195 lines
9 KiB
C++
195 lines
9 KiB
C++
|
// This file is part of the FidelityFX SDK.
|
||
|
//
|
||
|
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
// THE SOFTWARE.
|
||
|
|
||
|
#ifndef FFX_FSR2_UPSAMPLE_H
|
||
|
#define FFX_FSR2_UPSAMPLE_H
|
||
|
|
||
|
FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
|
||
|
|
||
|
void Deringing(RectificationBox clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
|
||
|
{
|
||
|
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
|
||
|
}
|
||
|
#if FFX_HALF
|
||
|
void Deringing(RectificationBoxMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
|
||
|
{
|
||
|
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
|
||
|
#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 2 // Approximate
|
||
|
#endif
|
||
|
|
||
|
FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32 fKernelWeight)
|
||
|
{
|
||
|
FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
|
||
|
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
|
||
|
FfxFloat32 fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
|
||
|
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
|
||
|
FfxFloat32 fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
|
||
|
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
|
||
|
FfxFloat32 fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
|
||
|
#else
|
||
|
#error "Invalid Lanczos type"
|
||
|
#endif
|
||
|
return fSampleWeight;
|
||
|
}
|
||
|
|
||
|
#if FFX_HALF
|
||
|
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F fKernelWeight)
|
||
|
{
|
||
|
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
|
||
|
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
|
||
|
FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
|
||
|
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
|
||
|
FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
|
||
|
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
|
||
|
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
|
||
|
|
||
|
// To Test: Save reciproqual sqrt compute
|
||
|
// FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
|
||
|
#else
|
||
|
#error "Invalid Lanczos type"
|
||
|
#endif
|
||
|
return fSampleWeight;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
FfxFloat32 ComputeMaxKernelWeight() {
|
||
|
const FfxFloat32 fKernelSizeBias = 1.0f;
|
||
|
|
||
|
FfxFloat32 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)).x * FfxFloat32(fKernelSizeBias);
|
||
|
|
||
|
return ffxMin(FfxFloat32(1.99f), fKernelWeight);
|
||
|
}
|
||
|
|
||
|
FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params,
|
||
|
FFX_PARAMETER_INOUT RectificationBox clippingBox, FfxFloat32 fReactiveFactor)
|
||
|
{
|
||
|
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
|
||
|
#include "ffx_fsr2_force16_begin.h"
|
||
|
#endif
|
||
|
// We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
|
||
|
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
|
||
|
FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
|
||
|
FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
|
||
|
|
||
|
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
|
||
|
#include "ffx_fsr2_force16_end.h"
|
||
|
#endif
|
||
|
|
||
|
FfxFloat32x3 fSamples[iLanczos2SampleCount];
|
||
|
|
||
|
FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
|
||
|
|
||
|
FfxInt32x2 offsetTL;
|
||
|
offsetTL.x = (fSrcUnjitteredPos.x > fSrcOutputPos.x) ? FfxInt32(-2) : FfxInt32(-1);
|
||
|
offsetTL.y = (fSrcUnjitteredPos.y > fSrcOutputPos.y) ? FfxInt32(-2) : FfxInt32(-1);
|
||
|
|
||
|
//Load samples
|
||
|
// If fSrcUnjitteredPos.y > fSrcOutputPos.y, indicates offsetTL.y = -2, sample offset Y will be [-2, 1], clipbox will be rows [1, 3].
|
||
|
// Flip row# for sampling offset in this case, so first 0~2 rows in the sampled array can always be used for computing the clipbox.
|
||
|
// This reduces branch or cmove on sampled colors, but moving this overhead to sample position / weight calculation time which apply to less values.
|
||
|
const FfxBoolean bFlipRow = fSrcUnjitteredPos.y > fSrcOutputPos.y;
|
||
|
const FfxBoolean bFlipCol = fSrcUnjitteredPos.x > fSrcOutputPos.x;
|
||
|
|
||
|
FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
|
||
|
|
||
|
FFX_UNROLL
|
||
|
for (FfxInt32 row = 0; row < 3; row++) {
|
||
|
|
||
|
FFX_UNROLL
|
||
|
for (FfxInt32 col = 0; col < 3; col++) {
|
||
|
FfxInt32 iSampleIndex = col + (row << 2);
|
||
|
|
||
|
FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
|
||
|
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + sampleColRow;
|
||
|
|
||
|
const FfxInt32x2 sampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
|
||
|
|
||
|
fSamples[iSampleIndex] = LoadPreparedInputColor(FfxInt32x2(sampleCoord));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
FfxFloat32x4 fColorAndWeight = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
|
||
|
|
||
|
FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
|
||
|
|
||
|
// Identify how much of each upsampled color to be used for this frame
|
||
|
const FfxFloat32 fKernelReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32(params.bIsNewSample));
|
||
|
const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight() * (1.0f - fKernelReactiveFactor);
|
||
|
|
||
|
const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
|
||
|
const FfxFloat32 fKernelBiasFactor = ffxMax(0.0f, ffxMax(0.25f * params.fDepthClipFactor, fKernelReactiveFactor));
|
||
|
const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMax, fKernelBiasMin, fKernelBiasFactor);
|
||
|
|
||
|
const FfxFloat32 fRectificationCurveBias = ffxLerp(-2.0f, -3.0f, ffxSaturate(params.fHrVelocity / 50.0f));
|
||
|
|
||
|
FFX_UNROLL
|
||
|
for (FfxInt32 row = 0; row < 3; row++) {
|
||
|
FFX_UNROLL
|
||
|
for (FfxInt32 col = 0; col < 3; col++) {
|
||
|
FfxInt32 iSampleIndex = col + (row << 2);
|
||
|
|
||
|
const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
|
||
|
const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
|
||
|
FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
|
||
|
|
||
|
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
|
||
|
|
||
|
const FfxFloat32 fOnScreenFactor = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize())));
|
||
|
FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
|
||
|
|
||
|
fColorAndWeight += FfxFloat32x4(fSamples[iSampleIndex] * fSampleWeight, fSampleWeight);
|
||
|
|
||
|
// Update rectification box
|
||
|
{
|
||
|
const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
|
||
|
const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq);
|
||
|
|
||
|
const FfxBoolean bInitialSample = (row == 0) && (col == 0);
|
||
|
RectificationBoxAddSample(bInitialSample, clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
RectificationBoxComputeVarianceBoxData(clippingBox);
|
||
|
|
||
|
fColorAndWeight.w *= FfxFloat32(fColorAndWeight.w > FSR2_EPSILON);
|
||
|
|
||
|
if (fColorAndWeight.w > FSR2_EPSILON) {
|
||
|
// Normalize for deringing (we need to compare colors)
|
||
|
fColorAndWeight.xyz = fColorAndWeight.xyz / fColorAndWeight.w;
|
||
|
fColorAndWeight.w *= fUpsampleLanczosWeightScale;
|
||
|
|
||
|
Deringing(clippingBox, fColorAndWeight.xyz);
|
||
|
}
|
||
|
|
||
|
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
|
||
|
#include "ffx_fsr2_force16_end.h"
|
||
|
#endif
|
||
|
|
||
|
return fColorAndWeight;
|
||
|
}
|
||
|
|
||
|
#endif //!defined( FFX_FSR2_UPSAMPLE_H )
|