DSW::solve(real_t p_step) {
2014-02-10 02:10:30 +01:00
// compute relative velocity
2018-02-08 08:48:14 +01:00
Vector2 vA = A->get_linear_velocity() - custom_cross(rA, A->get_angular_velocity());
2014-02-10 02:10:30 +01:00
Vector2 rel_vel;
if (B) {
2018-02-08 08:48:14 +01:00
rel_vel = B->get_linear_velocity() - custom_cross(rB, B->get_angular_velocity()) - vA;
} else {
2014-02-10 02:10:30 +01:00
rel_vel = -vA;
}
2014-02-10 02:10:30 +01:00
Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness, softness) * P);
2014-02-10 02:10:30 +01:00
A->apply_impulse(-impulse, rA);
if (B) {
B->apply_impulse(impulse, rB);
}
2014-02-10 02:10:30 +01:00
P += impulse;
}
void PinJoint2DSW::set_param(PhysicsServer2D::PinJointParam p_param, real_t p_value) {
if (p_param == PhysicsServer2D::PIN_JOINT_SOFTNESS) {
softness = p_value;
}
}
real_t PinJoint2DSW::get_param(PhysicsServer2D::PinJointParam p_param) const {
if (p_param == PhysicsServer2D::PIN_JOINT_SOFTNESS) {
return softness;
}
ERR_FAIL_V(0);
}
2014-02-10 02:10:30 +01:00
PinJoint2DSW::PinJoint2DSW(const Vector2 &p_pos, Body2DSW *p_body_a, Body2DSW *p_body_b) :
Joint2DSW(_arr, p_body_b ? 2 : 1) {
A = p_body_a;
B = p_body_b;
2014-02-10 02:10:30 +01:00
anchor_A = p_body_a->get_inv_transform().xform(p_pos);
anchor_B = p_body_b ? p_body_b->get_inv_transform().xform(p_pos) : p_pos;
2014-02-10 02:10:30 +01:00
softness = 0;
2014-02-10 02:10:30 +01:00
p_body_a->add_constraint(this, 0);
if (p_body_b) {
p_body_b->add_constraint(this, 1);
}
2014-02-10 02:10:30 +01:00
}
PinJoint2DSW::~PinJoint2DSW() {
if (A) {
2014-02-10 02:10:30 +01:00
A->remove_constraint(this);
}
if (B) {
2014-02-10 02:10:30 +01:00
B->remove_constraint(this);
}
2014-02-10 02:10:30 +01:00
}
//////////////////////////////////////////////
//////////////////////////////////////////////
//////////////////////////////////////////////
static inline void
k_tensor(Body2DSW *a, Body2DSW *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2) {
2014-02-10 02:10:30 +01:00
// calculate mass matrix
// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
real_t k11, k12, k21, k22;
real_t m_sum = a->get_inv_mass() + b->get_inv_mass();
// start with I*m_sum
k11 = m_sum;
k12 = 0.0f;
k21 = 0.0f;
k22 = m_sum;
2014-02-10 02:10:30 +01:00
// add the influence from r1
real_t a_i_inv = a->get_inv_inertia();
real_t r1xsq = r1.x * r1.x * a_i_inv;
real_t r1ysq = r1.y * r1.y * a_i_inv;
2014-02-10 02:10:30 +01:00
real_t r1nxy = -r1.x * r1.y * a_i_inv;
k11 += r1ysq;
k12 += r1nxy;
k21 += r1nxy;
k22 += r1xsq;
2014-02-10 02:10:30 +01:00
// add the influnce from r2
real_t b_i_inv = b->get_inv_inertia();
real_t r2xsq = r2.x * r2.x * b_i_inv;
real_t r2ysq = r2.y * r2.y * b_i_inv;
2014-02-10 02:10:30 +01:00
real_t r2nxy = -r2.x * r2.y * b_i_inv;
k11 += r2ysq;
k12 += r2nxy;
k21 += r2nxy;
k22 += r2xsq;
2014-02-10 02:10:30 +01:00
// invert
real_t determinant = k11 * k22 - k12 * k21;
ERR_FAIL_COND(determinant == 0.0);
2014-02-10 02:10:30 +01:00
real_t det_inv = 1.0f / determinant;
*k1 = Vector2(k22 * det_inv, -k12 * det_inv);
*k2 = Vector2(-k21 * det_inv, k11 * det_inv);
2014-02-10 02:10:30 +01:00
}
static _FORCE_INLINE_ Vector2
mult_k(const Vector2 &vr, const Vector2 &k1, const Vector2 &k2) {
2014-02-10 02:10:30 +01:00
return Vector2(vr.dot(k1), vr.dot(k2));
}
bool GrooveJoint2DSW::setup(real_t p_step) {
2014-02-10 02:10:30 +01:00
// calculate endpoints in worldspace
Vector2 ta = A->get_transform().xform(A_groove_1);
Vector2 tb = A->get_transform().xform(A_groove_2);
Space2DSW *space = A->get_space();
2014-02-10 02:10:30 +01:00
// calculate axis
Vector2 n = -(tb - ta).tangent().normalized();
real_t d = ta.dot(n);
xf_normal = n;
rB = B->get_transform().basis_xform(B_anchor);
// calculate tangential distance along the axis of rB
real_t td = (B->get_transform().get_origin() + rB).cross(n);
// calculate clamping factor and rB
if (td <= ta.cross(n)) {
2014-02-10 02:10:30 +01:00
clamp = 1.0f;
rA = ta - A->get_transform().get_origin();
} else if (td >= tb.cross(n)) {
2014-02-10 02:10:30 +01:00
clamp = -1.0f;
rA = tb - A->get_transform().get_origin();
} else {
clamp = 0.0f;
//joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
rA = ((-n.tangent() * -td) + n * d) - A->get_transform().get_origin();
2014-02-10 02:10:30 +01:00
}
// Calculate mass tensor
k_tensor(A, B, rA, rB, &k1, &k2);
// compute max impulse
jn_max = get_max_force() * p_step;
// calculate bias velocity
//cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
//joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias);
2014-02-10 02:10:30 +01:00
Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA);
2017-08-21 21:15:36 +02:00
real_t _b = get_bias();
gbias = (delta * -(_b == 0 ? space->get_constraint_bias() : _b) * (1.0 / p_step)).clamped(get_max_bias());
2014-02-10 02:10:30 +01:00
// apply accumulated impulse
A->apply_impulse(-jn_acc, rA);
B->apply_impulse(jn_acc, rB);
2014-02-10 02:10:30 +01:00
correct = true;
2014-02-10 02:10:30 +01:00
return true;
}
void GrooveJoint2DSW::solve(real_t p_step) {
2014-02-10 02:10:30 +01:00
// compute impulse
Vector2 vr = relative_velocity(A, B, rA, rB);
2014-02-10 02:10:30 +01:00
Vector2 j = mult_k(gbias - vr, k1, k2);
2014-02-10 02:10:30 +01:00
Vector2 jOld = jn_acc;
j += jOld;
2014-02-10 02:10:30 +01:00
2018-08-16 12:52:38 +02:00
jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : j.project(xf_normal)).clamped(jn_max);
2014-02-10 02:10:30 +01:00
j = jn_acc - jOld;
A->apply_impulse(-j, rA);
B->apply_impulse(j, rB);
2014-02-10 02:10:30 +01:00
}
GrooveJoint2DSW::GrooveJoint2DSW(const Vector2 &p_a_groove1, const Vector2 &p_a_groove2, const Vector2 &p_b_anchor, Body2DSW *p_body_a, Body2DSW *p_body_b) :
Joint2DSW(_arr, 2) {
A = p_body_a;
B = p_body_b;
2014-02-10 02:10:30 +01:00
A_groove_1 = A->get_inv_transform().xform(p_a_groove1);
A_groove_2 = A->get_inv_transform().xform(p_a_groove2);
B_anchor = B->get_inv_transform().xform(p_b_anchor);
2014-02-10 02:10:30 +01:00
A_groove_normal = -(A_groove_2 - A_groove_1).normalized().tangent();
A->add_constraint(this, 0);
B->add_constraint(this, 1);
2014-02-10 02:10:30 +01:00
}
GrooveJoint2DSW::~GrooveJoint2DSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}
//////////////////////////////////////////////
//////////////////////////////////////////////
//////////////////////////////////////////////
bool DampedSpringJoint2DSW::setup(real_t p_step) {
2014-02-10 02:10:30 +01:00
rA = A->get_transform().basis_xform(anchor_A);
rB = B->get_transform().basis_xform(anchor_B);
Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA);
2014-02-10 02:10:30 +01:00
real_t dist = delta.length();
if (dist) {
n = delta / dist;
} else {
n = Vector2();
}
2014-02-10 02:10:30 +01:00
real_t k = k_scalar(A, B, rA, rB, n);
n_mass = 1.0f / k;
2014-02-10 02:10:30 +01:00
target_vrn = 0.0f;
v_coef = 1.0f - Math::exp(-damping * (p_step)*k);
2014-02-10 02:10:30 +01:00
// apply spring force
real_t f_spring = (rest_length - dist) * stiffness;
Vector2 j = n * f_spring * (p_step);
2014-02-10 02:10:30 +01:00
A->apply_impulse(-j, rA);
B->apply_impulse(j, rB);
2014-02-10 02:10:30 +01:00
return true;
}
void DampedSpringJoint2DSW::solve(real_t p_step) {
2014-02-10 02:10:30 +01:00
// compute relative velocity
real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn;
// compute velocity loss from drag
// not 100% certain this is derived correctly, though it makes sense
real_t v_damp = -vrn * v_coef;
2014-02-10 02:10:30 +01:00
target_vrn = vrn + v_damp;
Vector2 j = n * v_damp * n_mass;
2014-02-10 02:10:30 +01:00
A->apply_impulse(-j, rA);
B->apply_impulse(j, rB);
2014-02-10 02:10:30 +01:00
}
2020-06-04 18:53:29 +02:00
void DampedSpringJoint2DSW::set_param(PhysicsServer2D::DampedSpringParam p_param, real_t p_value) {
switch (p_param) {
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_REST_LENGTH: {
rest_length = p_value;
2014-02-10 02:10:30 +01:00
} break;
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_DAMPING: {
damping = p_value;
2014-02-10 02:10:30 +01:00
} break;
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_STIFFNESS: {
stiffness = p_value;
2014-02-10 02:10:30 +01:00
} break;
}
}
2020-06-04 18:53:29 +02:00
real_t DampedSpringJoint2DSW::get_param(PhysicsServer2D::DampedSpringParam p_param) const {
switch (p_param) {
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_REST_LENGTH: {
2014-02-10 02:10:30 +01:00
return rest_length;
} break;
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_DAMPING: {
2014-02-10 02:10:30 +01:00
return damping;
} break;
2020-06-04 18:53:29 +02:00
case PhysicsServer2D::DAMPED_SPRING_STIFFNESS: {
2014-02-10 02:10:30 +01:00
return stiffness;
} break;
}
ERR_FAIL_V(0);
}
DampedSpringJoint2DSW::DampedSpringJoint2DSW(const Vector2 &p_anchor_a, const Vector2 &p_anchor_b, Body2DSW *p_body_a, Body2DSW *p_body_b) :
Joint2DSW(_arr, 2) {
A = p_body_a;
B = p_body_b;
2014-02-10 02:10:30 +01:00
anchor_A = A->get_inv_transform().xform(p_anchor_a);
anchor_B = B->get_inv_transform().xform(p_anchor_b);
rest_length = p_anchor_a.distance_to(p_anchor_b);
stiffness = 20;
damping = 1.5;
2014-02-10 02:10:30 +01:00
A->add_constraint(this, 0);
B->add_constraint(this, 1);
2014-02-10 02:10:30 +01:00
}
DampedSpringJoint2DSW::~DampedSpringJoint2DSW() {
A->remove_constraint(this);
B->remove_constraint(this);
}