329 lines
9 KiB
C#
329 lines
9 KiB
C#
|
using System;
|
||
|
using System.Runtime.InteropServices;
|
||
|
|
||
|
namespace Godot
|
||
|
{
|
||
|
[StructLayout(LayoutKind.Sequential)]
|
||
|
public struct Quat : IEquatable<Quat>
|
||
|
{
|
||
|
private static readonly Quat identity = new Quat(0f, 0f, 0f, 1f);
|
||
|
|
||
|
public float x;
|
||
|
public float y;
|
||
|
public float z;
|
||
|
public float w;
|
||
|
|
||
|
public static Quat Identity
|
||
|
{
|
||
|
get { return identity; }
|
||
|
}
|
||
|
|
||
|
public float this[int index]
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
switch (index)
|
||
|
{
|
||
|
case 0:
|
||
|
return x;
|
||
|
case 1:
|
||
|
return y;
|
||
|
case 2:
|
||
|
return z;
|
||
|
case 3:
|
||
|
return w;
|
||
|
default:
|
||
|
throw new IndexOutOfRangeException();
|
||
|
}
|
||
|
}
|
||
|
set
|
||
|
{
|
||
|
switch (index)
|
||
|
{
|
||
|
case 0:
|
||
|
x = value;
|
||
|
break;
|
||
|
case 1:
|
||
|
y = value;
|
||
|
break;
|
||
|
case 2:
|
||
|
z = value;
|
||
|
break;
|
||
|
case 3:
|
||
|
w = value;
|
||
|
break;
|
||
|
default:
|
||
|
throw new IndexOutOfRangeException();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public Quat cubic_slerp(Quat b, Quat preA, Quat postB, float t)
|
||
|
{
|
||
|
float t2 = (1.0f - t) * t * 2f;
|
||
|
Quat sp = slerp(b, t);
|
||
|
Quat sq = preA.slerpni(postB, t);
|
||
|
return sp.slerpni(sq, t2);
|
||
|
}
|
||
|
|
||
|
public float dot(Quat b)
|
||
|
{
|
||
|
return x * b.x + y * b.y + z * b.z + w * b.w;
|
||
|
}
|
||
|
|
||
|
public Quat inverse()
|
||
|
{
|
||
|
return new Quat(-x, -y, -z, w);
|
||
|
}
|
||
|
|
||
|
public float length()
|
||
|
{
|
||
|
return Mathf.sqrt(length_squared());
|
||
|
}
|
||
|
|
||
|
public float length_squared()
|
||
|
{
|
||
|
return dot(this);
|
||
|
}
|
||
|
|
||
|
public Quat normalized()
|
||
|
{
|
||
|
return this / length();
|
||
|
}
|
||
|
|
||
|
public void set(float x, float y, float z, float w)
|
||
|
{
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
this.z = z;
|
||
|
this.w = w;
|
||
|
}
|
||
|
|
||
|
public Quat slerp(Quat b, float t)
|
||
|
{
|
||
|
// Calculate cosine
|
||
|
float cosom = x * b.x + y * b.y + z * b.z + w * b.w;
|
||
|
|
||
|
float[] to1 = new float[4];
|
||
|
|
||
|
// Adjust signs if necessary
|
||
|
if (cosom < 0.0)
|
||
|
{
|
||
|
cosom = -cosom; to1[0] = -b.x;
|
||
|
to1[1] = -b.y;
|
||
|
to1[2] = -b.z;
|
||
|
to1[3] = -b.w;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
to1[0] = b.x;
|
||
|
to1[1] = b.y;
|
||
|
to1[2] = b.z;
|
||
|
to1[3] = b.w;
|
||
|
}
|
||
|
|
||
|
float sinom, scale0, scale1;
|
||
|
|
||
|
// Calculate coefficients
|
||
|
if ((1.0 - cosom) > Mathf.Epsilon)
|
||
|
{
|
||
|
// Standard case (Slerp)
|
||
|
float omega = Mathf.acos(cosom);
|
||
|
sinom = Mathf.sin(omega);
|
||
|
scale0 = Mathf.sin((1.0f - t) * omega) / sinom;
|
||
|
scale1 = Mathf.sin(t * omega) / sinom;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Quaternions are very close so we can do a linear interpolation
|
||
|
scale0 = 1.0f - t;
|
||
|
scale1 = t;
|
||
|
}
|
||
|
|
||
|
// Calculate final values
|
||
|
return new Quat
|
||
|
(
|
||
|
scale0 * x + scale1 * to1[0],
|
||
|
scale0 * y + scale1 * to1[1],
|
||
|
scale0 * z + scale1 * to1[2],
|
||
|
scale0 * w + scale1 * to1[3]
|
||
|
);
|
||
|
}
|
||
|
|
||
|
public Quat slerpni(Quat b, float t)
|
||
|
{
|
||
|
float dot = this.dot(b);
|
||
|
|
||
|
if (Mathf.abs(dot) > 0.9999f)
|
||
|
{
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
float theta = Mathf.acos(dot);
|
||
|
float sinT = 1.0f / Mathf.sin(theta);
|
||
|
float newFactor = Mathf.sin(t * theta) * sinT;
|
||
|
float invFactor = Mathf.sin((1.0f - t) * theta) * sinT;
|
||
|
|
||
|
return new Quat
|
||
|
(
|
||
|
invFactor * this.x + newFactor * b.x,
|
||
|
invFactor * this.y + newFactor * b.y,
|
||
|
invFactor * this.z + newFactor * b.z,
|
||
|
invFactor * this.w + newFactor * b.w
|
||
|
);
|
||
|
}
|
||
|
|
||
|
public Vector3 xform(Vector3 v)
|
||
|
{
|
||
|
Quat q = this * v;
|
||
|
q *= this.inverse();
|
||
|
return new Vector3(q.x, q.y, q.z);
|
||
|
}
|
||
|
|
||
|
public Quat(float x, float y, float z, float w)
|
||
|
{
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
this.z = z;
|
||
|
this.w = w;
|
||
|
}
|
||
|
|
||
|
public Quat(Vector3 axis, float angle)
|
||
|
{
|
||
|
float d = axis.length();
|
||
|
|
||
|
if (d == 0f)
|
||
|
{
|
||
|
x = 0f;
|
||
|
y = 0f;
|
||
|
z = 0f;
|
||
|
w = 0f;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
float s = Mathf.sin(-angle * 0.5f) / d;
|
||
|
|
||
|
x = axis.x * s;
|
||
|
y = axis.y * s;
|
||
|
z = axis.z * s;
|
||
|
w = Mathf.cos(-angle * 0.5f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static Quat operator *(Quat left, Quat right)
|
||
|
{
|
||
|
return new Quat
|
||
|
(
|
||
|
left.w * right.x + left.x * right.w + left.y * right.z - left.z * right.y,
|
||
|
left.w * right.y + left.y * right.w + left.z * right.x - left.x * right.z,
|
||
|
left.w * right.z + left.z * right.w + left.x * right.y - left.y * right.x,
|
||
|
left.w * right.w - left.x * right.x - left.y * right.y - left.z * right.z
|
||
|
);
|
||
|
}
|
||
|
|
||
|
public static Quat operator +(Quat left, Quat right)
|
||
|
{
|
||
|
return new Quat(left.x + right.x, left.y + right.y, left.z + right.z, left.w + right.w);
|
||
|
}
|
||
|
|
||
|
public static Quat operator -(Quat left, Quat right)
|
||
|
{
|
||
|
return new Quat(left.x - right.x, left.y - right.y, left.z - right.z, left.w - right.w);
|
||
|
}
|
||
|
|
||
|
public static Quat operator -(Quat left)
|
||
|
{
|
||
|
return new Quat(-left.x, -left.y, -left.z, -left.w);
|
||
|
}
|
||
|
|
||
|
public static Quat operator *(Quat left, Vector3 right)
|
||
|
{
|
||
|
return new Quat
|
||
|
(
|
||
|
left.w * right.x + left.y * right.z - left.z * right.y,
|
||
|
left.w * right.y + left.z * right.x - left.x * right.z,
|
||
|
left.w * right.z + left.x * right.y - left.y * right.x,
|
||
|
-left.x * right.x - left.y * right.y - left.z * right.z
|
||
|
);
|
||
|
}
|
||
|
|
||
|
public static Quat operator *(Vector3 left, Quat right)
|
||
|
{
|
||
|
return new Quat
|
||
|
(
|
||
|
right.w * left.x + right.y * left.z - right.z * left.y,
|
||
|
right.w * left.y + right.z * left.x - right.x * left.z,
|
||
|
right.w * left.z + right.x * left.y - right.y * left.x,
|
||
|
-right.x * left.x - right.y * left.y - right.z * left.z
|
||
|
);
|
||
|
}
|
||
|
|
||
|
public static Quat operator *(Quat left, float right)
|
||
|
{
|
||
|
return new Quat(left.x * right, left.y * right, left.z * right, left.w * right);
|
||
|
}
|
||
|
|
||
|
public static Quat operator *(float left, Quat right)
|
||
|
{
|
||
|
return new Quat(right.x * left, right.y * left, right.z * left, right.w * left);
|
||
|
}
|
||
|
|
||
|
public static Quat operator /(Quat left, float right)
|
||
|
{
|
||
|
return left * (1.0f / right);
|
||
|
}
|
||
|
|
||
|
public static bool operator ==(Quat left, Quat right)
|
||
|
{
|
||
|
return left.Equals(right);
|
||
|
}
|
||
|
|
||
|
public static bool operator !=(Quat left, Quat right)
|
||
|
{
|
||
|
return !left.Equals(right);
|
||
|
}
|
||
|
|
||
|
public override bool Equals(object obj)
|
||
|
{
|
||
|
if (obj is Vector2)
|
||
|
{
|
||
|
return Equals((Vector2)obj);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
public bool Equals(Quat other)
|
||
|
{
|
||
|
return x == other.x && y == other.y && z == other.z && w == other.w;
|
||
|
}
|
||
|
|
||
|
public override int GetHashCode()
|
||
|
{
|
||
|
return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode();
|
||
|
}
|
||
|
|
||
|
public override string ToString()
|
||
|
{
|
||
|
return String.Format("({0}, {1}, {2}, {3})", new object[]
|
||
|
{
|
||
|
this.x.ToString(),
|
||
|
this.y.ToString(),
|
||
|
this.z.ToString(),
|
||
|
this.w.ToString()
|
||
|
});
|
||
|
}
|
||
|
|
||
|
public string ToString(string format)
|
||
|
{
|
||
|
return String.Format("({0}, {1}, {2}, {3})", new object[]
|
||
|
{
|
||
|
this.x.ToString(format),
|
||
|
this.y.ToString(format),
|
||
|
this.z.ToString(format),
|
||
|
this.w.ToString(format)
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
}
|