Merge pull request #69929 from aaronfranke/3.x-gltf-subclasses
[3.x] Backport moving camera and light logic to GLTF subclasses, fix ortho cameras
This commit is contained in:
commit
004c174086
7 changed files with 288 additions and 194 deletions
|
@ -1,22 +1,45 @@
|
|||
<?xml version="1.0" encoding="UTF-8" ?>
|
||||
<class name="GLTFCamera" inherits="Resource" version="3.6" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../../../doc/class.xsd">
|
||||
<brief_description>
|
||||
Represents a GLTF camera.
|
||||
</brief_description>
|
||||
<description>
|
||||
Represents a camera as defined by the base GLTF spec.
|
||||
[b]Note:[/b] This class is only compiled in editor builds. Run-time glTF loading and saving is [i]not[/i] available in exported projects. References to [GLTFCamera] within a script will cause an error in an exported project.
|
||||
</description>
|
||||
<tutorials>
|
||||
<link title="GLTF camera detailed specification">https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#reference-camera</link>
|
||||
<link title="GLTF camera spec and example file">https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_015_SimpleCameras.md</link>
|
||||
</tutorials>
|
||||
<methods>
|
||||
<method name="to_dictionary" qualifiers="const">
|
||||
<return type="Dictionary" />
|
||||
<description>
|
||||
Serializes this GLTFCamera instance into a [Dictionary].
|
||||
</description>
|
||||
</method>
|
||||
<method name="to_node" qualifiers="const">
|
||||
<return type="Camera" />
|
||||
<description>
|
||||
Converts this GLTFCamera instance into a Godot [Camera] node.
|
||||
</description>
|
||||
</method>
|
||||
</methods>
|
||||
<members>
|
||||
<member name="fov_size" type="float" setter="set_fov_size" getter="get_fov_size" default="75.0">
|
||||
<member name="fov_size" type="float" setter="set_fov_size" getter="get_fov_size" default="1.309">
|
||||
The FOV of the camera. This class and GLTF define the camera FOV in radians, while Godot uses degrees. This maps to GLTF's [code]yfov[/code] property. This value is only used for perspective cameras, when [member perspective] is true.
|
||||
</member>
|
||||
<member name="perspective" type="bool" setter="set_perspective" getter="get_perspective" default="true">
|
||||
Whether or not the camera is in perspective mode. If false, the camera is in orthographic/orthogonal mode. This maps to GLTF's camera [code]type[/code] property. See [member Camera.projection] and the GLTF spec for more information.
|
||||
</member>
|
||||
<member name="size_mag" type="float" setter="set_size_mag" getter="get_size_mag" default="0.5">
|
||||
The size of the camera. This class and GLTF define the camera size magnitude as a radius in meters, while Godot defines it as a diameter in meters. This maps to GLTF's [code]ymag[/code] property. This value is only used for orthographic/orthogonal cameras, when [member perspective] is false.
|
||||
</member>
|
||||
<member name="zfar" type="float" setter="set_zfar" getter="get_zfar" default="4000.0">
|
||||
The distance to the far culling boundary for this camera relative to its local Z axis, in meters. This maps to GLTF's [code]zfar[/code] property.
|
||||
</member>
|
||||
<member name="znear" type="float" setter="set_znear" getter="get_znear" default="0.05">
|
||||
The distance to the near culling boundary for this camera relative to its local Z axis, in meters. This maps to GLTF's [code]znear[/code] property.
|
||||
</member>
|
||||
</members>
|
||||
<constants>
|
||||
|
|
|
@ -1,13 +1,28 @@
|
|||
<?xml version="1.0" encoding="UTF-8" ?>
|
||||
<class name="GLTFLight" inherits="Resource" version="3.6" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../../../doc/class.xsd">
|
||||
<brief_description>
|
||||
Represents a GLTF light.
|
||||
</brief_description>
|
||||
<description>
|
||||
Represents a light as defined by the [code]KHR_lights_punctual[/code] GLTF extension.
|
||||
[b]Note:[/b] This class is only compiled in editor builds. Run-time glTF loading and saving is [i]not[/i] available in exported projects. References to [GLTFLight] within a script will cause an error in an exported project.
|
||||
</description>
|
||||
<tutorials>
|
||||
<link title="KHR_lights_punctual GLTF extension spec">https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_lights_punctual</link>
|
||||
</tutorials>
|
||||
<methods>
|
||||
<method name="to_dictionary" qualifiers="const">
|
||||
<return type="Dictionary" />
|
||||
<description>
|
||||
Serializes this GLTFLight instance into a [Dictionary].
|
||||
</description>
|
||||
</method>
|
||||
<method name="to_node" qualifiers="const">
|
||||
<return type="Light" />
|
||||
<description>
|
||||
Converts this GLTFLight instance into a Godot [Light] node.
|
||||
</description>
|
||||
</method>
|
||||
</methods>
|
||||
<members>
|
||||
<member name="color" type="Color" setter="set_color" getter="get_color" default="Color( 1, 1, 1, 1 )">
|
||||
|
|
|
@ -30,7 +30,12 @@
|
|||
|
||||
#include "gltf_light.h"
|
||||
|
||||
#include "scene/3d/light.h"
|
||||
|
||||
void GLTFLight::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("to_node"), &GLTFLight::to_node);
|
||||
ClassDB::bind_method(D_METHOD("to_dictionary"), &GLTFLight::to_dictionary);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_color"), &GLTFLight::get_color);
|
||||
ClassDB::bind_method(D_METHOD("set_color", "color"), &GLTFLight::set_color);
|
||||
ClassDB::bind_method(D_METHOD("get_intensity"), &GLTFLight::get_intensity);
|
||||
|
@ -99,3 +104,116 @@ float GLTFLight::get_outer_cone_angle() {
|
|||
void GLTFLight::set_outer_cone_angle(float p_outer_cone_angle) {
|
||||
outer_cone_angle = p_outer_cone_angle;
|
||||
}
|
||||
|
||||
Ref<GLTFLight> GLTFLight::from_node(const Light *p_light) {
|
||||
Ref<GLTFLight> l;
|
||||
l.instance();
|
||||
ERR_FAIL_COND_V_MSG(!p_light, l, "Tried to create a GLTFLight from a Light node, but the given node was null.");
|
||||
l->color = p_light->get_color();
|
||||
if (cast_to<const DirectionalLight>(p_light)) {
|
||||
l->type = "directional";
|
||||
const DirectionalLight *light = cast_to<const DirectionalLight>(p_light);
|
||||
l->intensity = light->get_param(DirectionalLight::PARAM_ENERGY);
|
||||
l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
|
||||
} else if (cast_to<const OmniLight>(p_light)) {
|
||||
l->type = "point";
|
||||
const OmniLight *light = cast_to<const OmniLight>(p_light);
|
||||
l->range = light->get_param(OmniLight::PARAM_RANGE);
|
||||
l->intensity = light->get_param(OmniLight::PARAM_ENERGY);
|
||||
} else if (cast_to<const SpotLight>(p_light)) {
|
||||
l->type = "spot";
|
||||
const SpotLight *light = cast_to<const SpotLight>(p_light);
|
||||
l->range = light->get_param(SpotLight::PARAM_RANGE);
|
||||
l->intensity = light->get_param(SpotLight::PARAM_ENERGY);
|
||||
l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight::PARAM_SPOT_ANGLE));
|
||||
// This equation is the inverse of the import equation (which has a desmos link).
|
||||
float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight::PARAM_SPOT_ATTENUATION)));
|
||||
angle_ratio = MAX(0, angle_ratio);
|
||||
l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
|
||||
}
|
||||
return l;
|
||||
}
|
||||
|
||||
Light *GLTFLight::to_node() const {
|
||||
if (type == "directional") {
|
||||
DirectionalLight *light = memnew(DirectionalLight);
|
||||
light->set_param(Light::PARAM_ENERGY, intensity);
|
||||
light->set_color(color);
|
||||
return light;
|
||||
}
|
||||
if (type == "point") {
|
||||
OmniLight *light = memnew(OmniLight);
|
||||
light->set_param(OmniLight::PARAM_ENERGY, intensity);
|
||||
light->set_param(OmniLight::PARAM_RANGE, CLAMP(range, 0, 4096));
|
||||
light->set_color(color);
|
||||
return light;
|
||||
}
|
||||
if (type == "spot") {
|
||||
SpotLight *light = memnew(SpotLight);
|
||||
light->set_param(SpotLight::PARAM_ENERGY, intensity);
|
||||
light->set_param(SpotLight::PARAM_RANGE, CLAMP(range, 0, 4096));
|
||||
light->set_param(SpotLight::PARAM_SPOT_ANGLE, Math::rad2deg(outer_cone_angle));
|
||||
light->set_color(color);
|
||||
// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
|
||||
// The points in desmos are not exact, except for (1, infinity).
|
||||
float angle_ratio = inner_cone_angle / outer_cone_angle;
|
||||
float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
|
||||
light->set_param(SpotLight::PARAM_SPOT_ATTENUATION, angle_attenuation);
|
||||
return light;
|
||||
}
|
||||
return memnew(Light);
|
||||
}
|
||||
|
||||
Ref<GLTFLight> GLTFLight::from_dictionary(const Dictionary p_dictionary) {
|
||||
ERR_FAIL_COND_V_MSG(!p_dictionary.has("type"), Ref<GLTFLight>(), "Failed to parse GLTF light, missing required field 'type'.");
|
||||
Ref<GLTFLight> light;
|
||||
light.instance();
|
||||
const String &type = p_dictionary["type"];
|
||||
light->type = type;
|
||||
|
||||
if (p_dictionary.has("color")) {
|
||||
const Array &arr = p_dictionary["color"];
|
||||
if (arr.size() == 3) {
|
||||
light->color = Color(arr[0], arr[1], arr[2]).to_srgb();
|
||||
} else {
|
||||
ERR_PRINT("Error parsing GLTF light: The color must have exactly 3 numbers.");
|
||||
}
|
||||
}
|
||||
if (p_dictionary.has("intensity")) {
|
||||
light->intensity = p_dictionary["intensity"];
|
||||
}
|
||||
if (p_dictionary.has("range")) {
|
||||
light->range = p_dictionary["range"];
|
||||
}
|
||||
if (type == "spot") {
|
||||
const Dictionary &spot = p_dictionary["spot"];
|
||||
light->inner_cone_angle = spot["innerConeAngle"];
|
||||
light->outer_cone_angle = spot["outerConeAngle"];
|
||||
if (light->inner_cone_angle >= light->outer_cone_angle) {
|
||||
ERR_PRINT("Error parsing GLTF light: The inner angle must be smaller than the outer angle.");
|
||||
}
|
||||
} else if (type != "point" && type != "directional") {
|
||||
ERR_PRINT("Error parsing GLTF light: Light type '" + type + "' is unknown.");
|
||||
}
|
||||
return light;
|
||||
}
|
||||
|
||||
Dictionary GLTFLight::to_dictionary() const {
|
||||
Dictionary d;
|
||||
Array color_array;
|
||||
color_array.resize(3);
|
||||
color_array[0] = color.r;
|
||||
color_array[1] = color.g;
|
||||
color_array[2] = color.b;
|
||||
d["color"] = color_array;
|
||||
d["type"] = type;
|
||||
if (type == "spot") {
|
||||
Dictionary spot_dict;
|
||||
spot_dict["innerConeAngle"] = inner_cone_angle;
|
||||
spot_dict["outerConeAngle"] = outer_cone_angle;
|
||||
d["spot"] = spot_dict;
|
||||
}
|
||||
d["intensity"] = intensity;
|
||||
d["range"] = range;
|
||||
return d;
|
||||
}
|
||||
|
|
|
@ -34,6 +34,10 @@
|
|||
#include "../gltf_defines.h"
|
||||
#include "core/resource.h"
|
||||
|
||||
class Light;
|
||||
|
||||
// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_lights_punctual
|
||||
|
||||
class GLTFLight : public Resource {
|
||||
GDCLASS(GLTFLight, Resource)
|
||||
friend class GLTFDocument;
|
||||
|
@ -67,6 +71,12 @@ public:
|
|||
|
||||
float get_outer_cone_angle();
|
||||
void set_outer_cone_angle(float p_outer_cone_angle);
|
||||
|
||||
static Ref<GLTFLight> from_node(const Light *p_light);
|
||||
Light *to_node() const;
|
||||
|
||||
static Ref<GLTFLight> from_dictionary(const Dictionary p_dictionary);
|
||||
Dictionary to_dictionary() const;
|
||||
};
|
||||
|
||||
#endif // GLTF_LIGHT_H
|
||||
|
|
|
@ -4636,27 +4636,8 @@ Error GLTFDocument::_serialize_lights(Ref<GLTFState> p_state) {
|
|||
}
|
||||
Array lights;
|
||||
for (GLTFLightIndex i = 0; i < p_state->lights.size(); i++) {
|
||||
Dictionary d;
|
||||
Ref<GLTFLight> light = p_state->lights[i];
|
||||
Array color;
|
||||
color.resize(3);
|
||||
color[0] = light->color.r;
|
||||
color[1] = light->color.g;
|
||||
color[2] = light->color.b;
|
||||
d["color"] = color;
|
||||
d["type"] = light->type;
|
||||
if (light->type == "spot") {
|
||||
Dictionary s;
|
||||
float inner_cone_angle = light->inner_cone_angle;
|
||||
s["innerConeAngle"] = inner_cone_angle;
|
||||
float outer_cone_angle = light->outer_cone_angle;
|
||||
s["outerConeAngle"] = outer_cone_angle;
|
||||
d["spot"] = s;
|
||||
}
|
||||
float intensity = light->intensity;
|
||||
d["intensity"] = intensity;
|
||||
float range = light->range;
|
||||
d["range"] = range;
|
||||
Dictionary d = light->to_dictionary();
|
||||
lights.push_back(d);
|
||||
}
|
||||
|
||||
|
@ -4679,27 +4660,8 @@ Error GLTFDocument::_serialize_cameras(Ref<GLTFState> p_state) {
|
|||
Array cameras;
|
||||
cameras.resize(p_state->cameras.size());
|
||||
for (GLTFCameraIndex i = 0; i < p_state->cameras.size(); i++) {
|
||||
Dictionary d;
|
||||
|
||||
Ref<GLTFCamera> camera = p_state->cameras[i];
|
||||
|
||||
if (camera->get_perspective() == false) {
|
||||
Dictionary og;
|
||||
og["ymag"] = Math::deg2rad(camera->get_fov_size());
|
||||
og["xmag"] = Math::deg2rad(camera->get_fov_size());
|
||||
og["zfar"] = camera->get_zfar();
|
||||
og["znear"] = camera->get_znear();
|
||||
d["orthographic"] = og;
|
||||
d["type"] = "orthographic";
|
||||
} else if (camera->get_perspective()) {
|
||||
Dictionary ppt;
|
||||
// GLTF spec is in radians, Godot's camera is in degrees.
|
||||
ppt["yfov"] = Math::deg2rad(camera->get_fov_size());
|
||||
ppt["zfar"] = camera->get_zfar();
|
||||
ppt["znear"] = camera->get_znear();
|
||||
d["perspective"] = ppt;
|
||||
d["type"] = "perspective";
|
||||
}
|
||||
Dictionary d = camera->to_dictionary();
|
||||
cameras[i] = d;
|
||||
}
|
||||
|
||||
|
@ -4730,35 +4692,10 @@ Error GLTFDocument::_parse_lights(Ref<GLTFState> p_state) {
|
|||
const Array &lights = lights_punctual["lights"];
|
||||
|
||||
for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
|
||||
const Dictionary &d = lights[light_i];
|
||||
|
||||
Ref<GLTFLight> light;
|
||||
light.instance();
|
||||
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
||||
const String &type = d["type"];
|
||||
light->type = type;
|
||||
|
||||
if (d.has("color")) {
|
||||
const Array &arr = d["color"];
|
||||
ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
|
||||
const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
|
||||
light->color = c;
|
||||
Ref<GLTFLight> light = GLTFLight::from_dictionary(lights[light_i]);
|
||||
if (light.is_null()) {
|
||||
return Error::ERR_PARSE_ERROR;
|
||||
}
|
||||
if (d.has("intensity")) {
|
||||
light->intensity = d["intensity"];
|
||||
}
|
||||
if (d.has("range")) {
|
||||
light->range = d["range"];
|
||||
}
|
||||
if (type == "spot") {
|
||||
const Dictionary &spot = d["spot"];
|
||||
light->inner_cone_angle = spot["innerConeAngle"];
|
||||
light->outer_cone_angle = spot["outerConeAngle"];
|
||||
ERR_CONTINUE_MSG(light->inner_cone_angle >= light->outer_cone_angle, "The inner angle must be smaller than the outer angle.");
|
||||
} else if (type != "point" && type != "directional") {
|
||||
ERR_CONTINUE_MSG(true, "Light type is unknown.");
|
||||
}
|
||||
|
||||
p_state->lights.push_back(light);
|
||||
}
|
||||
|
||||
|
@ -4775,38 +4712,10 @@ Error GLTFDocument::_parse_cameras(Ref<GLTFState> p_state) {
|
|||
const Array cameras = p_state->json["cameras"];
|
||||
|
||||
for (GLTFCameraIndex i = 0; i < cameras.size(); i++) {
|
||||
const Dictionary &d = cameras[i];
|
||||
|
||||
Ref<GLTFCamera> camera;
|
||||
camera.instance();
|
||||
ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
|
||||
const String &type = d["type"];
|
||||
if (type == "orthographic") {
|
||||
camera->set_perspective(false);
|
||||
if (d.has("orthographic")) {
|
||||
const Dictionary &og = d["orthographic"];
|
||||
// GLTF spec is in radians, Godot's camera is in degrees.
|
||||
camera->set_fov_size(Math::rad2deg(real_t(og["ymag"])));
|
||||
camera->set_zfar(og["zfar"]);
|
||||
camera->set_znear(og["znear"]);
|
||||
} else {
|
||||
camera->set_fov_size(10);
|
||||
Ref<GLTFCamera> camera = GLTFCamera::from_dictionary(cameras[i]);
|
||||
if (camera.is_null()) {
|
||||
return Error::ERR_PARSE_ERROR;
|
||||
}
|
||||
} else if (type == "perspective") {
|
||||
camera->set_perspective(true);
|
||||
if (d.has("perspective")) {
|
||||
const Dictionary &ppt = d["perspective"];
|
||||
// GLTF spec is in radians, Godot's camera is in degrees.
|
||||
camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"])));
|
||||
camera->set_zfar(ppt["zfar"]);
|
||||
camera->set_znear(ppt["znear"]);
|
||||
} else {
|
||||
camera->set_fov_size(10);
|
||||
}
|
||||
} else {
|
||||
ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera should be in 'orthographic' or 'perspective'");
|
||||
}
|
||||
|
||||
p_state->cameras.push_back(camera);
|
||||
}
|
||||
|
||||
|
@ -5286,45 +5195,7 @@ Spatial *GLTFDocument::_generate_light(Ref<GLTFState> p_state, Node *p_scene_par
|
|||
print_verbose("glTF: Creating light for: " + gltf_node->get_name());
|
||||
|
||||
Ref<GLTFLight> l = p_state->lights[gltf_node->light];
|
||||
|
||||
float intensity = l->intensity;
|
||||
if (intensity > 10) {
|
||||
// GLTF spec has the default around 1, but Blender defaults lights to 100.
|
||||
// The only sane way to handle this is to check where it came from and
|
||||
// handle it accordingly. If it's over 10, it probably came from Blender.
|
||||
intensity /= 100;
|
||||
}
|
||||
|
||||
if (l->type == "directional") {
|
||||
DirectionalLight *light = memnew(DirectionalLight);
|
||||
light->set_param(Light::PARAM_ENERGY, intensity);
|
||||
light->set_color(l->color);
|
||||
return light;
|
||||
}
|
||||
|
||||
const float range = CLAMP(l->range, 0, 4096);
|
||||
if (l->type == "point") {
|
||||
OmniLight *light = memnew(OmniLight);
|
||||
light->set_param(OmniLight::PARAM_ENERGY, intensity);
|
||||
light->set_param(OmniLight::PARAM_RANGE, range);
|
||||
light->set_color(l->color);
|
||||
return light;
|
||||
}
|
||||
if (l->type == "spot") {
|
||||
SpotLight *light = memnew(SpotLight);
|
||||
light->set_param(SpotLight::PARAM_ENERGY, intensity);
|
||||
light->set_param(SpotLight::PARAM_RANGE, range);
|
||||
light->set_param(SpotLight::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle));
|
||||
light->set_color(l->color);
|
||||
|
||||
// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
|
||||
// The points in desmos are not exact, except for (1, infinity).
|
||||
float angle_ratio = l->inner_cone_angle / l->outer_cone_angle;
|
||||
float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
|
||||
light->set_param(SpotLight::PARAM_SPOT_ATTENUATION, angle_attenuation);
|
||||
return light;
|
||||
}
|
||||
return memnew(Spatial);
|
||||
return l->to_node();
|
||||
}
|
||||
|
||||
Camera *GLTFDocument::_generate_camera(Ref<GLTFState> p_state, Node *p_scene_parent, const GLTFNodeIndex p_node_index) {
|
||||
|
@ -5332,35 +5203,16 @@ Camera *GLTFDocument::_generate_camera(Ref<GLTFState> p_state, Node *p_scene_par
|
|||
|
||||
ERR_FAIL_INDEX_V(gltf_node->camera, p_state->cameras.size(), nullptr);
|
||||
|
||||
Camera *camera = memnew(Camera);
|
||||
print_verbose("glTF: Creating camera for: " + gltf_node->get_name());
|
||||
|
||||
Ref<GLTFCamera> c = p_state->cameras[gltf_node->camera];
|
||||
if (c->get_perspective()) {
|
||||
camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar());
|
||||
} else {
|
||||
camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar());
|
||||
}
|
||||
|
||||
return camera;
|
||||
return c->to_node();
|
||||
}
|
||||
|
||||
GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> p_state, Camera *p_camera) {
|
||||
print_verbose("glTF: Converting camera: " + p_camera->get_name());
|
||||
|
||||
Ref<GLTFCamera> c;
|
||||
c.instance();
|
||||
|
||||
if (p_camera->get_projection() == Camera::Projection::PROJECTION_PERSPECTIVE) {
|
||||
c->set_perspective(true);
|
||||
c->set_fov_size(p_camera->get_fov());
|
||||
c->set_zfar(p_camera->get_zfar());
|
||||
c->set_znear(p_camera->get_znear());
|
||||
} else {
|
||||
c->set_fov_size(p_camera->get_fov());
|
||||
c->set_zfar(p_camera->get_zfar());
|
||||
c->set_znear(p_camera->get_znear());
|
||||
}
|
||||
Ref<GLTFCamera> c = GLTFCamera::from_node(p_camera);
|
||||
GLTFCameraIndex camera_index = p_state->cameras.size();
|
||||
p_state->cameras.push_back(c);
|
||||
return camera_index;
|
||||
|
@ -5369,31 +5221,7 @@ GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> p_state, Camera *p_
|
|||
GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> p_state, Light *p_light) {
|
||||
print_verbose("glTF: Converting light: " + p_light->get_name());
|
||||
|
||||
Ref<GLTFLight> l;
|
||||
l.instance();
|
||||
l->color = p_light->get_color();
|
||||
if (cast_to<DirectionalLight>(p_light)) {
|
||||
l->type = "directional";
|
||||
DirectionalLight *light = cast_to<DirectionalLight>(p_light);
|
||||
l->intensity = light->get_param(DirectionalLight::PARAM_ENERGY);
|
||||
l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
|
||||
} else if (cast_to<OmniLight>(p_light)) {
|
||||
l->type = "point";
|
||||
OmniLight *light = cast_to<OmniLight>(p_light);
|
||||
l->range = light->get_param(OmniLight::PARAM_RANGE);
|
||||
l->intensity = light->get_param(OmniLight::PARAM_ENERGY);
|
||||
} else if (cast_to<SpotLight>(p_light)) {
|
||||
l->type = "spot";
|
||||
SpotLight *light = cast_to<SpotLight>(p_light);
|
||||
l->range = light->get_param(SpotLight::PARAM_RANGE);
|
||||
l->intensity = light->get_param(SpotLight::PARAM_ENERGY);
|
||||
l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight::PARAM_SPOT_ANGLE));
|
||||
|
||||
// This equation is the inverse of the import equation (which has a desmos link).
|
||||
float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight::PARAM_SPOT_ATTENUATION)));
|
||||
angle_ratio = MAX(0, angle_ratio);
|
||||
l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
|
||||
}
|
||||
Ref<GLTFLight> l = GLTFLight::from_node(p_light);
|
||||
|
||||
GLTFLightIndex light_index = p_state->lights.size();
|
||||
p_state->lights.push_back(l);
|
||||
|
|
|
@ -30,11 +30,18 @@
|
|||
|
||||
#include "gltf_camera.h"
|
||||
|
||||
#include "scene/3d/camera.h"
|
||||
|
||||
void GLTFCamera::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("to_node"), &GLTFCamera::to_node);
|
||||
ClassDB::bind_method(D_METHOD("to_dictionary"), &GLTFCamera::to_dictionary);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_perspective"), &GLTFCamera::get_perspective);
|
||||
ClassDB::bind_method(D_METHOD("set_perspective", "perspective"), &GLTFCamera::set_perspective);
|
||||
ClassDB::bind_method(D_METHOD("get_fov_size"), &GLTFCamera::get_fov_size);
|
||||
ClassDB::bind_method(D_METHOD("set_fov_size", "fov_size"), &GLTFCamera::set_fov_size);
|
||||
ClassDB::bind_method(D_METHOD("get_size_mag"), &GLTFCamera::get_size_mag);
|
||||
ClassDB::bind_method(D_METHOD("set_size_mag", "size_mag"), &GLTFCamera::set_size_mag);
|
||||
ClassDB::bind_method(D_METHOD("get_zfar"), &GLTFCamera::get_zfar);
|
||||
ClassDB::bind_method(D_METHOD("set_zfar", "zfar"), &GLTFCamera::set_zfar);
|
||||
ClassDB::bind_method(D_METHOD("get_znear"), &GLTFCamera::get_znear);
|
||||
|
@ -42,6 +49,83 @@ void GLTFCamera::_bind_methods() {
|
|||
|
||||
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "perspective"), "set_perspective", "get_perspective"); // bool
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "fov_size"), "set_fov_size", "get_fov_size"); // float
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "size_mag"), "set_size_mag", "get_size_mag"); // float
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "zfar"), "set_zfar", "get_zfar"); // float
|
||||
ADD_PROPERTY(PropertyInfo(Variant::REAL, "znear"), "set_znear", "get_znear"); // float
|
||||
}
|
||||
|
||||
Ref<GLTFCamera> GLTFCamera::from_node(const Camera *p_camera) {
|
||||
Ref<GLTFCamera> c;
|
||||
c.instance();
|
||||
ERR_FAIL_COND_V_MSG(!p_camera, c, "Tried to create a GLTFCamera from a Camera node, but the given node was null.");
|
||||
c->set_perspective(p_camera->get_projection() == Camera::Projection::PROJECTION_PERSPECTIVE);
|
||||
// GLTF spec (yfov) is in radians, Godot's camera (fov) is in degrees.
|
||||
c->set_fov_size(Math::deg2rad(p_camera->get_fov()));
|
||||
// GLTF spec (xmag and ymag) is a radius in meters, Godot's camera (size) is a diameter in meters.
|
||||
c->set_size_mag(p_camera->get_size() * 0.5f);
|
||||
c->set_zfar(p_camera->get_zfar());
|
||||
c->set_znear(p_camera->get_znear());
|
||||
return c;
|
||||
}
|
||||
|
||||
Camera *GLTFCamera::to_node() const {
|
||||
Camera *camera = memnew(Camera);
|
||||
camera->set_projection(perspective ? Camera::PROJECTION_PERSPECTIVE : Camera::PROJECTION_ORTHOGONAL);
|
||||
// GLTF spec (yfov) is in radians, Godot's camera (fov) is in degrees.
|
||||
camera->set_fov(Math::rad2deg(fov));
|
||||
// GLTF spec (xmag and ymag) is a radius in meters, Godot's camera (size) is a diameter in meters.
|
||||
camera->set_size(size_mag * 2.0f);
|
||||
camera->set_znear(znear);
|
||||
camera->set_zfar(zfar);
|
||||
return camera;
|
||||
}
|
||||
|
||||
Ref<GLTFCamera> GLTFCamera::from_dictionary(const Dictionary p_dictionary) {
|
||||
ERR_FAIL_COND_V_MSG(!p_dictionary.has("type"), Ref<GLTFCamera>(), "Failed to parse GLTF camera, missing required field 'type'.");
|
||||
Ref<GLTFCamera> camera;
|
||||
camera.instance();
|
||||
const String &type = p_dictionary["type"];
|
||||
if (type == "perspective") {
|
||||
camera->set_perspective(true);
|
||||
if (p_dictionary.has("perspective")) {
|
||||
const Dictionary &persp = p_dictionary["perspective"];
|
||||
camera->set_fov_size(persp["yfov"]);
|
||||
if (persp.has("zfar")) {
|
||||
camera->set_zfar(persp["zfar"]);
|
||||
}
|
||||
camera->set_znear(persp["znear"]);
|
||||
}
|
||||
} else if (type == "orthographic") {
|
||||
camera->set_perspective(false);
|
||||
if (p_dictionary.has("orthographic")) {
|
||||
const Dictionary &ortho = p_dictionary["orthographic"];
|
||||
camera->set_size_mag(ortho["ymag"]);
|
||||
camera->set_zfar(ortho["zfar"]);
|
||||
camera->set_znear(ortho["znear"]);
|
||||
}
|
||||
} else {
|
||||
ERR_PRINT("Error parsing GLTF camera: Camera type '" + type + "' is unknown, should be perspective or orthographic.");
|
||||
}
|
||||
return camera;
|
||||
}
|
||||
|
||||
Dictionary GLTFCamera::to_dictionary() const {
|
||||
Dictionary d;
|
||||
if (perspective) {
|
||||
Dictionary persp;
|
||||
persp["yfov"] = fov;
|
||||
persp["zfar"] = zfar;
|
||||
persp["znear"] = znear;
|
||||
d["perspective"] = persp;
|
||||
d["type"] = "perspective";
|
||||
} else {
|
||||
Dictionary ortho;
|
||||
ortho["ymag"] = size_mag;
|
||||
ortho["xmag"] = size_mag;
|
||||
ortho["zfar"] = zfar;
|
||||
ortho["znear"] = znear;
|
||||
d["orthographic"] = ortho;
|
||||
d["type"] = "orthographic";
|
||||
}
|
||||
return d;
|
||||
}
|
||||
|
|
|
@ -33,14 +33,22 @@
|
|||
|
||||
#include "core/resource.h"
|
||||
|
||||
class Camera;
|
||||
|
||||
// Reference and test file:
|
||||
// https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_015_SimpleCameras.md
|
||||
|
||||
class GLTFCamera : public Resource {
|
||||
GDCLASS(GLTFCamera, Resource);
|
||||
|
||||
private:
|
||||
// GLTF has no default camera values, they should always be specified in
|
||||
// the GLTF file. Here we default to Godot's default camera settings.
|
||||
bool perspective = true;
|
||||
float fov_size = 75.0;
|
||||
float zfar = 4000.0;
|
||||
float znear = 0.05;
|
||||
real_t fov = Math::deg2rad(75.0);
|
||||
real_t size_mag = 0.5;
|
||||
real_t zfar = 4000.0;
|
||||
real_t znear = 0.05;
|
||||
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
@ -48,12 +56,20 @@ protected:
|
|||
public:
|
||||
bool get_perspective() const { return perspective; }
|
||||
void set_perspective(bool p_val) { perspective = p_val; }
|
||||
float get_fov_size() const { return fov_size; }
|
||||
void set_fov_size(float p_val) { fov_size = p_val; }
|
||||
float get_zfar() const { return zfar; }
|
||||
void set_zfar(float p_val) { zfar = p_val; }
|
||||
float get_znear() const { return znear; }
|
||||
void set_znear(float p_val) { znear = p_val; }
|
||||
real_t get_fov_size() const { return fov; }
|
||||
void set_fov_size(real_t p_val) { fov = p_val; }
|
||||
real_t get_size_mag() const { return size_mag; }
|
||||
void set_size_mag(real_t p_val) { size_mag = p_val; }
|
||||
real_t get_zfar() const { return zfar; }
|
||||
void set_zfar(real_t p_val) { zfar = p_val; }
|
||||
real_t get_znear() const { return znear; }
|
||||
void set_znear(real_t p_val) { znear = p_val; }
|
||||
|
||||
static Ref<GLTFCamera> from_node(const Camera *p_camera);
|
||||
Camera *to_node() const;
|
||||
|
||||
static Ref<GLTFCamera> from_dictionary(const Dictionary p_dictionary);
|
||||
Dictionary to_dictionary() const;
|
||||
};
|
||||
|
||||
#endif // GLTF_CAMERA_H
|
||||
|
|
Loading…
Reference in a new issue