1430 lines
56 KiB
C++
1430 lines
56 KiB
C++
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "btMultiBodyConstraintSolver.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
||
|
#include "btMultiBodyLinkCollider.h"
|
||
|
|
||
|
#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
|
||
|
#include "btMultiBodyConstraint.h"
|
||
|
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
|
||
|
|
||
|
#include "LinearMath/btQuickprof.h"
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||
|
{
|
||
|
btScalar leastSquaredResidual = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
|
||
|
|
||
|
//solve featherstone non-contact constraints
|
||
|
|
||
|
//printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
|
||
|
|
||
|
for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
|
||
|
{
|
||
|
int index = iteration&1? j : m_multiBodyNonContactConstraints.size()-1-j;
|
||
|
|
||
|
btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
|
||
|
|
||
|
btScalar residual = resolveSingleConstraintRowGeneric(constraint);
|
||
|
leastSquaredResidual += residual*residual;
|
||
|
|
||
|
if(constraint.m_multiBodyA)
|
||
|
constraint.m_multiBodyA->setPosUpdated(false);
|
||
|
if(constraint.m_multiBodyB)
|
||
|
constraint.m_multiBodyB->setPosUpdated(false);
|
||
|
}
|
||
|
|
||
|
//solve featherstone normal contact
|
||
|
for (int j0=0;j0<m_multiBodyNormalContactConstraints.size();j0++)
|
||
|
{
|
||
|
int index = j0;//iteration&1? j0 : m_multiBodyNormalContactConstraints.size()-1-j0;
|
||
|
|
||
|
btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[index];
|
||
|
btScalar residual = 0.f;
|
||
|
|
||
|
if (iteration < infoGlobal.m_numIterations)
|
||
|
{
|
||
|
residual = resolveSingleConstraintRowGeneric(constraint);
|
||
|
}
|
||
|
|
||
|
leastSquaredResidual += residual*residual;
|
||
|
|
||
|
if(constraint.m_multiBodyA)
|
||
|
constraint.m_multiBodyA->setPosUpdated(false);
|
||
|
if(constraint.m_multiBodyB)
|
||
|
constraint.m_multiBodyB->setPosUpdated(false);
|
||
|
}
|
||
|
|
||
|
//solve featherstone frictional contact
|
||
|
|
||
|
for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
|
||
|
{
|
||
|
if (iteration < infoGlobal.m_numIterations)
|
||
|
{
|
||
|
int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
|
||
|
|
||
|
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
|
||
|
btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
|
||
|
//adjust friction limits here
|
||
|
if (totalImpulse>btScalar(0))
|
||
|
{
|
||
|
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
|
||
|
frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
|
||
|
btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
|
||
|
leastSquaredResidual += residual*residual;
|
||
|
|
||
|
if(frictionConstraint.m_multiBodyA)
|
||
|
frictionConstraint.m_multiBodyA->setPosUpdated(false);
|
||
|
if(frictionConstraint.m_multiBodyB)
|
||
|
frictionConstraint.m_multiBodyB->setPosUpdated(false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return leastSquaredResidual;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||
|
{
|
||
|
m_multiBodyNonContactConstraints.resize(0);
|
||
|
m_multiBodyNormalContactConstraints.resize(0);
|
||
|
m_multiBodyFrictionContactConstraints.resize(0);
|
||
|
m_data.m_jacobians.resize(0);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(0);
|
||
|
m_data.m_deltaVelocities.resize(0);
|
||
|
|
||
|
for (int i=0;i<numBodies;i++)
|
||
|
{
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
|
||
|
if (fcA)
|
||
|
{
|
||
|
fcA->m_multiBody->setCompanionId(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
|
||
|
{
|
||
|
for (int i = 0; i < ndof; ++i)
|
||
|
m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
|
||
|
{
|
||
|
|
||
|
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
|
||
|
btScalar deltaVelADotn=0;
|
||
|
btScalar deltaVelBDotn=0;
|
||
|
btSolverBody* bodyA = 0;
|
||
|
btSolverBody* bodyB = 0;
|
||
|
int ndofA=0;
|
||
|
int ndofB=0;
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
ndofA = c.m_multiBodyA->getNumDofs() + 6;
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
|
||
|
} else if(c.m_solverBodyIdA >= 0)
|
||
|
{
|
||
|
bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
|
||
|
deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
ndofB = c.m_multiBodyB->getNumDofs() + 6;
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
|
||
|
} else if(c.m_solverBodyIdB >= 0)
|
||
|
{
|
||
|
bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
|
||
|
deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
|
||
|
}
|
||
|
|
||
|
|
||
|
deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
|
||
|
deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
|
||
|
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
|
||
|
|
||
|
if (sum < c.m_lowerLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_lowerLimit;
|
||
|
}
|
||
|
else if (sum > c.m_upperLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_upperLimit;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c.m_appliedImpulse = sum;
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
|
||
|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
||
|
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
|
||
|
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
|
||
|
c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
|
||
|
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
||
|
} else if(c.m_solverBodyIdA >= 0)
|
||
|
{
|
||
|
bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
|
||
|
|
||
|
}
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
|
||
|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
||
|
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
|
||
|
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
|
||
|
c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
|
||
|
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
||
|
} else if(c.m_solverBodyIdB >= 0)
|
||
|
{
|
||
|
bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
|
||
|
}
|
||
|
return deltaImpulse;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
|
||
|
const btVector3& contactNormal,
|
||
|
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
|
||
|
btScalar& relaxation,
|
||
|
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
|
||
|
BT_PROFILE("setupMultiBodyContactConstraint");
|
||
|
btVector3 rel_pos1;
|
||
|
btVector3 rel_pos2;
|
||
|
|
||
|
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||
|
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||
|
|
||
|
const btVector3& pos1 = cp.getPositionWorldOnA();
|
||
|
const btVector3& pos2 = cp.getPositionWorldOnB();
|
||
|
|
||
|
btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
|
||
|
btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
|
||
|
|
||
|
btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
|
||
|
btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
|
||
|
|
||
|
if (bodyA)
|
||
|
rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
|
||
|
if (bodyB)
|
||
|
rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
|
||
|
|
||
|
relaxation = infoGlobal.m_sor;
|
||
|
|
||
|
btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
|
||
|
|
||
|
//cfm = 1 / ( dt * kp + kd )
|
||
|
//erp = dt * kp / ( dt * kp + kd )
|
||
|
|
||
|
btScalar cfm;
|
||
|
btScalar erp;
|
||
|
if (isFriction)
|
||
|
{
|
||
|
cfm = infoGlobal.m_frictionCFM;
|
||
|
erp = infoGlobal.m_frictionERP;
|
||
|
} else
|
||
|
{
|
||
|
cfm = infoGlobal.m_globalCfm;
|
||
|
erp = infoGlobal.m_erp2;
|
||
|
|
||
|
if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
|
||
|
{
|
||
|
if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
|
||
|
cfm = cp.m_contactCFM;
|
||
|
if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
|
||
|
erp = cp.m_contactERP;
|
||
|
} else
|
||
|
{
|
||
|
if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
|
||
|
{
|
||
|
btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
|
||
|
if (denom < SIMD_EPSILON)
|
||
|
{
|
||
|
denom = SIMD_EPSILON;
|
||
|
}
|
||
|
cfm = btScalar(1) / denom;
|
||
|
erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cfm *= invTimeStep;
|
||
|
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
if (solverConstraint.m_linkA<0)
|
||
|
{
|
||
|
rel_pos1 = pos1 - multiBodyA->getBasePos();
|
||
|
} else
|
||
|
{
|
||
|
rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
|
||
|
}
|
||
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
|
||
|
|
||
|
if (solverConstraint.m_deltaVelAindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
|
||
|
} else
|
||
|
{
|
||
|
btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacAindex = m_data.m_jacobians.size();
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
|
||
|
|
||
|
btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
|
||
|
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||
|
solverConstraint.m_contactNormal1 = contactNormal;
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
|
||
|
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||
|
solverConstraint.m_contactNormal1 = contactNormal;
|
||
|
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
if (solverConstraint.m_linkB<0)
|
||
|
{
|
||
|
rel_pos2 = pos2 - multiBodyB->getBasePos();
|
||
|
} else
|
||
|
{
|
||
|
rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
|
||
|
}
|
||
|
|
||
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
|
||
|
if (solverConstraint.m_deltaVelBindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacBindex = m_data.m_jacobians.size();
|
||
|
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
|
||
|
|
||
|
btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
|
||
|
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
|
||
|
solverConstraint.m_contactNormal2 = -contactNormal;
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
|
||
|
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
|
||
|
solverConstraint.m_contactNormal2 = -contactNormal;
|
||
|
|
||
|
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
|
||
|
btVector3 vec;
|
||
|
btScalar denom0 = 0.f;
|
||
|
btScalar denom1 = 0.f;
|
||
|
btScalar* jacB = 0;
|
||
|
btScalar* jacA = 0;
|
||
|
btScalar* lambdaA =0;
|
||
|
btScalar* lambdaB =0;
|
||
|
int ndofA = 0;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
{
|
||
|
btScalar j = jacA[i] ;
|
||
|
btScalar l =lambdaA[i];
|
||
|
denom0 += j*l;
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
|
||
|
denom0 = rb0->getInvMass() + contactNormal.dot(vec);
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
{
|
||
|
btScalar j = jacB[i] ;
|
||
|
btScalar l =lambdaB[i];
|
||
|
denom1 += j*l;
|
||
|
}
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
|
||
|
denom1 = rb1->getInvMass() + contactNormal.dot(vec);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
btScalar d = denom0+denom1+cfm;
|
||
|
if (d>SIMD_EPSILON)
|
||
|
{
|
||
|
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||
|
} else
|
||
|
{
|
||
|
//disable the constraint row to handle singularity/redundant constraint
|
||
|
solverConstraint.m_jacDiagABInv = 0.f;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
//compute rhs and remaining solverConstraint fields
|
||
|
|
||
|
|
||
|
|
||
|
btScalar restitution = 0.f;
|
||
|
btScalar distance = 0;
|
||
|
if (!isFriction)
|
||
|
{
|
||
|
distance = cp.getDistance()+infoGlobal.m_linearSlop;
|
||
|
} else
|
||
|
{
|
||
|
if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
|
||
|
{
|
||
|
distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(contactNormal);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
btScalar rel_vel = 0.f;
|
||
|
int ndofA = 0;
|
||
|
int ndofB = 0;
|
||
|
{
|
||
|
|
||
|
btVector3 vel1,vel2;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA ; ++i)
|
||
|
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
rel_vel += (rb0->getVelocityInLocalPoint(rel_pos1) +
|
||
|
(rb0->getTotalTorque()*rb0->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos1)+
|
||
|
rb0->getTotalForce()*rb0->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal1);
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB ; ++i)
|
||
|
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
rel_vel += (rb1->getVelocityInLocalPoint(rel_pos2)+
|
||
|
(rb1->getTotalTorque()*rb1->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos2) +
|
||
|
rb1->getTotalForce()*rb1->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_friction = cp.m_combinedFriction;
|
||
|
|
||
|
if(!isFriction)
|
||
|
{
|
||
|
restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
|
||
|
if (restitution <= btScalar(0.))
|
||
|
{
|
||
|
restitution = 0.f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
///warm starting (or zero if disabled)
|
||
|
//disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
|
||
|
if (0)//infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||
|
{
|
||
|
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
|
||
|
|
||
|
if (solverConstraint.m_appliedImpulse)
|
||
|
{
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||
|
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->applyDeltaVeeMultiDof(deltaV,impulse);
|
||
|
|
||
|
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||
|
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||
|
multiBodyB->applyDeltaVeeMultiDof(deltaV,impulse);
|
||
|
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
|
||
|
}
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
solverConstraint.m_appliedImpulse = 0.f;
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_appliedPushImpulse = 0.f;
|
||
|
|
||
|
{
|
||
|
|
||
|
btScalar positionalError = 0.f;
|
||
|
btScalar velocityError = restitution - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
|
||
|
if (isFriction)
|
||
|
{
|
||
|
positionalError = -distance * erp/infoGlobal.m_timeStep;
|
||
|
} else
|
||
|
{
|
||
|
if (distance>0)
|
||
|
{
|
||
|
positionalError = 0;
|
||
|
velocityError -= distance / infoGlobal.m_timeStep;
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
positionalError = -distance * erp/infoGlobal.m_timeStep;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
|
||
|
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
|
||
|
|
||
|
if(!isFriction)
|
||
|
{
|
||
|
// if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
|
||
|
{
|
||
|
//combine position and velocity into rhs
|
||
|
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = 0.f;
|
||
|
|
||
|
}
|
||
|
/*else
|
||
|
{
|
||
|
//split position and velocity into rhs and m_rhsPenetration
|
||
|
solverConstraint.m_rhs = velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = penetrationImpulse;
|
||
|
}
|
||
|
*/
|
||
|
solverConstraint.m_lowerLimit = 0;
|
||
|
solverConstraint.m_upperLimit = 1e10f;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = 0.f;
|
||
|
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
|
||
|
solverConstraint.m_upperLimit = solverConstraint.m_friction;
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
|
||
|
const btVector3& constraintNormal,
|
||
|
btManifoldPoint& cp,
|
||
|
btScalar combinedTorsionalFriction,
|
||
|
const btContactSolverInfo& infoGlobal,
|
||
|
btScalar& relaxation,
|
||
|
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
|
||
|
BT_PROFILE("setupMultiBodyRollingFrictionConstraint");
|
||
|
btVector3 rel_pos1;
|
||
|
btVector3 rel_pos2;
|
||
|
|
||
|
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||
|
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||
|
|
||
|
const btVector3& pos1 = cp.getPositionWorldOnA();
|
||
|
const btVector3& pos2 = cp.getPositionWorldOnB();
|
||
|
|
||
|
btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
|
||
|
btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
|
||
|
|
||
|
btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
|
||
|
btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
|
||
|
|
||
|
if (bodyA)
|
||
|
rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
|
||
|
if (bodyB)
|
||
|
rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
|
||
|
|
||
|
relaxation = infoGlobal.m_sor;
|
||
|
|
||
|
// btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
|
||
|
|
||
|
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
if (solverConstraint.m_linkA<0)
|
||
|
{
|
||
|
rel_pos1 = pos1 - multiBodyA->getBasePos();
|
||
|
} else
|
||
|
{
|
||
|
rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
|
||
|
}
|
||
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
|
||
|
|
||
|
if (solverConstraint.m_deltaVelAindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
|
||
|
} else
|
||
|
{
|
||
|
btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacAindex = m_data.m_jacobians.size();
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), constraintNormal, btVector3(0,0,0), jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
|
||
|
|
||
|
btVector3 torqueAxis0 = -constraintNormal;
|
||
|
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||
|
solverConstraint.m_contactNormal1 = btVector3(0,0,0);
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis0 = -constraintNormal;
|
||
|
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||
|
solverConstraint.m_contactNormal1 = btVector3(0,0,0);
|
||
|
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
if (solverConstraint.m_linkB<0)
|
||
|
{
|
||
|
rel_pos2 = pos2 - multiBodyB->getBasePos();
|
||
|
} else
|
||
|
{
|
||
|
rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
|
||
|
}
|
||
|
|
||
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
|
||
|
if (solverConstraint.m_deltaVelBindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacBindex = m_data.m_jacobians.size();
|
||
|
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -constraintNormal, btVector3(0,0,0), &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
|
||
|
|
||
|
btVector3 torqueAxis1 = constraintNormal;
|
||
|
solverConstraint.m_relpos2CrossNormal = torqueAxis1;
|
||
|
solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis1 = constraintNormal;
|
||
|
solverConstraint.m_relpos2CrossNormal = torqueAxis1;
|
||
|
solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
|
||
|
|
||
|
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
|
||
|
btScalar denom0 = 0.f;
|
||
|
btScalar denom1 = 0.f;
|
||
|
btScalar* jacB = 0;
|
||
|
btScalar* jacA = 0;
|
||
|
btScalar* lambdaA =0;
|
||
|
btScalar* lambdaB =0;
|
||
|
int ndofA = 0;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
{
|
||
|
btScalar j = jacA[i] ;
|
||
|
btScalar l =lambdaA[i];
|
||
|
denom0 += j*l;
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
btVector3 iMJaA = rb0?rb0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
|
||
|
denom0 = iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
{
|
||
|
btScalar j = jacB[i] ;
|
||
|
btScalar l =lambdaB[i];
|
||
|
denom1 += j*l;
|
||
|
}
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
btVector3 iMJaB = rb1?rb1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
|
||
|
denom1 = iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
|
||
|
if (d>SIMD_EPSILON)
|
||
|
{
|
||
|
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||
|
} else
|
||
|
{
|
||
|
//disable the constraint row to handle singularity/redundant constraint
|
||
|
solverConstraint.m_jacDiagABInv = 0.f;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
//compute rhs and remaining solverConstraint fields
|
||
|
|
||
|
|
||
|
|
||
|
btScalar restitution = 0.f;
|
||
|
btScalar penetration = isFriction? 0 : cp.getDistance();
|
||
|
|
||
|
btScalar rel_vel = 0.f;
|
||
|
int ndofA = 0;
|
||
|
int ndofB = 0;
|
||
|
{
|
||
|
|
||
|
btVector3 vel1,vel2;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumDofs() + 6;
|
||
|
btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA ; ++i)
|
||
|
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
|
||
|
rel_vel += solverConstraint.m_contactNormal1.dot(rb0?solverBodyA->m_linearVelocity+solverBodyA->m_externalForceImpulse:btVector3(0,0,0))
|
||
|
+ solverConstraint.m_relpos1CrossNormal.dot(rb0?solverBodyA->m_angularVelocity:btVector3(0,0,0));
|
||
|
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
ndofB = multiBodyB->getNumDofs() + 6;
|
||
|
btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB ; ++i)
|
||
|
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
|
||
|
rel_vel += solverConstraint.m_contactNormal2.dot(rb1?solverBodyB->m_linearVelocity+solverBodyB->m_externalForceImpulse:btVector3(0,0,0))
|
||
|
+ solverConstraint.m_relpos2CrossNormal.dot(rb1?solverBodyB->m_angularVelocity:btVector3(0,0,0));
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_friction =combinedTorsionalFriction;
|
||
|
|
||
|
if(!isFriction)
|
||
|
{
|
||
|
restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
|
||
|
if (restitution <= btScalar(0.))
|
||
|
{
|
||
|
restitution = 0.f;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
solverConstraint.m_appliedImpulse = 0.f;
|
||
|
solverConstraint.m_appliedPushImpulse = 0.f;
|
||
|
|
||
|
{
|
||
|
|
||
|
btScalar velocityError = 0 - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
|
||
|
|
||
|
|
||
|
|
||
|
btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
|
||
|
|
||
|
solverConstraint.m_rhs = velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = 0.f;
|
||
|
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
|
||
|
solverConstraint.m_upperLimit = solverConstraint.m_friction;
|
||
|
|
||
|
solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
BT_PROFILE("addMultiBodyFrictionConstraint");
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
|
||
|
solverConstraint.m_orgConstraint = 0;
|
||
|
solverConstraint.m_orgDofIndex = -1;
|
||
|
|
||
|
solverConstraint.m_frictionIndex = frictionIndex;
|
||
|
bool isFriction = true;
|
||
|
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
|
||
|
btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
|
||
|
btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
|
||
|
|
||
|
int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
|
||
|
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
|
||
|
|
||
|
solverConstraint.m_solverBodyIdA = solverBodyIdA;
|
||
|
solverConstraint.m_solverBodyIdB = solverBodyIdB;
|
||
|
solverConstraint.m_multiBodyA = mbA;
|
||
|
if (mbA)
|
||
|
solverConstraint.m_linkA = fcA->m_link;
|
||
|
|
||
|
solverConstraint.m_multiBodyB = mbB;
|
||
|
if (mbB)
|
||
|
solverConstraint.m_linkB = fcB->m_link;
|
||
|
|
||
|
solverConstraint.m_originalContactPoint = &cp;
|
||
|
|
||
|
setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
|
||
|
return solverConstraint;
|
||
|
}
|
||
|
|
||
|
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
|
||
|
btScalar combinedTorsionalFriction,
|
||
|
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
BT_PROFILE("addMultiBodyRollingFrictionConstraint");
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
|
||
|
solverConstraint.m_orgConstraint = 0;
|
||
|
solverConstraint.m_orgDofIndex = -1;
|
||
|
|
||
|
solverConstraint.m_frictionIndex = frictionIndex;
|
||
|
bool isFriction = true;
|
||
|
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
|
||
|
btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
|
||
|
btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
|
||
|
|
||
|
int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
|
||
|
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
|
||
|
|
||
|
solverConstraint.m_solverBodyIdA = solverBodyIdA;
|
||
|
solverConstraint.m_solverBodyIdB = solverBodyIdB;
|
||
|
solverConstraint.m_multiBodyA = mbA;
|
||
|
if (mbA)
|
||
|
solverConstraint.m_linkA = fcA->m_link;
|
||
|
|
||
|
solverConstraint.m_multiBodyB = mbB;
|
||
|
if (mbB)
|
||
|
solverConstraint.m_linkB = fcB->m_link;
|
||
|
|
||
|
solverConstraint.m_originalContactPoint = &cp;
|
||
|
|
||
|
setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction,infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
|
||
|
return solverConstraint;
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
|
||
|
{
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
|
||
|
btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
|
||
|
btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
|
||
|
|
||
|
btCollisionObject* colObj0=0,*colObj1=0;
|
||
|
|
||
|
colObj0 = (btCollisionObject*)manifold->getBody0();
|
||
|
colObj1 = (btCollisionObject*)manifold->getBody1();
|
||
|
|
||
|
int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
|
||
|
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
|
||
|
|
||
|
// btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
|
||
|
// btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
|
||
|
|
||
|
|
||
|
///avoid collision response between two static objects
|
||
|
// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
|
||
|
// return;
|
||
|
|
||
|
//only a single rollingFriction per manifold
|
||
|
int rollingFriction=1;
|
||
|
|
||
|
for (int j=0;j<manifold->getNumContacts();j++)
|
||
|
{
|
||
|
|
||
|
btManifoldPoint& cp = manifold->getContactPoint(j);
|
||
|
|
||
|
if (cp.getDistance() <= manifold->getContactProcessingThreshold())
|
||
|
{
|
||
|
|
||
|
btScalar relaxation;
|
||
|
|
||
|
int frictionIndex = m_multiBodyNormalContactConstraints.size();
|
||
|
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
|
||
|
|
||
|
// btRigidBody* rb0 = btRigidBody::upcast(colObj0);
|
||
|
// btRigidBody* rb1 = btRigidBody::upcast(colObj1);
|
||
|
solverConstraint.m_orgConstraint = 0;
|
||
|
solverConstraint.m_orgDofIndex = -1;
|
||
|
solverConstraint.m_solverBodyIdA = solverBodyIdA;
|
||
|
solverConstraint.m_solverBodyIdB = solverBodyIdB;
|
||
|
solverConstraint.m_multiBodyA = mbA;
|
||
|
if (mbA)
|
||
|
solverConstraint.m_linkA = fcA->m_link;
|
||
|
|
||
|
solverConstraint.m_multiBodyB = mbB;
|
||
|
if (mbB)
|
||
|
solverConstraint.m_linkB = fcB->m_link;
|
||
|
|
||
|
solverConstraint.m_originalContactPoint = &cp;
|
||
|
|
||
|
bool isFriction = false;
|
||
|
setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
|
||
|
|
||
|
// const btVector3& pos1 = cp.getPositionWorldOnA();
|
||
|
// const btVector3& pos2 = cp.getPositionWorldOnB();
|
||
|
|
||
|
/////setup the friction constraints
|
||
|
#define ENABLE_FRICTION
|
||
|
#ifdef ENABLE_FRICTION
|
||
|
solverConstraint.m_frictionIndex = frictionIndex;
|
||
|
|
||
|
///Bullet has several options to set the friction directions
|
||
|
///By default, each contact has only a single friction direction that is recomputed automatically every frame
|
||
|
///based on the relative linear velocity.
|
||
|
///If the relative velocity is zero, it will automatically compute a friction direction.
|
||
|
|
||
|
///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
|
||
|
///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
|
||
|
///
|
||
|
///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
|
||
|
///
|
||
|
///The user can manually override the friction directions for certain contacts using a contact callback,
|
||
|
///and set the cp.m_lateralFrictionInitialized to true
|
||
|
///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
|
||
|
///this will give a conveyor belt effect
|
||
|
///
|
||
|
|
||
|
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
|
||
|
cp.m_lateralFrictionDir1.normalize();
|
||
|
cp.m_lateralFrictionDir2.normalize();
|
||
|
|
||
|
if (rollingFriction > 0 )
|
||
|
{
|
||
|
if (cp.m_combinedSpinningFriction>0)
|
||
|
{
|
||
|
addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB,manifold,frictionIndex,cp,cp.m_combinedSpinningFriction, colObj0,colObj1, relaxation,infoGlobal);
|
||
|
}
|
||
|
if (cp.m_combinedRollingFriction>0)
|
||
|
{
|
||
|
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
|
||
|
if (cp.m_lateralFrictionDir1.length()>0.001)
|
||
|
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
|
||
|
|
||
|
if (cp.m_lateralFrictionDir2.length()>0.001)
|
||
|
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
|
||
|
}
|
||
|
rollingFriction--;
|
||
|
}
|
||
|
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
|
||
|
{/*
|
||
|
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
|
||
|
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
|
||
|
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
|
||
|
{
|
||
|
cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
|
||
|
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
|
||
|
cp.m_lateralFrictionDir2.normalize();//??
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
}
|
||
|
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
} else
|
||
|
*/
|
||
|
{
|
||
|
|
||
|
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
|
||
|
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
|
||
|
}
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
|
||
|
{
|
||
|
cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_frictionCFM);
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_frictionCFM);
|
||
|
|
||
|
//setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
|
||
|
//todo:
|
||
|
solverConstraint.m_appliedImpulse = 0.f;
|
||
|
solverConstraint.m_appliedPushImpulse = 0.f;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif //ENABLE_FRICTION
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
|
||
|
{
|
||
|
//btPersistentManifold* manifold = 0;
|
||
|
|
||
|
for (int i=0;i<numManifolds;i++)
|
||
|
{
|
||
|
btPersistentManifold* manifold= manifoldPtr[i];
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
if (!fcA && !fcB)
|
||
|
{
|
||
|
//the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
|
||
|
convertContact(manifold,infoGlobal);
|
||
|
} else
|
||
|
{
|
||
|
convertMultiBodyContact(manifold,infoGlobal);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//also convert the multibody constraints, if any
|
||
|
|
||
|
|
||
|
for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
|
||
|
{
|
||
|
btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
|
||
|
m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
|
||
|
m_data.m_fixedBodyId = m_fixedBodyId;
|
||
|
|
||
|
c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
|
||
|
{
|
||
|
return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static void applyJointFeedback(btMultiBodyJacobianData& data, const btMultiBodySolverConstraint& solverConstraint, int jacIndex, btMultiBody* mb, btScalar appliedImpulse)
|
||
|
{
|
||
|
if (appliedImpulse!=0 && mb->internalNeedsJointFeedback())
|
||
|
{
|
||
|
//todo: get rid of those temporary memory allocations for the joint feedback
|
||
|
btAlignedObjectArray<btScalar> forceVector;
|
||
|
int numDofsPlusBase = 6+mb->getNumDofs();
|
||
|
forceVector.resize(numDofsPlusBase);
|
||
|
for (int i=0;i<numDofsPlusBase;i++)
|
||
|
{
|
||
|
forceVector[i] = data.m_jacobians[jacIndex+i]*appliedImpulse;
|
||
|
}
|
||
|
btAlignedObjectArray<btScalar> output;
|
||
|
output.resize(numDofsPlusBase);
|
||
|
bool applyJointFeedback = true;
|
||
|
mb->calcAccelerationDeltasMultiDof(&forceVector[0],&output[0],data.scratch_r,data.scratch_v,applyJointFeedback);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& c, btScalar deltaTime)
|
||
|
{
|
||
|
#if 1
|
||
|
|
||
|
//bod->addBaseForce(m_gravity * bod->getBaseMass());
|
||
|
//bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
|
||
|
|
||
|
if (c.m_orgConstraint)
|
||
|
{
|
||
|
c.m_orgConstraint->internalSetAppliedImpulse(c.m_orgDofIndex,c.m_appliedImpulse);
|
||
|
}
|
||
|
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
|
||
|
c.m_multiBodyA->setCompanionId(-1);
|
||
|
btVector3 force = c.m_contactNormal1*(c.m_appliedImpulse/deltaTime);
|
||
|
btVector3 torque = c.m_relpos1CrossNormal*(c.m_appliedImpulse/deltaTime);
|
||
|
if (c.m_linkA<0)
|
||
|
{
|
||
|
c.m_multiBodyA->addBaseConstraintForce(force);
|
||
|
c.m_multiBodyA->addBaseConstraintTorque(torque);
|
||
|
} else
|
||
|
{
|
||
|
c.m_multiBodyA->addLinkConstraintForce(c.m_linkA,force);
|
||
|
//b3Printf("force = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
|
||
|
c.m_multiBodyA->addLinkConstraintTorque(c.m_linkA,torque);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
{
|
||
|
c.m_multiBodyB->setCompanionId(-1);
|
||
|
btVector3 force = c.m_contactNormal2*(c.m_appliedImpulse/deltaTime);
|
||
|
btVector3 torque = c.m_relpos2CrossNormal*(c.m_appliedImpulse/deltaTime);
|
||
|
if (c.m_linkB<0)
|
||
|
{
|
||
|
c.m_multiBodyB->addBaseConstraintForce(force);
|
||
|
c.m_multiBodyB->addBaseConstraintTorque(torque);
|
||
|
} else
|
||
|
{
|
||
|
{
|
||
|
c.m_multiBodyB->addLinkConstraintForce(c.m_linkB,force);
|
||
|
//b3Printf("t = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
|
||
|
c.m_multiBodyB->addLinkConstraintTorque(c.m_linkB,torque);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
|
||
|
if(c.m_multiBodyA->isMultiDof())
|
||
|
{
|
||
|
c.m_multiBodyA->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
if(c.m_multiBodyB->isMultiDof())
|
||
|
{
|
||
|
c.m_multiBodyB->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
|
||
|
{
|
||
|
BT_PROFILE("btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish");
|
||
|
int numPoolConstraints = m_multiBodyNormalContactConstraints.size();
|
||
|
|
||
|
|
||
|
//write back the delta v to the multi bodies, either as applied impulse (direct velocity change)
|
||
|
//or as applied force, so we can measure the joint reaction forces easier
|
||
|
for (int i=0;i<numPoolConstraints;i++)
|
||
|
{
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
|
||
|
writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
|
||
|
|
||
|
writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
|
||
|
{
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
|
||
|
writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
|
||
|
}
|
||
|
|
||
|
|
||
|
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||
|
{
|
||
|
BT_PROFILE("warm starting write back");
|
||
|
for (int j=0;j<numPoolConstraints;j++)
|
||
|
{
|
||
|
const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
|
||
|
btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
|
||
|
btAssert(pt);
|
||
|
pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
|
||
|
pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
|
||
|
|
||
|
//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
|
||
|
}
|
||
|
//do a callback here?
|
||
|
}
|
||
|
}
|
||
|
#if 0
|
||
|
//multibody joint feedback
|
||
|
{
|
||
|
BT_PROFILE("multi body joint feedback");
|
||
|
for (int j=0;j<numPoolConstraints;j++)
|
||
|
{
|
||
|
const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
|
||
|
|
||
|
//apply the joint feedback into all links of the btMultiBody
|
||
|
//todo: double-check the signs of the applied impulse
|
||
|
|
||
|
if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
#if 0
|
||
|
if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacAindex,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
|
||
|
|
||
|
}
|
||
|
if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacBindex,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacAindex,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
|
||
|
if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacBindex,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB,
|
||
|
m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
|
||
|
{
|
||
|
const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
|
||
|
if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
|
||
|
{
|
||
|
applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
numPoolConstraints = m_multiBodyNonContactConstraints.size();
|
||
|
|
||
|
#if 0
|
||
|
//@todo: m_originalContactPoint is not initialized for btMultiBodySolverConstraint
|
||
|
for (int i=0;i<numPoolConstraints;i++)
|
||
|
{
|
||
|
const btMultiBodySolverConstraint& c = m_multiBodyNonContactConstraints[i];
|
||
|
|
||
|
btTypedConstraint* constr = (btTypedConstraint*)c.m_originalContactPoint;
|
||
|
btJointFeedback* fb = constr->getJointFeedback();
|
||
|
if (fb)
|
||
|
{
|
||
|
fb->m_appliedForceBodyA += c.m_contactNormal1*c.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
|
||
|
fb->m_appliedForceBodyB += c.m_contactNormal2*c.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
|
||
|
fb->m_appliedTorqueBodyA += c.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep;
|
||
|
fb->m_appliedTorqueBodyB += c.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
|
||
|
|
||
|
}
|
||
|
|
||
|
constr->internalSetAppliedImpulse(c.m_appliedImpulse);
|
||
|
if (btFabs(c.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
|
||
|
{
|
||
|
constr->setEnabled(false);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies,numBodies,infoGlobal);
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
|
||
|
{
|
||
|
//printf("solveMultiBodyGroup start\n");
|
||
|
m_tmpMultiBodyConstraints = multiBodyConstraints;
|
||
|
m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
|
||
|
|
||
|
btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
|
||
|
|
||
|
m_tmpMultiBodyConstraints = 0;
|
||
|
m_tmpNumMultiBodyConstraints = 0;
|
||
|
|
||
|
|
||
|
}
|