457 lines
16 KiB
C++
457 lines
16 KiB
C++
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
|
||
|
*/
|
||
|
|
||
|
#include "btCompoundCompoundCollisionAlgorithm.h"
|
||
|
#include "LinearMath/btQuickprof.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||
|
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
|
||
|
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
|
||
|
#include "LinearMath/btIDebugDraw.h"
|
||
|
#include "LinearMath/btAabbUtil2.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
||
|
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
||
|
|
||
|
//USE_LOCAL_STACK will avoid most (often all) dynamic memory allocations due to resizing in processCollision and MycollideTT
|
||
|
#define USE_LOCAL_STACK 1
|
||
|
|
||
|
btShapePairCallback gCompoundCompoundChildShapePairCallback = 0;
|
||
|
|
||
|
btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
|
||
|
:btCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,isSwapped)
|
||
|
{
|
||
|
|
||
|
void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache),16);
|
||
|
m_childCollisionAlgorithmCache= new(ptr) btHashedSimplePairCache();
|
||
|
|
||
|
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
|
||
|
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
|
||
|
|
||
|
const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
|
||
|
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
|
||
|
|
||
|
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
|
||
|
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
|
||
|
|
||
|
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
|
||
|
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
|
||
|
{
|
||
|
removeChildAlgorithms();
|
||
|
m_childCollisionAlgorithmCache->~btHashedSimplePairCache();
|
||
|
btAlignedFree(m_childCollisionAlgorithmCache);
|
||
|
}
|
||
|
|
||
|
void btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
|
||
|
{
|
||
|
int i;
|
||
|
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
|
||
|
for (i=0;i<pairs.size();i++)
|
||
|
{
|
||
|
if (pairs[i].m_userPointer)
|
||
|
{
|
||
|
|
||
|
((btCollisionAlgorithm*)pairs[i].m_userPointer)->getAllContactManifolds(manifoldArray);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
|
||
|
{
|
||
|
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
|
||
|
|
||
|
int numChildren = pairs.size();
|
||
|
int i;
|
||
|
for (i=0;i<numChildren;i++)
|
||
|
{
|
||
|
if (pairs[i].m_userPointer)
|
||
|
{
|
||
|
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
|
||
|
algo->~btCollisionAlgorithm();
|
||
|
m_dispatcher->freeCollisionAlgorithm(algo);
|
||
|
}
|
||
|
}
|
||
|
m_childCollisionAlgorithmCache->removeAllPairs();
|
||
|
}
|
||
|
|
||
|
struct btCompoundCompoundLeafCallback : btDbvt::ICollide
|
||
|
{
|
||
|
int m_numOverlapPairs;
|
||
|
|
||
|
|
||
|
const btCollisionObjectWrapper* m_compound0ColObjWrap;
|
||
|
const btCollisionObjectWrapper* m_compound1ColObjWrap;
|
||
|
btDispatcher* m_dispatcher;
|
||
|
const btDispatcherInfo& m_dispatchInfo;
|
||
|
btManifoldResult* m_resultOut;
|
||
|
|
||
|
|
||
|
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
|
||
|
|
||
|
btPersistentManifold* m_sharedManifold;
|
||
|
|
||
|
btCompoundCompoundLeafCallback (const btCollisionObjectWrapper* compound1ObjWrap,
|
||
|
const btCollisionObjectWrapper* compound0ObjWrap,
|
||
|
btDispatcher* dispatcher,
|
||
|
const btDispatcherInfo& dispatchInfo,
|
||
|
btManifoldResult* resultOut,
|
||
|
btHashedSimplePairCache* childAlgorithmsCache,
|
||
|
btPersistentManifold* sharedManifold)
|
||
|
:m_numOverlapPairs(0),m_compound0ColObjWrap(compound1ObjWrap),m_compound1ColObjWrap(compound0ObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
|
||
|
m_childCollisionAlgorithmCache(childAlgorithmsCache),
|
||
|
m_sharedManifold(sharedManifold)
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void Process(const btDbvtNode* leaf0,const btDbvtNode* leaf1)
|
||
|
{
|
||
|
BT_PROFILE("btCompoundCompoundLeafCallback::Process");
|
||
|
m_numOverlapPairs++;
|
||
|
|
||
|
|
||
|
int childIndex0 = leaf0->dataAsInt;
|
||
|
int childIndex1 = leaf1->dataAsInt;
|
||
|
|
||
|
|
||
|
btAssert(childIndex0>=0);
|
||
|
btAssert(childIndex1>=0);
|
||
|
|
||
|
|
||
|
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(m_compound0ColObjWrap->getCollisionShape());
|
||
|
btAssert(childIndex0<compoundShape0->getNumChildShapes());
|
||
|
|
||
|
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(m_compound1ColObjWrap->getCollisionShape());
|
||
|
btAssert(childIndex1<compoundShape1->getNumChildShapes());
|
||
|
|
||
|
const btCollisionShape* childShape0 = compoundShape0->getChildShape(childIndex0);
|
||
|
const btCollisionShape* childShape1 = compoundShape1->getChildShape(childIndex1);
|
||
|
|
||
|
//backup
|
||
|
btTransform orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
|
||
|
const btTransform& childTrans0 = compoundShape0->getChildTransform(childIndex0);
|
||
|
btTransform newChildWorldTrans0 = orgTrans0*childTrans0 ;
|
||
|
|
||
|
btTransform orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
|
||
|
const btTransform& childTrans1 = compoundShape1->getChildTransform(childIndex1);
|
||
|
btTransform newChildWorldTrans1 = orgTrans1*childTrans1 ;
|
||
|
|
||
|
|
||
|
//perform an AABB check first
|
||
|
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
|
||
|
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
|
||
|
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
|
||
|
|
||
|
btVector3 thresholdVec(m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold);
|
||
|
|
||
|
aabbMin0 -= thresholdVec;
|
||
|
aabbMax0 += thresholdVec;
|
||
|
|
||
|
if (gCompoundCompoundChildShapePairCallback)
|
||
|
{
|
||
|
if (!gCompoundCompoundChildShapePairCallback(childShape0,childShape1))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
|
||
|
{
|
||
|
btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap,childShape0, m_compound0ColObjWrap->getCollisionObject(),newChildWorldTrans0,-1,childIndex0);
|
||
|
btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap,childShape1,m_compound1ColObjWrap->getCollisionObject(),newChildWorldTrans1,-1,childIndex1);
|
||
|
|
||
|
|
||
|
btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0,childIndex1);
|
||
|
|
||
|
btCollisionAlgorithm* colAlgo = 0;
|
||
|
if (m_resultOut->m_closestPointDistanceThreshold > 0)
|
||
|
{
|
||
|
colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0, &compoundWrap1, 0, BT_CLOSEST_POINT_ALGORITHMS);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (pair)
|
||
|
{
|
||
|
colAlgo = (btCollisionAlgorithm*)pair->m_userPointer;
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0, &compoundWrap1, m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);
|
||
|
pair = m_childCollisionAlgorithmCache->addOverlappingPair(childIndex0, childIndex1);
|
||
|
btAssert(pair);
|
||
|
pair->m_userPointer = colAlgo;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btAssert(colAlgo);
|
||
|
|
||
|
const btCollisionObjectWrapper* tmpWrap0 = 0;
|
||
|
const btCollisionObjectWrapper* tmpWrap1 = 0;
|
||
|
|
||
|
tmpWrap0 = m_resultOut->getBody0Wrap();
|
||
|
tmpWrap1 = m_resultOut->getBody1Wrap();
|
||
|
|
||
|
m_resultOut->setBody0Wrap(&compoundWrap0);
|
||
|
m_resultOut->setBody1Wrap(&compoundWrap1);
|
||
|
|
||
|
m_resultOut->setShapeIdentifiersA(-1,childIndex0);
|
||
|
m_resultOut->setShapeIdentifiersB(-1,childIndex1);
|
||
|
|
||
|
|
||
|
colAlgo->processCollision(&compoundWrap0,&compoundWrap1,m_dispatchInfo,m_resultOut);
|
||
|
|
||
|
m_resultOut->setBody0Wrap(tmpWrap0);
|
||
|
m_resultOut->setBody1Wrap(tmpWrap1);
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
static DBVT_INLINE bool MyIntersect( const btDbvtAabbMm& a,
|
||
|
const btDbvtAabbMm& b, const btTransform& xform, btScalar distanceThreshold)
|
||
|
{
|
||
|
btVector3 newmin,newmax;
|
||
|
btTransformAabb(b.Mins(),b.Maxs(),0.f,xform,newmin,newmax);
|
||
|
newmin -= btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
|
||
|
newmax += btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
|
||
|
btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin,newmax);
|
||
|
return Intersect(a,newb);
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void MycollideTT( const btDbvtNode* root0,
|
||
|
const btDbvtNode* root1,
|
||
|
const btTransform& xform,
|
||
|
btCompoundCompoundLeafCallback* callback, btScalar distanceThreshold)
|
||
|
{
|
||
|
|
||
|
if(root0&&root1)
|
||
|
{
|
||
|
int depth=1;
|
||
|
int treshold=btDbvt::DOUBLE_STACKSIZE-4;
|
||
|
btAlignedObjectArray<btDbvt::sStkNN> stkStack;
|
||
|
#ifdef USE_LOCAL_STACK
|
||
|
ATTRIBUTE_ALIGNED16(btDbvt::sStkNN localStack[btDbvt::DOUBLE_STACKSIZE]);
|
||
|
stkStack.initializeFromBuffer(&localStack,btDbvt::DOUBLE_STACKSIZE,btDbvt::DOUBLE_STACKSIZE);
|
||
|
#else
|
||
|
stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
|
||
|
#endif
|
||
|
stkStack[0]=btDbvt::sStkNN(root0,root1);
|
||
|
do {
|
||
|
btDbvt::sStkNN p=stkStack[--depth];
|
||
|
if(MyIntersect(p.a->volume,p.b->volume,xform, distanceThreshold))
|
||
|
{
|
||
|
if(depth>treshold)
|
||
|
{
|
||
|
stkStack.resize(stkStack.size()*2);
|
||
|
treshold=stkStack.size()-4;
|
||
|
}
|
||
|
if(p.a->isinternal())
|
||
|
{
|
||
|
if(p.b->isinternal())
|
||
|
{
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[0]);
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[0]);
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[1]);
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[1]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b);
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(p.b->isinternal())
|
||
|
{
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[0]);
|
||
|
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[1]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
callback->Process(p.a,p.b);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} while(depth);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||
|
{
|
||
|
|
||
|
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
|
||
|
const btCollisionObjectWrapper* col1ObjWrap= body1Wrap;
|
||
|
|
||
|
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
|
||
|
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
|
||
|
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
|
||
|
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
|
||
|
|
||
|
const btDbvt* tree0 = compoundShape0->getDynamicAabbTree();
|
||
|
const btDbvt* tree1 = compoundShape1->getDynamicAabbTree();
|
||
|
if (!tree0 || !tree1)
|
||
|
{
|
||
|
return btCompoundCollisionAlgorithm::processCollision(body0Wrap,body1Wrap,dispatchInfo,resultOut);
|
||
|
}
|
||
|
///btCompoundShape might have changed:
|
||
|
////make sure the internal child collision algorithm caches are still valid
|
||
|
if ((compoundShape0->getUpdateRevision() != m_compoundShapeRevision0) || (compoundShape1->getUpdateRevision() != m_compoundShapeRevision1))
|
||
|
{
|
||
|
///clear all
|
||
|
removeChildAlgorithms();
|
||
|
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
|
||
|
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
///we need to refresh all contact manifolds
|
||
|
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
|
||
|
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
|
||
|
{
|
||
|
int i;
|
||
|
btManifoldArray manifoldArray;
|
||
|
#ifdef USE_LOCAL_STACK
|
||
|
btPersistentManifold localManifolds[4];
|
||
|
manifoldArray.initializeFromBuffer(&localManifolds,0,4);
|
||
|
#endif
|
||
|
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
|
||
|
for (i=0;i<pairs.size();i++)
|
||
|
{
|
||
|
if (pairs[i].m_userPointer)
|
||
|
{
|
||
|
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
|
||
|
algo->getAllContactManifolds(manifoldArray);
|
||
|
for (int m=0;m<manifoldArray.size();m++)
|
||
|
{
|
||
|
if (manifoldArray[m]->getNumContacts())
|
||
|
{
|
||
|
resultOut->setPersistentManifold(manifoldArray[m]);
|
||
|
resultOut->refreshContactPoints();
|
||
|
resultOut->setPersistentManifold(0);
|
||
|
}
|
||
|
}
|
||
|
manifoldArray.resize(0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
btCompoundCompoundLeafCallback callback(col0ObjWrap,col1ObjWrap,this->m_dispatcher,dispatchInfo,resultOut,this->m_childCollisionAlgorithmCache,m_sharedManifold);
|
||
|
|
||
|
|
||
|
const btTransform xform=col0ObjWrap->getWorldTransform().inverse()*col1ObjWrap->getWorldTransform();
|
||
|
MycollideTT(tree0->m_root,tree1->m_root,xform,&callback, resultOut->m_closestPointDistanceThreshold);
|
||
|
|
||
|
//printf("#compound-compound child/leaf overlap =%d \r",callback.m_numOverlapPairs);
|
||
|
|
||
|
//remove non-overlapping child pairs
|
||
|
|
||
|
{
|
||
|
btAssert(m_removePairs.size()==0);
|
||
|
|
||
|
//iterate over all children, perform an AABB check inside ProcessChildShape
|
||
|
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
|
||
|
|
||
|
int i;
|
||
|
btManifoldArray manifoldArray;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
|
||
|
|
||
|
for (i=0;i<pairs.size();i++)
|
||
|
{
|
||
|
if (pairs[i].m_userPointer)
|
||
|
{
|
||
|
btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;
|
||
|
|
||
|
{
|
||
|
btTransform orgTrans0;
|
||
|
const btCollisionShape* childShape0 = 0;
|
||
|
|
||
|
btTransform newChildWorldTrans0;
|
||
|
btTransform orgInterpolationTrans0;
|
||
|
childShape0 = compoundShape0->getChildShape(pairs[i].m_indexA);
|
||
|
orgTrans0 = col0ObjWrap->getWorldTransform();
|
||
|
orgInterpolationTrans0 = col0ObjWrap->getWorldTransform();
|
||
|
const btTransform& childTrans0 = compoundShape0->getChildTransform(pairs[i].m_indexA);
|
||
|
newChildWorldTrans0 = orgTrans0*childTrans0 ;
|
||
|
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
|
||
|
}
|
||
|
btVector3 thresholdVec(resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold);
|
||
|
aabbMin0 -= thresholdVec;
|
||
|
aabbMax0 += thresholdVec;
|
||
|
{
|
||
|
btTransform orgInterpolationTrans1;
|
||
|
const btCollisionShape* childShape1 = 0;
|
||
|
btTransform orgTrans1;
|
||
|
btTransform newChildWorldTrans1;
|
||
|
|
||
|
childShape1 = compoundShape1->getChildShape(pairs[i].m_indexB);
|
||
|
orgTrans1 = col1ObjWrap->getWorldTransform();
|
||
|
orgInterpolationTrans1 = col1ObjWrap->getWorldTransform();
|
||
|
const btTransform& childTrans1 = compoundShape1->getChildTransform(pairs[i].m_indexB);
|
||
|
newChildWorldTrans1 = orgTrans1*childTrans1 ;
|
||
|
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
|
||
|
}
|
||
|
|
||
|
aabbMin1 -= thresholdVec;
|
||
|
aabbMax1 += thresholdVec;
|
||
|
|
||
|
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
|
||
|
{
|
||
|
algo->~btCollisionAlgorithm();
|
||
|
m_dispatcher->freeCollisionAlgorithm(algo);
|
||
|
m_removePairs.push_back(btSimplePair(pairs[i].m_indexA,pairs[i].m_indexB));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int i=0;i<m_removePairs.size();i++)
|
||
|
{
|
||
|
m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA,m_removePairs[i].m_indexB);
|
||
|
}
|
||
|
m_removePairs.clear();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
btScalar btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||
|
{
|
||
|
btAssert(0);
|
||
|
return 0.f;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|