Float literals - fix main primitives to use real_t casting
Uses (real_t) casting to ensure appropriate calculations are done in 32 bit where real_t is compiled as 32 bit.
This commit is contained in:
parent
cfc7c78732
commit
1485924a2b
16 changed files with 69 additions and 69 deletions
|
@ -37,7 +37,7 @@
|
|||
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
|
||||
|
||||
void Basis::from_z(const Vector3 &p_z) {
|
||||
if (Math::abs(p_z.z) > Math_SQRT12) {
|
||||
if (Math::abs(p_z.z) > (real_t)Math_SQRT12) {
|
||||
// choose p in y-z plane
|
||||
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
|
||||
real_t k = 1.0f / Math::sqrt(a);
|
||||
|
@ -153,7 +153,7 @@ Basis Basis::diagonalize() {
|
|||
|
||||
int ite = 0;
|
||||
Basis acc_rot;
|
||||
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
|
||||
while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
|
||||
real_t el01_2 = elements[0][1] * elements[0][1];
|
||||
real_t el02_2 = elements[0][2] * elements[0][2];
|
||||
real_t el12_2 = elements[1][2] * elements[1][2];
|
||||
|
@ -463,8 +463,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
|
||||
Vector3 euler;
|
||||
real_t sy = elements[0][2];
|
||||
if (sy < (1.0f - CMP_EPSILON)) {
|
||||
if (sy > -(1.0f - CMP_EPSILON)) {
|
||||
if (sy < (1.0f - (real_t)CMP_EPSILON)) {
|
||||
if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
|
||||
// is this a pure Y rotation?
|
||||
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
|
||||
// return the simplest form (human friendlier in editor and scripts)
|
||||
|
@ -498,8 +498,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
|
||||
Vector3 euler;
|
||||
real_t sz = elements[0][1];
|
||||
if (sz < (1.0f - CMP_EPSILON)) {
|
||||
if (sz > -(1.0f - CMP_EPSILON)) {
|
||||
if (sz < (1.0f - (real_t)CMP_EPSILON)) {
|
||||
if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
|
||||
euler.x = Math::atan2(elements[2][1], elements[1][1]);
|
||||
euler.y = Math::atan2(elements[0][2], elements[0][0]);
|
||||
euler.z = Math::asin(-sz);
|
||||
|
@ -529,8 +529,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
|
||||
real_t m12 = elements[1][2];
|
||||
|
||||
if (m12 < (1 - CMP_EPSILON)) {
|
||||
if (m12 > -(1 - CMP_EPSILON)) {
|
||||
if (m12 < (1 - (real_t)CMP_EPSILON)) {
|
||||
if (m12 > -(1 - (real_t)CMP_EPSILON)) {
|
||||
// is this a pure X rotation?
|
||||
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
|
||||
// return the simplest form (human friendlier in editor and scripts)
|
||||
|
@ -565,8 +565,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
|
||||
Vector3 euler;
|
||||
real_t sz = elements[1][0];
|
||||
if (sz < (1.0f - CMP_EPSILON)) {
|
||||
if (sz > -(1.0f - CMP_EPSILON)) {
|
||||
if (sz < (1.0f - (real_t)CMP_EPSILON)) {
|
||||
if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
|
||||
euler.x = Math::atan2(-elements[1][2], elements[1][1]);
|
||||
euler.y = Math::atan2(-elements[2][0], elements[0][0]);
|
||||
euler.z = Math::asin(sz);
|
||||
|
@ -593,8 +593,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
// -cx*sy sx cx*cy
|
||||
Vector3 euler;
|
||||
real_t sx = elements[2][1];
|
||||
if (sx < (1.0f - CMP_EPSILON)) {
|
||||
if (sx > -(1.0f - CMP_EPSILON)) {
|
||||
if (sx < (1.0f - (real_t)CMP_EPSILON)) {
|
||||
if (sx > -(1.0f - (real_t)CMP_EPSILON)) {
|
||||
euler.x = Math::asin(sx);
|
||||
euler.y = Math::atan2(-elements[2][0], elements[2][2]);
|
||||
euler.z = Math::atan2(-elements[0][1], elements[1][1]);
|
||||
|
@ -621,8 +621,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const {
|
|||
// -sy cy*sx cy*cx
|
||||
Vector3 euler;
|
||||
real_t sy = elements[2][0];
|
||||
if (sy < (1.0f - CMP_EPSILON)) {
|
||||
if (sy > -(1.0f - CMP_EPSILON)) {
|
||||
if (sy < (1.0f - (real_t)CMP_EPSILON)) {
|
||||
if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
|
||||
euler.x = Math::atan2(elements[2][1], elements[2][2]);
|
||||
euler.y = Math::asin(-sy);
|
||||
euler.z = Math::atan2(elements[1][0], elements[0][0]);
|
||||
|
|
|
@ -138,7 +138,7 @@ struct _NO_DISCARD_ Color {
|
|||
|
||||
float cMax = MAX(cRed, MAX(cGreen, cBlue));
|
||||
|
||||
float expp = MAX(-B - 1.0f, floor(Math::log(cMax) / Math_LN2)) + 1.0f + B;
|
||||
float expp = MAX(-B - 1.0f, floor(Math::log(cMax) / (real_t)Math_LN2)) + 1.0f + B;
|
||||
|
||||
float sMax = (float)floor((cMax / Math::pow(2.0f, expp - B - N)) + 0.5f);
|
||||
|
||||
|
|
|
@ -42,7 +42,7 @@ int Face3::split_by_plane(const Plane &p_plane, Face3 p_res[3], bool p_is_point_
|
|||
int below_count = 0;
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if (p_plane.has_point(vertex[i], CMP_EPSILON)) { // point is in plane
|
||||
if (p_plane.has_point(vertex[i], (real_t)CMP_EPSILON)) { // point is in plane
|
||||
|
||||
ERR_FAIL_COND_V(above_count >= 4, 0);
|
||||
above[above_count++] = vertex[i];
|
||||
|
@ -117,7 +117,7 @@ bool Face3::intersects_segment(const Vector3 &p_from, const Vector3 &p_dir, Vect
|
|||
|
||||
bool Face3::is_degenerate() const {
|
||||
Vector3 normal = vec3_cross(vertex[0] - vertex[1], vertex[0] - vertex[2]);
|
||||
return (normal.length_squared() < CMP_EPSILON2);
|
||||
return (normal.length_squared() < (real_t)CMP_EPSILON2);
|
||||
}
|
||||
|
||||
Face3::Side Face3::get_side_of(const Face3 &p_face, ClockDirection p_clock_dir) const {
|
||||
|
|
|
@ -218,10 +218,10 @@ Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation
|
|||
|
||||
// Need to scale points (Clipper's requirement for robust computation).
|
||||
for (int i = 0; i != p_polypath_a.size(); ++i) {
|
||||
path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
|
||||
path_a << IntPoint(p_polypath_a[i].x * (real_t)SCALE_FACTOR, p_polypath_a[i].y * (real_t)SCALE_FACTOR);
|
||||
}
|
||||
for (int i = 0; i != p_polypath_b.size(); ++i) {
|
||||
path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
|
||||
path_b << IntPoint(p_polypath_b[i].x * (real_t)SCALE_FACTOR, p_polypath_b[i].y * (real_t)SCALE_FACTOR);
|
||||
}
|
||||
Clipper clp;
|
||||
clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
|
||||
|
@ -246,8 +246,8 @@ Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation
|
|||
|
||||
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
|
||||
polypath.push_back(Point2(
|
||||
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
|
||||
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
|
||||
static_cast<real_t>(scaled_path[j].X) / (real_t)SCALE_FACTOR,
|
||||
static_cast<real_t>(scaled_path[j].Y) / (real_t)SCALE_FACTOR));
|
||||
}
|
||||
polypaths.push_back(polypath);
|
||||
}
|
||||
|
@ -290,17 +290,17 @@ Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_poly
|
|||
et = etOpenRound;
|
||||
break;
|
||||
}
|
||||
ClipperOffset co(2.0, 0.25f * SCALE_FACTOR); // Defaults from ClipperOffset.
|
||||
ClipperOffset co(2.0, 0.25f * (real_t)SCALE_FACTOR); // Defaults from ClipperOffset.
|
||||
Path path;
|
||||
|
||||
// Need to scale points (Clipper's requirement for robust computation).
|
||||
for (int i = 0; i != p_polypath.size(); ++i) {
|
||||
path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
|
||||
path << IntPoint(p_polypath[i].x * (real_t)SCALE_FACTOR, p_polypath[i].y * (real_t)SCALE_FACTOR);
|
||||
}
|
||||
co.AddPath(path, jt, et);
|
||||
|
||||
Paths paths;
|
||||
co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
|
||||
co.Execute(paths, p_delta * (real_t)SCALE_FACTOR); // Inflate/deflate.
|
||||
|
||||
// Have to scale points down now.
|
||||
Vector<Vector<Point2>> polypaths;
|
||||
|
@ -312,8 +312,8 @@ Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_poly
|
|||
|
||||
for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
|
||||
polypath.push_back(Point2(
|
||||
static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
|
||||
static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
|
||||
static_cast<real_t>(scaled_path[j].X) / (real_t)SCALE_FACTOR,
|
||||
static_cast<real_t>(scaled_path[j].Y) / (real_t)SCALE_FACTOR));
|
||||
}
|
||||
polypaths.push_back(polypath);
|
||||
}
|
||||
|
|
|
@ -51,20 +51,20 @@ public:
|
|||
real_t f = d2.dot(r);
|
||||
real_t s, t;
|
||||
// Check if either or both segments degenerate into points.
|
||||
if (a <= CMP_EPSILON && e <= CMP_EPSILON) {
|
||||
if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
|
||||
// Both segments degenerate into points.
|
||||
c1 = p1;
|
||||
c2 = p2;
|
||||
return Math::sqrt((c1 - c2).dot(c1 - c2));
|
||||
}
|
||||
if (a <= CMP_EPSILON) {
|
||||
if (a <= (real_t)CMP_EPSILON) {
|
||||
// First segment degenerates into a point.
|
||||
s = 0.0;
|
||||
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
|
||||
t = CLAMP(t, 0.0f, 1.0f);
|
||||
} else {
|
||||
real_t c = d1.dot(r);
|
||||
if (e <= CMP_EPSILON) {
|
||||
if (e <= (real_t)CMP_EPSILON) {
|
||||
// Second segment degenerates into a point.
|
||||
t = 0.0;
|
||||
s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
|
||||
|
@ -185,7 +185,7 @@ public:
|
|||
D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
|
||||
|
||||
// Fail if C x B and D x B have the same sign (segments don't intersect).
|
||||
if ((C.y < -CMP_EPSILON && D.y < -CMP_EPSILON) || (C.y > CMP_EPSILON && D.y > CMP_EPSILON)) {
|
||||
if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -198,7 +198,7 @@ public:
|
|||
real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
|
||||
|
||||
// Fail if segment C-D crosses line A-B outside of segment A-B.
|
||||
if (ABpos < 0 || ABpos > 1.0f) {
|
||||
if ((ABpos < 0) || (ABpos > 1)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -879,7 +879,7 @@ Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, in
|
|||
for (int n = 0; n < p_plane_count; n++) {
|
||||
if (n != i && n != j && n != k) {
|
||||
real_t dp = p_planes[n].normal.dot(convex_shape_point);
|
||||
if (dp - p_planes[n].d > CMP_EPSILON) {
|
||||
if (dp - p_planes[n].d > (real_t)CMP_EPSILON) {
|
||||
excluded = true;
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -76,7 +76,7 @@ public:
|
|||
real_t tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
|
||||
|
||||
// Compute the line parameters of the two closest points.
|
||||
if (D < CMP_EPSILON) { // The lines are almost parallel.
|
||||
if (D < (real_t)CMP_EPSILON) { // The lines are almost parallel.
|
||||
sN = 0.0f; // Force using point P0 on segment S1
|
||||
sD = 1.0f; // to prevent possible division by 0.0 later.
|
||||
tN = e;
|
||||
|
@ -142,7 +142,7 @@ public:
|
|||
Vector3 s = p_from - p_v0;
|
||||
real_t u = f * s.dot(h);
|
||||
|
||||
if (u < 0.0f || u > 1.0f) {
|
||||
if ((u < 0.0f) || (u > 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -150,7 +150,7 @@ public:
|
|||
|
||||
real_t v = f * p_dir.dot(q);
|
||||
|
||||
if (v < 0.0f || u + v > 1.0f) {
|
||||
if ((v < 0.0f) || (u + v > 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -183,7 +183,7 @@ public:
|
|||
Vector3 s = p_from - p_v0;
|
||||
real_t u = f * s.dot(h);
|
||||
|
||||
if (u < 0.0f || u > 1.0f) {
|
||||
if ((u < 0.0f) || (u > 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -191,7 +191,7 @@ public:
|
|||
|
||||
real_t v = f * rel.dot(q);
|
||||
|
||||
if (v < 0.0f || u + v > 1.0f) {
|
||||
if ((v < 0.0f) || (u + v > 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -199,7 +199,7 @@ public:
|
|||
// the intersection point is on the line.
|
||||
real_t t = f * e2.dot(q);
|
||||
|
||||
if (t > CMP_EPSILON && t <= 1.0f) { // Ray intersection.
|
||||
if (t > (real_t)CMP_EPSILON && t <= 1.0f) { // Ray intersection.
|
||||
if (r_res) {
|
||||
*r_res = p_from + rel * t;
|
||||
}
|
||||
|
@ -213,7 +213,7 @@ public:
|
|||
Vector3 sphere_pos = p_sphere_pos - p_from;
|
||||
Vector3 rel = (p_to - p_from);
|
||||
real_t rel_l = rel.length();
|
||||
if (rel_l < CMP_EPSILON) {
|
||||
if (rel_l < (real_t)CMP_EPSILON) {
|
||||
return false; // Both points are the same.
|
||||
}
|
||||
Vector3 normal = rel / rel_l;
|
||||
|
@ -229,7 +229,7 @@ public:
|
|||
real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance;
|
||||
real_t inters_d = sphere_d;
|
||||
|
||||
if (inters_d2 >= CMP_EPSILON) {
|
||||
if (inters_d2 >= (real_t)CMP_EPSILON) {
|
||||
inters_d -= Math::sqrt(inters_d2);
|
||||
}
|
||||
|
||||
|
@ -253,7 +253,7 @@ public:
|
|||
static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr, int p_cylinder_axis = 2) {
|
||||
Vector3 rel = (p_to - p_from);
|
||||
real_t rel_l = rel.length();
|
||||
if (rel_l < CMP_EPSILON) {
|
||||
if (rel_l < (real_t)CMP_EPSILON) {
|
||||
return false; // Both points are the same.
|
||||
}
|
||||
|
||||
|
@ -269,7 +269,7 @@ public:
|
|||
|
||||
Vector3 axis_dir;
|
||||
|
||||
if (crs_l < CMP_EPSILON) {
|
||||
if (crs_l < (real_t)CMP_EPSILON) {
|
||||
Vector3 side_axis;
|
||||
side_axis[(p_cylinder_axis + 1) % 3] = 1.0f; // Any side axis OK.
|
||||
axis_dir = side_axis;
|
||||
|
@ -285,7 +285,7 @@ public:
|
|||
|
||||
// Convert to 2D.
|
||||
real_t w2 = p_radius * p_radius - dist * dist;
|
||||
if (w2 < CMP_EPSILON) {
|
||||
if (w2 < (real_t)CMP_EPSILON) {
|
||||
return false; // Avoid numerical error.
|
||||
}
|
||||
Size2 size(Math::sqrt(w2), p_height * 0.5f);
|
||||
|
@ -366,7 +366,7 @@ public:
|
|||
Vector3 rel = p_to - p_from;
|
||||
real_t rel_l = rel.length();
|
||||
|
||||
if (rel_l < CMP_EPSILON) {
|
||||
if (rel_l < (real_t)CMP_EPSILON) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -379,7 +379,7 @@ public:
|
|||
|
||||
real_t den = p.normal.dot(dir);
|
||||
|
||||
if (Math::abs(den) <= CMP_EPSILON) {
|
||||
if (Math::abs(den) <= (real_t)CMP_EPSILON) {
|
||||
continue; // Ignore parallel plane.
|
||||
}
|
||||
|
||||
|
@ -564,11 +564,11 @@ public:
|
|||
|
||||
for (int a = 0; a < polygon.size(); a++) {
|
||||
real_t dist = p_plane.distance_to(polygon[a]);
|
||||
if (dist < -CMP_POINT_IN_PLANE_EPSILON) {
|
||||
if (dist < (real_t)-CMP_POINT_IN_PLANE_EPSILON) {
|
||||
location_cache[a] = LOC_INSIDE;
|
||||
inside_count++;
|
||||
} else {
|
||||
if (dist > CMP_POINT_IN_PLANE_EPSILON) {
|
||||
if (dist > (real_t)CMP_POINT_IN_PLANE_EPSILON) {
|
||||
location_cache[a] = LOC_OUTSIDE;
|
||||
outside_count++;
|
||||
} else {
|
||||
|
|
|
@ -64,7 +64,7 @@ public:
|
|||
static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
|
||||
static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
|
||||
|
||||
static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc(Math_PI * p_x); }
|
||||
static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); }
|
||||
static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
|
||||
|
@ -187,7 +187,7 @@ public:
|
|||
|
||||
static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
|
||||
double value = Math::fmod(p_x, p_y);
|
||||
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0;
|
||||
|
@ -195,7 +195,7 @@ public:
|
|||
}
|
||||
static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
|
||||
float value = Math::fmod(p_x, p_y);
|
||||
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0f;
|
||||
|
@ -220,17 +220,17 @@ public:
|
|||
|
||||
static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
|
||||
int64_t value = p_x % p_y;
|
||||
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * (Math_PI / 180.0); }
|
||||
static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * (Math_PI / 180.0); }
|
||||
static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
|
||||
|
||||
static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * (180.0 / Math_PI); }
|
||||
static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * (180.0 / Math_PI); }
|
||||
static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
|
||||
|
||||
static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
|
||||
static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
|
||||
|
@ -285,10 +285,10 @@ public:
|
|||
static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta; }
|
||||
|
||||
static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
|
||||
static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
|
||||
static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * (float)8.6858896380650365530225783783321; }
|
||||
|
||||
static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
|
||||
static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
|
||||
static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * (float)0.11512925464970228420089957273422); }
|
||||
|
||||
static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); }
|
||||
static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); }
|
||||
|
@ -345,9 +345,9 @@ public:
|
|||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
float tolerance = CMP_EPSILON * abs(a);
|
||||
if (tolerance < CMP_EPSILON) {
|
||||
tolerance = CMP_EPSILON;
|
||||
float tolerance = (float)CMP_EPSILON * abs(a);
|
||||
if (tolerance < (float)CMP_EPSILON) {
|
||||
tolerance = (float)CMP_EPSILON;
|
||||
}
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
@ -362,7 +362,7 @@ public:
|
|||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
|
||||
return abs(s) < CMP_EPSILON;
|
||||
return abs(s) < (float)CMP_EPSILON;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
|
||||
|
|
|
@ -106,7 +106,7 @@ bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3
|
|||
real_t dist = (normal.dot(p_from) - d) / den;
|
||||
//printf("dist is %i\n",dist);
|
||||
|
||||
if (dist > CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
|
||||
if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -129,7 +129,7 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec
|
|||
real_t dist = (normal.dot(p_begin) - d) / den;
|
||||
//printf("dist is %i\n",dist);
|
||||
|
||||
if (dist < -CMP_EPSILON || dist > (1.0f + CMP_EPSILON)) {
|
||||
if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -129,7 +129,7 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con
|
|||
|
||||
// calculate coefficients
|
||||
|
||||
if ((1.0f - cosom) > CMP_EPSILON) {
|
||||
if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
|
||||
// standard case (slerp)
|
||||
omega = Math::acos(cosom);
|
||||
sinom = Math::sin(omega);
|
||||
|
|
|
@ -145,7 +145,7 @@ struct _NO_DISCARD_ Quaternion {
|
|||
Vector3 c = v0.cross(v1);
|
||||
real_t d = v0.dot(v1);
|
||||
|
||||
if (d < -1.0f + CMP_EPSILON) {
|
||||
if (d < -1.0f + (real_t)CMP_EPSILON) {
|
||||
x = 0;
|
||||
y = 1;
|
||||
z = 0;
|
||||
|
|
|
@ -129,7 +129,7 @@ public:
|
|||
return p_mean + p_deviation * (cos(Math_TAU * randd()) * sqrt(-2.0 * log(randd()))); // Box-Muller transform
|
||||
}
|
||||
_FORCE_INLINE_ float randfn(float p_mean, float p_deviation) {
|
||||
return p_mean + p_deviation * (cos(Math_TAU * randf()) * sqrt(-2.0 * log(randf()))); // Box-Muller transform
|
||||
return p_mean + p_deviation * (cos((float)Math_TAU * randf()) * sqrt(-2.0 * log(randf()))); // Box-Muller transform
|
||||
}
|
||||
|
||||
double random(double p_from, double p_to);
|
||||
|
|
|
@ -71,12 +71,12 @@ void Transform2D::rotate(const real_t p_phi) {
|
|||
|
||||
real_t Transform2D::get_skew() const {
|
||||
real_t det = basis_determinant();
|
||||
return Math::acos(elements[0].normalized().dot(SIGN(det) * elements[1].normalized())) - Math_PI * 0.5f;
|
||||
return Math::acos(elements[0].normalized().dot(SIGN(det) * elements[1].normalized())) - (real_t)Math_PI * 0.5f;
|
||||
}
|
||||
|
||||
void Transform2D::set_skew(const real_t p_angle) {
|
||||
real_t det = basis_determinant();
|
||||
elements[1] = SIGN(det) * elements[0].rotated((Math_PI * 0.5f + p_angle)).normalized() * elements[1].length();
|
||||
elements[1] = SIGN(det) * elements[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * elements[1].length();
|
||||
}
|
||||
|
||||
real_t Transform2D::get_rotation() const {
|
||||
|
|
|
@ -163,7 +163,7 @@ Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
|
|||
Vector2 v = *this;
|
||||
Vector2 vd = p_to - v;
|
||||
real_t len = vd.length();
|
||||
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
||||
return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
||||
}
|
||||
|
||||
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
||||
|
|
|
@ -97,7 +97,7 @@ Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
|
|||
Vector3 v = *this;
|
||||
Vector3 vd = p_to - v;
|
||||
real_t len = vd.length();
|
||||
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
||||
return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
||||
}
|
||||
|
||||
Vector2 Vector3::octahedron_encode() const {
|
||||
|
|
|
@ -103,7 +103,7 @@
|
|||
#endif
|
||||
|
||||
#ifndef SIGN
|
||||
#define SIGN(m_v) (((m_v) == 0) ? (0.0) : (((m_v) < 0) ? (-1.0) : (+1.0)))
|
||||
#define SIGN(m_v) (((m_v) == 0) ? (0.0f) : (((m_v) < 0) ? (-1.0f) : (+1.0f)))
|
||||
#endif
|
||||
|
||||
#ifndef MIN
|
||||
|
|
Loading…
Reference in a new issue