virtualx-engine/thirdparty/meshoptimizer/spatialorder.cpp

195 lines
6 KiB
C++
Raw Normal View History

// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <float.h>
#include <string.h>
// This work is based on:
// Fabian Giesen. Decoding Morton codes. 2009
namespace meshopt
{
// "Insert" two 0 bits after each of the 10 low bits of x
inline unsigned int part1By2(unsigned int x)
{
x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210
x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210
x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10
x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
return x;
}
static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i = 0; i < vertex_count; ++i)
{
const float* v = vertex_positions_data + i * vertex_stride_float;
for (int j = 0; j < 3; ++j)
{
float vj = v[j];
minv[j] = minv[j] > vj ? vj : minv[j];
maxv[j] = maxv[j] < vj ? vj : maxv[j];
}
}
float extent = 0.f;
extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
float scale = extent == 0 ? 0.f : 1.f / extent;
// generate Morton order based on the position inside a unit cube
for (size_t i = 0; i < vertex_count; ++i)
{
const float* v = vertex_positions_data + i * vertex_stride_float;
int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f);
int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f);
int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f);
result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2);
}
}
static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count)
{
memset(hist, 0, sizeof(hist));
// compute 3 10-bit histograms in parallel
for (size_t i = 0; i < count; ++i)
{
unsigned int id = data[i];
hist[(id >> 0) & 1023][0]++;
hist[(id >> 10) & 1023][1]++;
hist[(id >> 20) & 1023][2]++;
}
unsigned int sumx = 0, sumy = 0, sumz = 0;
// replace histogram data with prefix histogram sums in-place
for (int i = 0; i < 1024; ++i)
{
unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2];
hist[i][0] = sumx;
hist[i][1] = sumy;
hist[i][2] = sumz;
sumx += hx;
sumy += hy;
sumz += hz;
}
assert(sumx == count && sumy == count && sumz == count);
}
static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass)
{
int bitoff = pass * 10;
for (size_t i = 0; i < count; ++i)
{
unsigned int id = (keys[source[i]] >> bitoff) & 1023;
destination[hist[id][pass]++] = source[i];
}
}
} // namespace meshopt
void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
using namespace meshopt;
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
meshopt_Allocator allocator;
unsigned int* keys = allocator.allocate<unsigned int>(vertex_count);
computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride);
unsigned int hist[1024][3];
computeHistogram(hist, keys, vertex_count);
unsigned int* scratch = allocator.allocate<unsigned int>(vertex_count);
for (size_t i = 0; i < vertex_count; ++i)
destination[i] = unsigned(i);
// 3-pass radix sort computes the resulting order into scratch
radixPass(scratch, destination, keys, vertex_count, hist, 0);
radixPass(destination, scratch, keys, vertex_count, hist, 1);
radixPass(scratch, destination, keys, vertex_count, hist, 2);
// since our remap table is mapping old=>new, we need to reverse it
for (size_t i = 0; i < vertex_count; ++i)
destination[scratch[i]] = unsigned(i);
}
void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
using namespace meshopt;
assert(index_count % 3 == 0);
assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
(void)vertex_count;
size_t face_count = index_count / 3;
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
meshopt_Allocator allocator;
float* centroids = allocator.allocate<float>(face_count * 3);
for (size_t i = 0; i < face_count; ++i)
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
assert(a < vertex_count && b < vertex_count && c < vertex_count);
const float* va = vertex_positions + a * vertex_stride_float;
const float* vb = vertex_positions + b * vertex_stride_float;
const float* vc = vertex_positions + c * vertex_stride_float;
centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f;
centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f;
centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f;
}
unsigned int* remap = allocator.allocate<unsigned int>(face_count);
meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3);
// support in-order remap
if (destination == indices)
{
unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
indices = indices_copy;
}
for (size_t i = 0; i < face_count; ++i)
{
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
unsigned int r = remap[i];
destination[r * 3 + 0] = a;
destination[r * 3 + 1] = b;
destination[r * 3 + 2] = c;
}
}