2023-01-05 13:25:55 +01:00
/**************************************************************************/
/* godot_body_pair_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2018-01-05 00:50:27 +01:00
2021-10-18 21:24:30 +02:00
# include "godot_body_pair_2d.h"
2022-02-16 13:56:32 +01:00
2021-10-18 21:24:30 +02:00
# include "godot_collision_solver_2d.h"
# include "godot_space_2d.h"
2014-02-10 02:10:30 +01:00
# define ACCUMULATE_IMPULSES
2021-12-03 18:38:40 +01:00
# define MIN_VELOCITY 0.001
# define MAX_BIAS_ROTATION (Math_PI / 8)
2021-10-18 21:24:30 +02:00
void GodotBodyPair2D : : _add_contact ( const Vector2 & p_point_A , const Vector2 & p_point_B , void * p_self ) {
2022-04-05 12:40:26 +02:00
GodotBodyPair2D * self = static_cast < GodotBodyPair2D * > ( p_self ) ;
2014-02-10 02:10:30 +01:00
self - > _contact_added_callback ( p_point_A , p_point_B ) ;
}
2021-10-18 21:24:30 +02:00
void GodotBodyPair2D : : _contact_added_callback ( const Vector2 & p_point_A , const Vector2 & p_point_B ) {
2014-02-10 02:10:30 +01:00
Vector2 local_A = A - > get_inv_transform ( ) . basis_xform ( p_point_A ) ;
Vector2 local_B = B - > get_inv_transform ( ) . basis_xform ( p_point_B - offset_B ) ;
int new_index = contact_count ;
ERR_FAIL_COND ( new_index > = ( MAX_CONTACTS + 1 ) ) ;
Contact contact ;
contact . local_A = local_A ;
contact . local_B = local_B ;
contact . normal = ( p_point_A - p_point_B ) . normalized ( ) ;
2021-12-03 18:38:40 +01:00
contact . used = true ;
2014-02-10 02:10:30 +01:00
2021-12-03 18:38:40 +01:00
// Attempt to determine if the contact will be reused.
2014-02-10 02:10:30 +01:00
real_t recycle_radius_2 = space - > get_contact_recycle_radius ( ) * space - > get_contact_recycle_radius ( ) ;
for ( int i = 0 ; i < contact_count ; i + + ) {
Contact & c = contacts [ i ] ;
2021-12-03 18:38:40 +01:00
if ( c . local_A . distance_squared_to ( local_A ) < ( recycle_radius_2 ) & &
2014-02-10 02:10:30 +01:00
c . local_B . distance_squared_to ( local_B ) < ( recycle_radius_2 ) ) {
contact . acc_normal_impulse = c . acc_normal_impulse ;
contact . acc_tangent_impulse = c . acc_tangent_impulse ;
contact . acc_bias_impulse = c . acc_bias_impulse ;
2021-12-03 18:38:40 +01:00
contact . acc_bias_impulse_center_of_mass = c . acc_bias_impulse_center_of_mass ;
c = contact ;
return ;
2014-02-10 02:10:30 +01:00
}
}
2021-12-03 18:38:40 +01:00
// Figure out if the contact amount must be reduced to fit the new contact.
2014-02-10 02:10:30 +01:00
if ( new_index = = MAX_CONTACTS ) {
2021-12-03 18:38:40 +01:00
// Remove the contact with the minimum depth.
2014-02-10 02:10:30 +01:00
2021-04-20 03:38:11 +02:00
const Transform2D & transform_A = A - > get_transform ( ) ;
const Transform2D & transform_B = B - > get_transform ( ) ;
2021-12-03 18:38:40 +01:00
int least_deep = - 1 ;
real_t min_depth ;
// Start with depth for new contact.
{
Vector2 global_A = transform_A . basis_xform ( contact . local_A ) ;
Vector2 global_B = transform_B . basis_xform ( contact . local_B ) + offset_B ;
Vector2 axis = global_A - global_B ;
min_depth = axis . dot ( contact . normal ) ;
}
for ( int i = 0 ; i < contact_count ; i + + ) {
const Contact & c = contacts [ i ] ;
2021-04-20 03:38:11 +02:00
Vector2 global_A = transform_A . basis_xform ( c . local_A ) ;
Vector2 global_B = transform_B . basis_xform ( c . local_B ) + offset_B ;
2014-02-10 02:10:30 +01:00
Vector2 axis = global_A - global_B ;
2017-02-14 00:25:05 +01:00
real_t depth = axis . dot ( c . normal ) ;
2014-02-10 02:10:30 +01:00
if ( depth < min_depth ) {
min_depth = depth ;
least_deep = i ;
}
}
2021-12-03 18:38:40 +01:00
if ( least_deep > - 1 ) {
// Replace the least deep contact by the new one.
2014-02-10 02:10:30 +01:00
contacts [ least_deep ] = contact ;
}
return ;
}
contacts [ new_index ] = contact ;
2021-12-03 18:38:40 +01:00
contact_count + + ;
2014-02-10 02:10:30 +01:00
}
2021-10-18 21:24:30 +02:00
void GodotBodyPair2D : : _validate_contacts ( ) {
2021-12-03 18:38:40 +01:00
// Make sure to erase contacts that are no longer valid.
2014-02-10 02:10:30 +01:00
real_t max_separation = space - > get_contact_max_separation ( ) ;
real_t max_separation2 = max_separation * max_separation ;
2021-04-20 03:38:11 +02:00
const Transform2D & transform_A = A - > get_transform ( ) ;
const Transform2D & transform_B = B - > get_transform ( ) ;
2014-02-10 02:10:30 +01:00
for ( int i = 0 ; i < contact_count ; i + + ) {
Contact & c = contacts [ i ] ;
2014-02-19 15:57:14 +01:00
bool erase = false ;
2021-12-03 18:38:40 +01:00
if ( ! c . used ) {
// Was left behind in previous frame.
2014-02-19 15:57:14 +01:00
erase = true ;
} else {
2021-12-03 18:38:40 +01:00
c . used = false ;
2014-02-19 15:57:14 +01:00
2021-04-20 03:38:11 +02:00
Vector2 global_A = transform_A . basis_xform ( c . local_A ) ;
Vector2 global_B = transform_B . basis_xform ( c . local_B ) + offset_B ;
2014-02-19 15:57:14 +01:00
Vector2 axis = global_A - global_B ;
2017-02-14 00:25:05 +01:00
real_t depth = axis . dot ( c . normal ) ;
2014-02-19 15:57:14 +01:00
if ( depth < - max_separation | | ( global_B + c . normal * depth - global_A ) . length_squared ( ) > max_separation2 ) {
erase = true ;
}
}
2014-02-10 02:10:30 +01:00
2014-02-19 15:57:14 +01:00
if ( erase ) {
2021-12-03 18:38:40 +01:00
// Contact no longer needed, remove.
2014-02-10 02:10:30 +01:00
if ( ( i + 1 ) < contact_count ) {
2021-12-03 18:38:40 +01:00
// Swap with the last one.
2014-02-10 02:10:30 +01:00
SWAP ( contacts [ i ] , contacts [ contact_count - 1 ] ) ;
}
i - - ;
contact_count - - ;
}
}
}
2022-12-11 21:01:10 +01:00
// _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap)
// Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce!
// Process: only proceed if body A's motion is high relative to its size.
// cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
// adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
2021-12-10 00:36:39 +01:00
bool GodotBodyPair2D : : _test_ccd ( real_t p_step , GodotBody2D * p_A , int p_shape_A , const Transform2D & p_xform_A , GodotBody2D * p_B , int p_shape_B , const Transform2D & p_xform_B ) {
2014-02-10 02:10:30 +01:00
Vector2 motion = p_A - > get_linear_velocity ( ) * p_step ;
real_t mlen = motion . length ( ) ;
2020-05-14 16:41:43 +02:00
if ( mlen < CMP_EPSILON ) {
2014-02-10 02:10:30 +01:00
return false ;
2020-05-14 16:41:43 +02:00
}
2014-02-10 02:10:30 +01:00
Vector2 mnormal = motion / mlen ;
2022-10-01 21:09:22 +02:00
real_t min = 0.0 , max = 0.0 ;
2014-02-10 02:10:30 +01:00
p_A - > get_shape ( p_shape_A ) - > project_rangev ( mnormal , p_xform_A , min , max ) ;
2014-02-19 15:57:14 +01:00
2021-12-10 00:36:39 +01:00
// Did it move enough in this direction to even attempt raycast?
// Let's say it should move more than 1/3 the size of the object in that axis.
bool fast_object = mlen > ( max - min ) * 0.3 ;
if ( ! fast_object ) {
2014-02-10 02:10:30 +01:00
return false ;
2014-02-19 15:57:14 +01:00
}
2014-02-10 02:10:30 +01:00
2022-12-11 21:01:10 +01:00
// A is moving fast enough that tunneling might occur. See if it's really about to collide.
2021-12-10 00:36:39 +01:00
2023-04-16 19:46:33 +02:00
// Roughly predict body B's position in the next frame (ignoring collisions).
Transform2D predicted_xform_B = p_xform_B . translated ( p_B - > get_linear_velocity ( ) * p_step ) ;
2021-12-10 00:36:39 +01:00
// Cast a segment from support in motion normal, in the same direction of motion by motion length.
2022-12-11 21:01:10 +01:00
// Support point will the farthest forward collision point along the movement vector.
// i.e. the point that should hit B first if any collision does occur.
// convert mnormal into body A's local xform because get_support requires (and returns) local coordinates.
2014-02-10 02:10:30 +01:00
int a ;
Vector2 s [ 2 ] ;
2022-12-11 21:01:10 +01:00
p_A - > get_shape ( p_shape_A ) - > get_supports ( p_xform_A . basis_xform_inv ( mnormal ) . normalized ( ) , s , a ) ;
2014-02-10 02:10:30 +01:00
Vector2 from = p_xform_A . xform ( s [ 0 ] ) ;
2022-12-11 21:01:10 +01:00
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
// This should ensure the calculated new velocity will really cause a bit of overlap instead of just getting us very close.
2014-02-10 02:10:30 +01:00
Vector2 to = from + motion ;
2023-04-16 19:46:33 +02:00
Transform2D from_inv = predicted_xform_B . affine_inverse ( ) ;
2014-02-19 15:57:14 +01:00
2022-12-16 19:39:19 +01:00
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
// At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. But it still works out.
Vector2 local_from = from_inv . xform ( from - motion * 0.1 ) ;
2014-02-19 15:57:14 +01:00
Vector2 local_to = from_inv . xform ( to ) ;
2014-02-10 02:10:30 +01:00
Vector2 rpos , rnorm ;
2020-05-14 16:41:43 +02:00
if ( ! p_B - > get_shape ( p_shape_B ) - > intersect_segment ( local_from , local_to , rpos , rnorm ) ) {
2022-12-11 21:01:10 +01:00
// there was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
// actually collide yet on next frame. We'll probably check again next frame once they're closer.
2014-02-10 02:10:30 +01:00
return false ;
2020-05-14 16:41:43 +02:00
}
2014-02-10 02:10:30 +01:00
2021-12-10 00:36:39 +01:00
// Check one-way collision based on motion direction.
if ( p_A - > get_shape ( p_shape_A ) - > allows_one_way_collision ( ) & & p_B - > is_shape_set_as_one_way_collision ( p_shape_B ) ) {
2023-04-16 19:46:33 +02:00
Vector2 direction = predicted_xform_B . columns [ 1 ] . normalized ( ) ;
2021-12-10 00:36:39 +01:00
if ( direction . dot ( mnormal ) < CMP_EPSILON ) {
collided = false ;
oneway_disabled = true ;
return false ;
}
}
2014-02-10 02:10:30 +01:00
2021-12-10 00:36:39 +01:00
// Shorten the linear velocity so it does not hit, but gets close enough,
// next frame will hit softly or soft enough.
2023-04-16 19:46:33 +02:00
Vector2 hitpos = predicted_xform_B . xform ( rpos ) ;
2014-02-19 15:57:14 +01:00
2022-12-16 19:39:19 +01:00
real_t newlen = hitpos . distance_to ( from ) + ( max - min ) * 0.01 ; // adding 1% of body length to the distance between collision and support point should cause body A's support point to arrive just within B's collider next frame.
2021-12-10 00:36:39 +01:00
p_A - > set_linear_velocity ( mnormal * ( newlen / p_step ) ) ;
2014-02-10 02:10:30 +01:00
return true ;
}
2021-10-18 21:24:30 +02:00
real_t combine_bounce ( GodotBody2D * A , GodotBody2D * B ) {
2018-07-23 16:37:07 +02:00
return CLAMP ( A - > get_bounce ( ) + B - > get_bounce ( ) , 0 , 1 ) ;
2017-10-24 18:10:30 +02:00
}
2021-10-18 21:24:30 +02:00
real_t combine_friction ( GodotBody2D * A , GodotBody2D * B ) {
2018-07-23 16:37:07 +02:00
return ABS ( MIN ( A - > get_friction ( ) , B - > get_friction ( ) ) ) ;
2017-10-24 18:10:30 +02:00
}
2021-10-18 21:24:30 +02:00
bool GodotBodyPair2D : : setup ( real_t p_step ) {
2021-12-10 00:36:39 +01:00
check_ccd = false ;
2020-10-08 13:45:03 +02:00
if ( ! A - > interacts_with ( B ) | | A - > has_exception ( B - > get_self ( ) ) | | B - > has_exception ( A - > get_self ( ) ) ) {
2014-02-19 15:57:14 +01:00
collided = false ;
return false ;
}
2021-07-15 21:38:48 +02:00
collide_A = ( A - > get_mode ( ) > PhysicsServer2D : : BODY_MODE_KINEMATIC ) & & A - > collides_with ( B ) ;
collide_B = ( B - > get_mode ( ) > PhysicsServer2D : : BODY_MODE_KINEMATIC ) & & B - > collides_with ( A ) ;
2021-04-20 03:38:11 +02:00
report_contacts_only = false ;
2021-07-15 21:38:48 +02:00
if ( ! collide_A & & ! collide_B ) {
2021-03-12 02:06:00 +01:00
if ( ( A - > get_max_contacts_reported ( ) > 0 ) | | ( B - > get_max_contacts_reported ( ) > 0 ) ) {
report_contacts_only = true ;
} else {
collided = false ;
return false ;
}
}
2014-02-10 02:10:30 +01:00
//use local A coordinates to avoid numerical issues on collision detection
offset_B = B - > get_transform ( ) . get_origin ( ) - A - > get_transform ( ) . get_origin ( ) ;
_validate_contacts ( ) ;
2021-04-20 03:38:11 +02:00
const Vector2 & offset_A = A - > get_transform ( ) . get_origin ( ) ;
2017-01-11 04:52:51 +01:00
Transform2D xform_Au = A - > get_transform ( ) . untranslated ( ) ;
Transform2D xform_A = xform_Au * A - > get_shape_transform ( shape_A ) ;
2014-02-10 02:10:30 +01:00
2017-01-11 04:52:51 +01:00
Transform2D xform_Bu = B - > get_transform ( ) ;
2022-04-24 23:59:24 +02:00
xform_Bu . columns [ 2 ] - = offset_A ;
2017-01-11 04:52:51 +01:00
Transform2D xform_B = xform_Bu * B - > get_shape_transform ( shape_B ) ;
2014-02-10 02:10:30 +01:00
2021-10-18 21:24:30 +02:00
GodotShape2D * shape_A_ptr = A - > get_shape ( shape_A ) ;
GodotShape2D * shape_B_ptr = B - > get_shape ( shape_B ) ;
2014-02-10 02:10:30 +01:00
2014-02-19 15:57:14 +01:00
Vector2 motion_A , motion_B ;
2020-03-27 19:21:27 +01:00
if ( A - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_SHAPE ) {
2014-02-19 15:57:14 +01:00
motion_A = A - > get_motion ( ) ;
2016-03-09 00:00:52 +01:00
}
2020-03-27 19:21:27 +01:00
if ( B - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_SHAPE ) {
2014-02-19 15:57:14 +01:00
motion_B = B - > get_motion ( ) ;
2016-03-09 00:00:52 +01:00
}
2014-02-19 15:57:14 +01:00
2020-06-27 15:02:51 +02:00
bool prev_collided = collided ;
2015-05-03 23:18:21 +02:00
2021-10-18 21:24:30 +02:00
collided = GodotCollisionSolver2D : : solve ( shape_A_ptr , xform_A , motion_A , shape_B_ptr , xform_B , motion_B , _add_contact , this , & sep_axis ) ;
2014-02-10 02:10:30 +01:00
if ( ! collided ) {
2021-12-10 00:36:39 +01:00
oneway_disabled = false ;
2014-02-19 15:57:14 +01:00
2021-07-15 21:38:48 +02:00
if ( A - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_RAY & & collide_A ) {
2021-12-10 00:36:39 +01:00
check_ccd = true ;
return true ;
2014-02-10 02:10:30 +01:00
}
2021-07-15 21:38:48 +02:00
if ( B - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_RAY & & collide_B ) {
2021-12-10 00:36:39 +01:00
check_ccd = true ;
return true ;
2014-02-10 02:10:30 +01:00
}
2021-12-10 00:36:39 +01:00
return false ;
2014-02-10 02:10:30 +01:00
}
2020-05-14 16:41:43 +02:00
if ( oneway_disabled ) {
2015-05-11 00:24:09 +02:00
return false ;
2020-05-14 16:41:43 +02:00
}
2015-05-11 00:24:09 +02:00
2020-06-27 15:02:51 +02:00
if ( ! prev_collided ) {
2021-08-18 03:41:21 +02:00
if ( shape_B_ptr - > allows_one_way_collision ( ) & & A - > is_shape_set_as_one_way_collision ( shape_A ) ) {
2022-05-03 14:50:35 +02:00
Vector2 direction = xform_A . columns [ 1 ] . normalized ( ) ;
2015-05-03 23:18:21 +02:00
bool valid = false ;
2020-10-05 15:55:11 +02:00
for ( int i = 0 ; i < contact_count ; i + + ) {
Contact & c = contacts [ i ] ;
2022-02-16 13:56:32 +01:00
if ( c . normal . dot ( direction ) > - CMP_EPSILON ) { // Greater (normal inverted).
2020-10-05 15:55:11 +02:00
continue ;
}
valid = true ;
break ;
2015-05-03 23:18:21 +02:00
}
if ( ! valid ) {
collided = false ;
2015-05-11 00:24:09 +02:00
oneway_disabled = true ;
2015-05-03 23:18:21 +02:00
return false ;
}
}
2021-08-18 03:41:21 +02:00
if ( shape_A_ptr - > allows_one_way_collision ( ) & & B - > is_shape_set_as_one_way_collision ( shape_B ) ) {
2022-05-03 14:50:35 +02:00
Vector2 direction = xform_B . columns [ 1 ] . normalized ( ) ;
2015-05-03 23:18:21 +02:00
bool valid = false ;
2020-10-05 15:55:11 +02:00
for ( int i = 0 ; i < contact_count ; i + + ) {
Contact & c = contacts [ i ] ;
2022-02-16 13:56:32 +01:00
if ( c . normal . dot ( direction ) < CMP_EPSILON ) { // Less (normal ok).
2020-10-05 15:55:11 +02:00
continue ;
2015-05-03 23:18:21 +02:00
}
2020-10-05 15:55:11 +02:00
valid = true ;
break ;
2015-05-03 23:18:21 +02:00
}
if ( ! valid ) {
collided = false ;
2015-05-11 00:24:09 +02:00
oneway_disabled = true ;
2015-05-03 23:18:21 +02:00
return false ;
}
}
}
2021-04-20 03:38:11 +02:00
return true ;
}
2021-10-18 21:24:30 +02:00
bool GodotBodyPair2D : : pre_solve ( real_t p_step ) {
2021-12-10 00:36:39 +01:00
if ( oneway_disabled ) {
return false ;
}
if ( ! collided ) {
if ( check_ccd ) {
const Vector2 & offset_A = A - > get_transform ( ) . get_origin ( ) ;
Transform2D xform_Au = A - > get_transform ( ) . untranslated ( ) ;
Transform2D xform_A = xform_Au * A - > get_shape_transform ( shape_A ) ;
Transform2D xform_Bu = B - > get_transform ( ) ;
2022-04-24 23:59:24 +02:00
xform_Bu . columns [ 2 ] - = offset_A ;
2021-12-10 00:36:39 +01:00
Transform2D xform_B = xform_Bu * B - > get_shape_transform ( shape_B ) ;
if ( A - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_RAY & & collide_A ) {
_test_ccd ( p_step , A , shape_A , xform_A , B , shape_B , xform_B ) ;
}
if ( B - > get_continuous_collision_detection_mode ( ) = = PhysicsServer2D : : CCD_MODE_CAST_RAY & & collide_B ) {
_test_ccd ( p_step , B , shape_B , xform_B , A , shape_A , xform_A ) ;
}
}
2021-04-20 03:38:11 +02:00
return false ;
}
2014-02-10 02:10:30 +01:00
real_t max_penetration = space - > get_contact_max_allowed_penetration ( ) ;
2021-12-03 18:38:40 +01:00
real_t bias = space - > get_contact_bias ( ) ;
2021-04-20 03:38:11 +02:00
2021-10-18 21:24:30 +02:00
GodotShape2D * shape_A_ptr = A - > get_shape ( shape_A ) ;
GodotShape2D * shape_B_ptr = B - > get_shape ( shape_B ) ;
2021-04-20 03:38:11 +02:00
2014-02-10 02:10:30 +01:00
if ( shape_A_ptr - > get_custom_bias ( ) | | shape_B_ptr - > get_custom_bias ( ) ) {
2020-05-14 16:41:43 +02:00
if ( shape_A_ptr - > get_custom_bias ( ) = = 0 ) {
2014-02-10 02:10:30 +01:00
bias = shape_B_ptr - > get_custom_bias ( ) ;
2020-05-14 16:41:43 +02:00
} else if ( shape_B_ptr - > get_custom_bias ( ) = = 0 ) {
2014-02-10 02:10:30 +01:00
bias = shape_A_ptr - > get_custom_bias ( ) ;
2020-05-14 16:41:43 +02:00
} else {
2014-02-10 02:10:30 +01:00
bias = ( shape_B_ptr - > get_custom_bias ( ) + shape_A_ptr - > get_custom_bias ( ) ) * 0.5 ;
2020-05-14 16:41:43 +02:00
}
2014-02-10 02:10:30 +01:00
}
real_t inv_dt = 1.0 / p_step ;
2016-01-01 16:11:46 +01:00
bool do_process = false ;
2021-04-20 03:38:11 +02:00
const Vector2 & offset_A = A - > get_transform ( ) . get_origin ( ) ;
const Transform2D & transform_A = A - > get_transform ( ) ;
const Transform2D & transform_B = B - > get_transform ( ) ;
2021-07-15 21:38:48 +02:00
real_t inv_inertia_A = collide_A ? A - > get_inv_inertia ( ) : 0.0 ;
real_t inv_inertia_B = collide_B ? B - > get_inv_inertia ( ) : 0.0 ;
real_t inv_mass_A = collide_A ? A - > get_inv_mass ( ) : 0.0 ;
real_t inv_mass_B = collide_B ? B - > get_inv_mass ( ) : 0.0 ;
2014-02-10 02:10:30 +01:00
for ( int i = 0 ; i < contact_count ; i + + ) {
Contact & c = contacts [ i ] ;
2021-03-12 02:06:00 +01:00
c . active = false ;
2021-04-20 03:38:11 +02:00
Vector2 global_A = transform_A . basis_xform ( c . local_A ) ;
Vector2 global_B = transform_B . basis_xform ( c . local_B ) + offset_B ;
2014-02-10 02:10:30 +01:00
2021-04-20 03:38:11 +02:00
Vector2 axis = global_A - global_B ;
real_t depth = axis . dot ( c . normal ) ;
2014-02-10 02:10:30 +01:00
2021-12-03 18:38:40 +01:00
if ( depth < = 0.0 ) {
2014-02-10 02:10:30 +01:00
continue ;
}
2015-09-20 18:03:46 +02:00
# ifdef DEBUG_ENABLED
if ( space - > is_debugging_contacts ( ) ) {
space - > add_debug_contact ( global_A + offset_A ) ;
space - > add_debug_contact ( global_B + offset_A ) ;
}
# endif
2014-02-10 02:10:30 +01:00
2021-12-03 18:38:40 +01:00
c . rA = global_A - A - > get_center_of_mass ( ) ;
c . rB = global_B - B - > get_center_of_mass ( ) - offset_B ;
2014-02-10 02:10:30 +01:00
// Precompute normal mass, tangent mass, and bias.
real_t rnA = c . rA . dot ( c . normal ) ;
real_t rnB = c . rB . dot ( c . normal ) ;
2021-07-15 21:38:48 +02:00
real_t kNormal = inv_mass_A + inv_mass_B ;
kNormal + = inv_inertia_A * ( c . rA . dot ( c . rA ) - rnA * rnA ) + inv_inertia_B * ( c . rB . dot ( c . rB ) - rnB * rnB ) ;
2014-02-10 02:10:30 +01:00
c . mass_normal = 1.0f / kNormal ;
2020-12-06 19:16:06 +01:00
Vector2 tangent = c . normal . orthogonal ( ) ;
2014-02-10 02:10:30 +01:00
real_t rtA = c . rA . dot ( tangent ) ;
real_t rtB = c . rB . dot ( tangent ) ;
2021-07-15 21:38:48 +02:00
real_t kTangent = inv_mass_A + inv_mass_B ;
kTangent + = inv_inertia_A * ( c . rA . dot ( c . rA ) - rtA * rtA ) + inv_inertia_B * ( c . rB . dot ( c . rB ) - rtB * rtB ) ;
2014-02-10 02:10:30 +01:00
c . mass_tangent = 1.0f / kTangent ;
c . bias = - bias * inv_dt * MIN ( 0.0f , - depth + max_penetration ) ;
c . depth = depth ;
2023-01-10 23:28:02 +01:00
Vector2 P = c . acc_normal_impulse * c . normal + c . acc_tangent_impulse * tangent ;
c . acc_impulse - = P ;
2023-04-13 21:45:37 +02:00
if ( A - > can_report_contacts ( ) | | B - > can_report_contacts ( ) ) {
Vector2 crB = Vector2 ( - B - > get_angular_velocity ( ) * c . rB . y , B - > get_angular_velocity ( ) * c . rB . x ) + B - > get_linear_velocity ( ) ;
Vector2 crA = Vector2 ( - A - > get_angular_velocity ( ) * c . rA . y , A - > get_angular_velocity ( ) * c . rA . x ) + A - > get_linear_velocity ( ) ;
if ( A - > can_report_contacts ( ) ) {
A - > add_contact ( global_A + offset_A , - c . normal , depth , shape_A , crA , global_B + offset_A , shape_B , B - > get_instance_id ( ) , B - > get_self ( ) , crB , c . acc_impulse ) ;
}
if ( B - > can_report_contacts ( ) ) {
B - > add_contact ( global_B + offset_A , c . normal , depth , shape_B , crB , global_A + offset_A , shape_A , A - > get_instance_id ( ) , A - > get_self ( ) , crA , c . acc_impulse ) ;
}
2023-01-10 23:28:02 +01:00
}
if ( report_contacts_only ) {
collided = false ;
continue ;
}
2014-02-10 02:10:30 +01:00
# ifdef ACCUMULATE_IMPULSES
{
// Apply normal + friction impulse
2021-07-15 21:38:48 +02:00
if ( collide_A ) {
2021-12-03 18:38:40 +01:00
A - > apply_impulse ( - P , c . rA + A - > get_center_of_mass ( ) ) ;
2021-04-20 03:38:11 +02:00
}
2021-07-15 21:38:48 +02:00
if ( collide_B ) {
2021-12-03 18:38:40 +01:00
B - > apply_impulse ( P , c . rB + B - > get_center_of_mass ( ) ) ;
2021-04-20 03:38:11 +02:00
}
2014-02-10 02:10:30 +01:00
}
# endif
2014-04-05 17:39:30 +02:00
2017-10-24 18:10:30 +02:00
c . bounce = combine_bounce ( A , B ) ;
2014-04-05 17:39:30 +02:00
if ( c . bounce ) {
2021-11-25 16:26:38 +01:00
Vector2 crA ( - A - > get_prev_angular_velocity ( ) * c . rA . y , A - > get_prev_angular_velocity ( ) * c . rA . x ) ;
Vector2 crB ( - B - > get_prev_angular_velocity ( ) * c . rB . y , B - > get_prev_angular_velocity ( ) * c . rB . x ) ;
Vector2 dv = B - > get_prev_linear_velocity ( ) + crB - A - > get_prev_linear_velocity ( ) - crA ;
2014-04-05 17:39:30 +02:00
c . bounce = c . bounce * dv . dot ( c . normal ) ;
}
2021-04-20 03:38:11 +02:00
c . active = true ;
2016-01-01 16:11:46 +01:00
do_process = true ;
2014-02-10 02:10:30 +01:00
}
2016-01-01 16:11:46 +01:00
return do_process ;
2014-02-10 02:10:30 +01:00
}
2021-10-18 21:24:30 +02:00
void GodotBodyPair2D : : solve ( real_t p_step ) {
2021-04-20 03:38:11 +02:00
if ( ! collided | | oneway_disabled ) {
2014-02-10 02:10:30 +01:00
return ;
2020-05-14 16:41:43 +02:00
}
2014-02-10 02:10:30 +01:00
2021-12-03 18:38:40 +01:00
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step ;
real_t inv_mass_A = collide_A ? A - > get_inv_mass ( ) : 0.0 ;
real_t inv_mass_B = collide_B ? B - > get_inv_mass ( ) : 0.0 ;
2014-02-10 02:10:30 +01:00
for ( int i = 0 ; i < contact_count ; + + i ) {
Contact & c = contacts [ i ] ;
2020-05-14 16:41:43 +02:00
if ( ! c . active ) {
2014-02-10 02:10:30 +01:00
continue ;
2020-05-14 16:41:43 +02:00
}
2014-02-10 02:10:30 +01:00
// Relative velocity at contact
Vector2 crA ( - A - > get_angular_velocity ( ) * c . rA . y , A - > get_angular_velocity ( ) * c . rA . x ) ;
Vector2 crB ( - B - > get_angular_velocity ( ) * c . rB . y , B - > get_angular_velocity ( ) * c . rB . x ) ;
Vector2 dv = B - > get_linear_velocity ( ) + crB - A - > get_linear_velocity ( ) - crA ;
Vector2 crbA ( - A - > get_biased_angular_velocity ( ) * c . rA . y , A - > get_biased_angular_velocity ( ) * c . rA . x ) ;
Vector2 crbB ( - B - > get_biased_angular_velocity ( ) * c . rB . y , B - > get_biased_angular_velocity ( ) * c . rB . x ) ;
Vector2 dbv = B - > get_biased_linear_velocity ( ) + crbB - A - > get_biased_linear_velocity ( ) - crbA ;
real_t vn = dv . dot ( c . normal ) ;
real_t vbn = dbv . dot ( c . normal ) ;
2021-12-03 18:38:40 +01:00
2020-12-06 19:16:06 +01:00
Vector2 tangent = c . normal . orthogonal ( ) ;
2014-02-10 02:10:30 +01:00
real_t vt = dv . dot ( tangent ) ;
real_t jbn = ( c . bias - vbn ) * c . mass_normal ;
real_t jbnOld = c . acc_bias_impulse ;
c . acc_bias_impulse = MAX ( jbnOld + jbn , 0.0f ) ;
Vector2 jb = c . normal * ( c . acc_bias_impulse - jbnOld ) ;
2021-07-15 21:38:48 +02:00
if ( collide_A ) {
2021-12-03 18:38:40 +01:00
A - > apply_bias_impulse ( - jb , c . rA + A - > get_center_of_mass ( ) , max_bias_av ) ;
2021-04-20 03:38:11 +02:00
}
2021-07-15 21:38:48 +02:00
if ( collide_B ) {
2021-12-03 18:38:40 +01:00
B - > apply_bias_impulse ( jb , c . rB + B - > get_center_of_mass ( ) , max_bias_av ) ;
}
crbA = Vector2 ( - A - > get_biased_angular_velocity ( ) * c . rA . y , A - > get_biased_angular_velocity ( ) * c . rA . x ) ;
crbB = Vector2 ( - B - > get_biased_angular_velocity ( ) * c . rB . y , B - > get_biased_angular_velocity ( ) * c . rB . x ) ;
dbv = B - > get_biased_linear_velocity ( ) + crbB - A - > get_biased_linear_velocity ( ) - crbA ;
vbn = dbv . dot ( c . normal ) ;
if ( Math : : abs ( - vbn + c . bias ) > MIN_VELOCITY ) {
real_t jbn_com = ( - vbn + c . bias ) / ( inv_mass_A + inv_mass_B ) ;
real_t jbnOld_com = c . acc_bias_impulse_center_of_mass ;
c . acc_bias_impulse_center_of_mass = MAX ( jbnOld_com + jbn_com , 0.0f ) ;
Vector2 jb_com = c . normal * ( c . acc_bias_impulse_center_of_mass - jbnOld_com ) ;
if ( collide_A ) {
A - > apply_bias_impulse ( - jb_com , A - > get_center_of_mass ( ) , 0.0f ) ;
}
if ( collide_B ) {
B - > apply_bias_impulse ( jb_com , B - > get_center_of_mass ( ) , 0.0f ) ;
}
2021-04-20 03:38:11 +02:00
}
2014-02-10 02:10:30 +01:00
2014-04-05 17:39:30 +02:00
real_t jn = - ( c . bounce + vn ) * c . mass_normal ;
2014-02-10 02:10:30 +01:00
real_t jnOld = c . acc_normal_impulse ;
c . acc_normal_impulse = MAX ( jnOld + jn , 0.0f ) ;
2017-10-24 18:10:30 +02:00
real_t friction = combine_friction ( A , B ) ;
2014-02-10 02:10:30 +01:00
real_t jtMax = friction * c . acc_normal_impulse ;
real_t jt = - vt * c . mass_tangent ;
real_t jtOld = c . acc_tangent_impulse ;
c . acc_tangent_impulse = CLAMP ( jtOld + jt , - jtMax , jtMax ) ;
Vector2 j = c . normal * ( c . acc_normal_impulse - jnOld ) + tangent * ( c . acc_tangent_impulse - jtOld ) ;
2021-07-15 21:38:48 +02:00
if ( collide_A ) {
2021-12-03 18:38:40 +01:00
A - > apply_impulse ( - j , c . rA + A - > get_center_of_mass ( ) ) ;
2021-04-20 03:38:11 +02:00
}
2021-07-15 21:38:48 +02:00
if ( collide_B ) {
2021-12-03 18:38:40 +01:00
B - > apply_impulse ( j , c . rB + B - > get_center_of_mass ( ) ) ;
2021-04-20 03:38:11 +02:00
}
2023-01-10 23:28:02 +01:00
c . acc_impulse - = j ;
2014-02-10 02:10:30 +01:00
}
}
2021-10-18 21:24:30 +02:00
GodotBodyPair2D : : GodotBodyPair2D ( GodotBody2D * p_A , int p_shape_A , GodotBody2D * p_B , int p_shape_B ) :
GodotConstraint2D ( _arr , 2 ) {
2014-02-10 02:10:30 +01:00
A = p_A ;
B = p_B ;
shape_A = p_shape_A ;
shape_B = p_shape_B ;
space = A - > get_space ( ) ;
A - > add_constraint ( this , 0 ) ;
B - > add_constraint ( this , 1 ) ;
}
2021-10-18 21:24:30 +02:00
GodotBodyPair2D : : ~ GodotBodyPair2D ( ) {
2020-12-05 05:12:47 +01:00
A - > remove_constraint ( this , 0 ) ;
B - > remove_constraint ( this , 1 ) ;
2014-02-10 02:10:30 +01:00
}