Allow picking similar colours using OKHSL.

This commit is contained in:
K. S. Ernest (iFire) Lee 2022-04-18 11:29:29 -07:00 committed by K. S. Ernest (iFire) Lee
parent 36bd26dc75
commit 1b776a6e7a
13 changed files with 1606 additions and 39 deletions

View file

@ -321,6 +321,12 @@ Comment: Tangent Space Normal Maps implementation
Copyright: 2011, Morten S. Mikkelsen
License: Zlib
Files: ./thirdparty/misc/ok_color.h
./thirdparty/misc/ok_color_shader.h
Comment: OK Lab color space
Copyright: 2021, Björn Ottosson
License: Expat
Files: ./thirdparty/noise/FastNoiseLite.h
Comment: FastNoise Lite
Copyright: 2020, Jordan Peck and contributors

View file

@ -35,6 +35,8 @@
#include "core/string/print_string.h"
#include "core/templates/rb_map.h"
#include "thirdparty/misc/ok_color.h"
uint32_t Color::to_argb32() const {
uint32_t c = (uint8_t)Math::round(a * 255);
c <<= 8;
@ -240,6 +242,20 @@ void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
}
}
void Color::set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) {
ok_color::HSL hsl;
hsl.h = p_h;
hsl.s = p_s;
hsl.l = p_l;
ok_color new_ok_color;
ok_color::RGB rgb = new_ok_color.okhsl_to_srgb(hsl);
Color c = Color(rgb.r, rgb.g, rgb.b, p_alpha).clamp();
r = c.r;
g = c.g;
b = c.b;
a = c.a;
}
bool Color::is_equal_approx(const Color &p_color) const {
return Math::is_equal_approx(r, p_color.r) && Math::is_equal_approx(g, p_color.g) && Math::is_equal_approx(b, p_color.b) && Math::is_equal_approx(a, p_color.a);
}
@ -568,3 +584,48 @@ Color Color::operator-() const {
1.0f - b,
1.0f - a);
}
Color Color::from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) {
Color c;
c.set_ok_hsl(p_h, p_s, p_l, p_alpha);
return c;
}
float Color::get_ok_hsl_h() const {
ok_color::RGB rgb;
rgb.r = r;
rgb.g = g;
rgb.b = b;
ok_color new_ok_color;
ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
if (Math::is_nan(ok_hsl.h)) {
return 0.0f;
}
return CLAMP(ok_hsl.h, 0.0f, 1.0f);
}
float Color::get_ok_hsl_s() const {
ok_color::RGB rgb;
rgb.r = r;
rgb.g = g;
rgb.b = b;
ok_color new_ok_color;
ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
if (Math::is_nan(ok_hsl.s)) {
return 0.0f;
}
return CLAMP(ok_hsl.s, 0.0f, 1.0f);
}
float Color::get_ok_hsl_l() const {
ok_color::RGB rgb;
rgb.r = r;
rgb.g = g;
rgb.b = b;
ok_color new_ok_color;
ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
if (Math::is_nan(ok_hsl.l)) {
return 0.0f;
}
return CLAMP(ok_hsl.l, 0.0f, 1.0f);
}

View file

@ -56,6 +56,10 @@ struct _NO_DISCARD_ Color {
float get_s() const;
float get_v() const;
void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
float get_ok_hsl_h() const;
float get_ok_hsl_s() const;
float get_ok_hsl_l() const;
void set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
_FORCE_INLINE_ float &operator[](int p_idx) {
return components[p_idx];
@ -195,6 +199,7 @@ struct _NO_DISCARD_ Color {
static Color get_named_color(int p_idx);
static Color from_string(const String &p_string, const Color &p_default);
static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
static Color from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
static Color from_rgbe9995(uint32_t p_rgbe);
_FORCE_INLINE_ bool operator<(const Color &p_color) const; //used in set keys
@ -213,6 +218,9 @@ struct _NO_DISCARD_ Color {
_FORCE_INLINE_ void set_h(float p_h) { set_hsv(p_h, get_s(), get_v()); }
_FORCE_INLINE_ void set_s(float p_s) { set_hsv(get_h(), p_s, get_v()); }
_FORCE_INLINE_ void set_v(float p_v) { set_hsv(get_h(), get_s(), p_v); }
_FORCE_INLINE_ void set_ok_hsl_h(float p_h) { set_ok_hsl(p_h, get_ok_hsl_s(), get_ok_hsl_l()); }
_FORCE_INLINE_ void set_ok_hsl_s(float p_s) { set_ok_hsl(get_ok_hsl_h(), p_s, get_ok_hsl_l()); }
_FORCE_INLINE_ void set_ok_hsl_l(float p_l) { set_ok_hsl(get_ok_hsl_h(), get_ok_hsl_s(), p_l); }
_FORCE_INLINE_ Color() {}

View file

@ -1675,6 +1675,8 @@ static void _register_variant_builtin_methods() {
bind_static_method(Color, get_named_color, sarray("idx"), varray());
bind_static_method(Color, from_string, sarray("str", "default"), varray());
bind_static_method(Color, from_hsv, sarray("h", "s", "v", "alpha"), varray(1.0));
bind_static_method(Color, from_ok_hsl, sarray("h", "s", "l", "alpha"), varray(1.0));
bind_static_method(Color, from_rgbe9995, sarray("rgbe"), varray());
/* RID */

View file

@ -329,4 +329,8 @@ SETGET_NUMBER_STRUCT_FUNC(Color, double, h, set_h, get_h)
SETGET_NUMBER_STRUCT_FUNC(Color, double, s, set_s, get_s)
SETGET_NUMBER_STRUCT_FUNC(Color, double, v, set_v, get_v)
SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_h, set_ok_hsl_h, get_ok_hsl_h)
SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_s, set_ok_hsl_s, get_ok_hsl_s)
SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_l, set_ok_hsl_l, get_ok_hsl_l)
#endif // VARIANT_SETGET_H

View file

@ -165,6 +165,24 @@
[/codeblocks]
</description>
</method>
<method name="from_ok_hsl" qualifiers="static">
<return type="Color" />
<argument index="0" name="h" type="float" />
<argument index="1" name="s" type="float" />
<argument index="2" name="l" type="float" />
<argument index="3" name="alpha" type="float" default="1.0" />
<description>
Constructs a color from an [url=https://bottosson.github.io/posts/colorpicker/]OK HSL profile[/url]. [code]h[/code] (hue), [code]s[/code] (saturation), and [code]v[/code] (value) are typically between 0 and 1.
[codeblocks]
[gdscript]
var c = Color.from_ok_hsl(0.58, 0.5, 0.79, 0.8)
[/gdscript]
[csharp]
var c = Color.FromOkHsl(0.58f, 0.5f, 0.79f, 0.8f);
[/csharp]
[/codeblocks]
</description>
</method>
<method name="from_rgbe9995" qualifiers="static">
<return type="Color" />
<argument index="0" name="rgbe" type="int" />

View file

@ -91,6 +91,9 @@
<constant name="SHAPE_VHS_CIRCLE" value="2" enum="PickerShapeType">
HSV Color Model circle color space. Use Saturation as a radius.
</constant>
<constant name="SHAPE_OKHSL_CIRCLE" value="3" enum="PickerShapeType">
HSL OK Color Model circle color space.
</constant>
</constants>
<theme_items>
<theme_item name="h_width" data_type="constant" type="int" default="30">

View file

@ -6109,8 +6109,8 @@ EditorNode::EditorNode() {
EDITOR_DEF("interface/inspector/resources_to_open_in_new_inspector", "Script,MeshLibrary");
EDITOR_DEF("interface/inspector/default_color_picker_mode", 0);
EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_mode", PROPERTY_HINT_ENUM, "RGB,HSV,RAW", PROPERTY_USAGE_DEFAULT));
EDITOR_DEF("interface/inspector/default_color_picker_shape", (int32_t)ColorPicker::SHAPE_VHS_CIRCLE);
EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle", PROPERTY_USAGE_DEFAULT));
EDITOR_DEF("interface/inspector/default_color_picker_shape", (int32_t)ColorPicker::SHAPE_OKHSL_CIRCLE);
EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle,OKHSL Circle", PROPERTY_USAGE_DEFAULT));
ED_SHORTCUT("canvas_item_editor/pan_view", TTR("Pan View"), Key::SPACE);

View file

@ -31,6 +31,7 @@
#include "color_picker.h"
#include "core/input/input.h"
#include "core/math/color.h"
#include "core/os/keyboard.h"
#include "core/os/os.h"
#include "scene/main/window.h"
@ -39,6 +40,9 @@
#include "editor/editor_settings.h"
#endif
#include "thirdparty/misc/ok_color.h"
#include "thirdparty/misc/ok_color_shader.h"
List<Color> ColorPicker::preset_cache;
void ColorPicker::_notification(int p_what) {
@ -102,6 +106,7 @@ void ColorPicker::_notification(int p_what) {
Ref<Shader> ColorPicker::wheel_shader;
Ref<Shader> ColorPicker::circle_shader;
Ref<Shader> ColorPicker::circle_ok_color_shader;
void ColorPicker::init_shaders() {
wheel_shader.instantiate();
@ -152,11 +157,36 @@ void fragment() {
COLOR = vec4(mix(vec3(1.0), clamp(abs(fract(vec3((a - TAU) / TAU) + vec3(1.0, 2.0 / 3.0, 1.0 / 3.0)) * 6.0 - vec3(3.0)) - vec3(1.0), 0.0, 1.0), ((float(sqrt(x * x + y * y)) * 2.0)) / 1.0) * vec3(v), (b + b2 + b3 + b4) / 4.00);
})");
circle_ok_color_shader.instantiate();
circle_ok_color_shader->set_code(OK_COLOR_SHADER + R"(
// ColorPicker ok color hsv circle shader.
uniform float v = 1.0;
void fragment() {
float x = UV.x - 0.5;
float y = UV.y - 0.5;
x += 0.001;
y += 0.001;
float b = float(sqrt(x * x + y * y) < 0.5);
x -= 0.002;
float b2 = float(sqrt(x * x + y * y) < 0.5);
y -= 0.002;
float b3 = float(sqrt(x * x + y * y) < 0.5);
x += 0.002;
float b4 = float(sqrt(x * x + y * y) < 0.5);
float s = sqrt(x * x + y * y);
float h = atan(y, x) / (2.0*M_PI);
vec3 col = okhsl_to_srgb(vec3(h, s, v));
COLOR = vec4(col, (b + b2 + b3 + b4) / 4.00);
})");
}
void ColorPicker::finish_shaders() {
wheel_shader.unref();
circle_shader.unref();
circle_ok_color_shader.unref();
}
void ColorPicker::set_focus_on_line_edit() {
@ -166,8 +196,12 @@ void ColorPicker::set_focus_on_line_edit() {
void ColorPicker::_update_controls() {
const char *rgb[3] = { "R", "G", "B" };
const char *hsv[3] = { "H", "S", "V" };
if (hsv_mode_enabled) {
const char *hsl[3] = { "H", "S", "L" };
if (hsv_mode_enabled && picker_type == SHAPE_OKHSL_CIRCLE) {
for (int i = 0; i < 3; i++) {
labels[i]->set_text(hsl[i]);
}
} else if (hsv_mode_enabled && picker_type != SHAPE_OKHSL_CIRCLE) {
for (int i = 0; i < 3; i++) {
labels[i]->set_text(hsv[i]);
}
@ -176,14 +210,23 @@ void ColorPicker::_update_controls() {
labels[i]->set_text(rgb[i]);
}
}
if (picker_type == SHAPE_OKHSL_CIRCLE) {
btn_hsv->set_text(RTR("OKHSL"));
} else {
btn_hsv->set_text(RTR("HSV"));
}
if (hsv_mode_enabled) {
set_raw_mode(false);
set_hsv_mode(true);
btn_raw->set_disabled(true);
} else if (raw_mode_enabled) {
set_raw_mode(true);
set_hsv_mode(false);
btn_raw->set_disabled(false);
btn_hsv->set_disabled(true);
} else {
set_raw_mode(false);
set_hsv_mode(false);
btn_raw->set_disabled(false);
btn_hsv->set_disabled(false);
}
@ -236,8 +279,15 @@ void ColorPicker::_update_controls() {
wheel_edit->show();
w_edit->show();
uv_edit->hide();
wheel->set_material(circle_mat);
circle_mat->set_shader(circle_shader);
break;
case SHAPE_OKHSL_CIRCLE:
wheel_edit->show();
w_edit->show();
uv_edit->hide();
wheel->set_material(circle_mat);
circle_mat->set_shader(circle_ok_color_shader);
break;
default: {
}
@ -246,11 +296,17 @@ void ColorPicker::_update_controls() {
void ColorPicker::_set_pick_color(const Color &p_color, bool p_update_sliders) {
color = p_color;
if (color != last_hsv) {
h = color.get_h();
s = color.get_s();
v = color.get_v();
last_hsv = color;
if (color != last_color) {
if (picker_type == SHAPE_OKHSL_CIRCLE) {
h = color.get_ok_hsl_h();
s = color.get_ok_hsl_s();
v = color.get_ok_hsl_l();
} else {
h = color.get_h();
s = color.get_s();
v = color.get_v();
}
last_color = color;
}
if (!is_inside_tree()) {
@ -301,10 +357,13 @@ void ColorPicker::_value_changed(double) {
h = scroll[0]->get_value() / 360.0;
s = scroll[1]->get_value() / 100.0;
v = scroll[2]->get_value() / 100.0;
color.set_hsv(h, s, v, scroll[3]->get_value() / 255.0);
last_hsv = color;
if (picker_type == SHAPE_OKHSL_CIRCLE) {
color.set_ok_hsl(h, s, v, Math::round(scroll[3]->get_value() / 255.0));
} else {
color.set_hsv(h, s, v, Math::round(scroll[3]->get_value() / 255.0));
}
last_color = color;
} else {
for (int i = 0; i < 4; i++) {
color.components[i] = scroll[i]->get_value() / (raw_mode_enabled ? 1.0 : 255.0);
@ -342,7 +401,6 @@ void ColorPicker::_update_color(bool p_update_sliders) {
for (int i = 0; i < 4; i++) {
scroll[i]->set_step(1.0);
}
scroll[0]->set_max(359);
scroll[0]->set_value(h * 360.0);
scroll[1]->set_max(100);
@ -350,7 +408,7 @@ void ColorPicker::_update_color(bool p_update_sliders) {
scroll[2]->set_max(100);
scroll[2]->set_value(v * 100.0);
scroll[3]->set_max(255);
scroll[3]->set_value(color.components[3] * 255.0);
scroll[3]->set_value(Math::round(color.components[3] * 255.0));
} else {
for (int i = 0; i < 4; i++) {
if (raw_mode_enabled) {
@ -362,7 +420,7 @@ void ColorPicker::_update_color(bool p_update_sliders) {
scroll[i]->set_value(color.components[i]);
} else {
scroll[i]->set_step(1);
const float byte_value = color.components[i] * 255.0;
const float byte_value = Math::round(color.components[i] * 255.0);
scroll[i]->set_max(next_power_of_2(MAX(255, byte_value)) - 1);
scroll[i]->set_value(byte_value);
}
@ -426,7 +484,6 @@ Color ColorPicker::get_pick_color() const {
void ColorPicker::set_picker_shape(PickerShapeType p_picker_type) {
ERR_FAIL_INDEX(p_picker_type, SHAPE_MAX);
picker_type = p_picker_type;
_update_controls();
_update_color();
}
@ -702,7 +759,7 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
Ref<Texture2D> cursor = get_theme_icon(SNAME("picker_cursor"), SNAME("ColorPicker"));
int x;
int y;
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
x = center.x + (center.x * Math::cos(h * Math_TAU) * s) - (cursor->get_width() / 2);
y = center.y + (center.y * Math::sin(h * Math_TAU) * s) - (cursor->get_height() / 2);
} else {
@ -735,6 +792,25 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
Color col;
col.set_hsv(h, 1, 1);
c->draw_line(Point2(0, y), Point2(c->get_size().x, y), col.inverted());
} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
Vector<Point2> points;
Vector<Color> colors;
Color col;
col.set_ok_hsl(h, s, 1);
points.resize(4);
colors.resize(4);
points.set(0, Vector2());
points.set(1, Vector2(c->get_size().x, 0));
points.set(2, c->get_size());
points.set(3, Vector2(0, c->get_size().y));
colors.set(0, col);
colors.set(1, col);
colors.set(2, Color(0, 0, 0));
colors.set(3, Color(0, 0, 0));
c->draw_polygon(points, colors);
int y = c->get_size().y - c->get_size().y * CLAMP(v, 0, 1);
col.set_ok_hsl(h, 1, v);
c->draw_line(Point2(0, y), Point2(c->get_size().x, y), col.inverted());
} else if (picker_type == SHAPE_VHS_CIRCLE) {
Vector<Point2> points;
Vector<Color> colors;
@ -757,7 +833,7 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
}
} else if (p_which == 2) {
c->draw_rect(Rect2(Point2(), c->get_size()), Color(1, 1, 1));
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
circle_mat->set_shader_param("v", v);
}
}
@ -793,10 +869,19 @@ void ColorPicker::_slider_draw(int p_which) {
}
Color s_col;
Color v_col;
s_col.set_hsv(h, 0, v);
if (picker_type == SHAPE_OKHSL_CIRCLE) {
s_col.set_ok_hsl(h, 0, v);
} else {
s_col.set_hsv(h, 0, v);
}
left_color = (p_which == 1) ? s_col : Color(0, 0, 0);
s_col.set_hsv(h, 1, v);
v_col.set_hsv(h, s, 1);
if (picker_type == SHAPE_OKHSL_CIRCLE) {
s_col.set_ok_hsl(h, 1, v);
v_col.set_ok_hsl(h, s, 1);
} else {
s_col.set_hsv(h, 1, v);
v_col.set_hsv(h, s, 1);
}
right_color = (p_which == 1) ? s_col : v_col;
} else {
left_color = Color(
@ -828,9 +913,8 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
if (bev.is_valid()) {
if (bev->is_pressed() && bev->get_button_index() == MouseButton::LEFT) {
Vector2 center = c->get_size() / 2.0;
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
real_t dist = center.distance_to(bev->get_position());
if (dist <= center.x) {
real_t rad = center.angle_to_point(bev->get_position());
h = ((rad >= 0) ? rad : (Math_TAU + rad)) / Math_TAU;
@ -867,8 +951,13 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
}
}
changing_color = true;
color.set_hsv(h, s, v, color.a);
last_hsv = color;
if (picker_type == SHAPE_OKHSL_CIRCLE) {
color.set_ok_hsl(h, s, v, color.a);
} else if (picker_type != SHAPE_OKHSL_CIRCLE) {
color.set_hsv(h, s, v, color.a);
}
last_color = color;
set_pick_color(color);
_update_color();
if (!deferred_mode_enabled) {
@ -892,7 +981,7 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
}
Vector2 center = c->get_size() / 2.0;
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
real_t dist = center.distance_to(mev->get_position());
real_t rad = center.angle_to_point(mev->get_position());
h = ((rad >= 0) ? rad : (Math_TAU + rad)) / Math_TAU;
@ -913,9 +1002,12 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
v = 1.0 - (y - corner_y) / real_size.y;
}
}
color.set_hsv(h, s, v, color.a);
last_hsv = color;
if (picker_type != SHAPE_OKHSL_CIRCLE) {
color.set_hsv(h, s, v, color.a);
} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
color.set_ok_hsl(h, s, v, color.a);
}
last_color = color;
set_pick_color(color);
_update_color();
if (!deferred_mode_enabled) {
@ -931,7 +1023,7 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
if (bev->is_pressed() && bev->get_button_index() == MouseButton::LEFT) {
changing_color = true;
float y = CLAMP((float)bev->get_position().y, 0, w_edit->get_size().height);
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
v = 1.0 - (y / w_edit->get_size().height);
} else {
h = y / w_edit->get_size().height;
@ -939,8 +1031,12 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
} else {
changing_color = false;
}
color.set_hsv(h, s, v, color.a);
last_hsv = color;
if (picker_type != SHAPE_OKHSL_CIRCLE) {
color.set_hsv(h, s, v, color.a);
} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
color.set_ok_hsl(h, s, v, color.a);
}
last_color = color;
set_pick_color(color);
_update_color();
if (!deferred_mode_enabled) {
@ -957,13 +1053,17 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
return;
}
float y = CLAMP((float)mev->get_position().y, 0, w_edit->get_size().height);
if (picker_type == SHAPE_VHS_CIRCLE) {
if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
v = 1.0 - (y / w_edit->get_size().height);
} else {
h = y / w_edit->get_size().height;
}
color.set_hsv(h, s, v, color.a);
last_hsv = color;
if (hsv_mode_enabled && picker_type != SHAPE_OKHSL_CIRCLE) {
color.set_hsv(h, s, v, color.a);
} else if (hsv_mode_enabled && picker_type == SHAPE_OKHSL_CIRCLE) {
color.set_ok_hsl(h, s, v, color.a);
}
last_color = color;
set_pick_color(color);
_update_color();
if (!deferred_mode_enabled) {
@ -1128,7 +1228,7 @@ void ColorPicker::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "hsv_mode"), "set_hsv_mode", "is_hsv_mode");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "raw_mode"), "set_raw_mode", "is_raw_mode");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "deferred_mode"), "set_deferred_mode", "is_deferred_mode");
ADD_PROPERTY(PropertyInfo(Variant::INT, "picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle"), "set_picker_shape", "get_picker_shape");
ADD_PROPERTY(PropertyInfo(Variant::INT, "picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle,OKHSL Circle"), "set_picker_shape", "get_picker_shape");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "presets_enabled"), "set_presets_enabled", "are_presets_enabled");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "presets_visible"), "set_presets_visible", "are_presets_visible");
@ -1139,6 +1239,7 @@ void ColorPicker::_bind_methods() {
BIND_ENUM_CONSTANT(SHAPE_HSV_RECTANGLE);
BIND_ENUM_CONSTANT(SHAPE_HSV_WHEEL);
BIND_ENUM_CONSTANT(SHAPE_VHS_CIRCLE);
BIND_ENUM_CONSTANT(SHAPE_OKHSL_CIRCLE);
}
ColorPicker::ColorPicker() :

View file

@ -68,6 +68,7 @@ public:
SHAPE_HSV_RECTANGLE,
SHAPE_HSV_WHEEL,
SHAPE_VHS_CIRCLE,
SHAPE_OKHSL_CIRCLE,
SHAPE_MAX
};
@ -75,6 +76,7 @@ public:
private:
static Ref<Shader> wheel_shader;
static Ref<Shader> circle_shader;
static Ref<Shader> circle_ok_color_shader;
static List<Color> preset_cache;
Control *screen = nullptr;
@ -124,7 +126,7 @@ private:
float h = 0.0;
float s = 0.0;
float v = 0.0;
Color last_hsv;
Color last_color;
void _html_submitted(const String &p_html);
void _value_changed(double);
@ -161,6 +163,8 @@ public:
void set_edit_alpha(bool p_show);
bool is_editing_alpha() const;
int get_preset_size();
void _set_pick_color(const Color &p_color, bool p_update_sliders);
void set_pick_color(const Color &p_color);
Color get_pick_color() const;

View file

@ -432,6 +432,15 @@ Collection of single-file libraries used in Godot components.
* Upstream: https://github.com/Auburn/FastNoiseLite
* Version: git (6be3d6bf7fb408de341285f9ee8a29b67fd953f1, 2022) + custom changes
* License: MIT
- `ok_color.h`
* Upstream: https://github.com/bottosson/bottosson.github.io/blob/master/misc/ok_color.h
* Version: git (d69831edb90ffdcd08b7e64da3c5405acd48ad2c, 2022)
* License: MIT
* Modifications: License included in header.
- `ok_color_shader.h`
* https://www.shadertoy.com/view/7sK3D1
* Version: 2021-09-13
* License: MIT
- `pcg.{cpp,h}`
* Upstream: http://www.pcg-random.org
* Version: minimal C implementation, http://www.pcg-random.org/download.html

688
thirdparty/misc/ok_color.h vendored Normal file
View file

@ -0,0 +1,688 @@
// Copyright(c) 2021 Björn Ottosson
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files(the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef OK_COLOR_H
#define OK_COLOR_H
#include <cmath>
#include <cfloat>
class ok_color
{
public:
struct Lab { float L; float a; float b; };
struct RGB { float r; float g; float b; };
struct HSV { float h; float s; float v; };
struct HSL { float h; float s; float l; };
struct LC { float L; float C; };
// Alternative representation of (L_cusp, C_cusp)
// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp)
// The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
struct ST { float S; float T; };
static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
float clamp(float x, float min, float max)
{
if (x < min)
return min;
if (x > max)
return max;
return x;
}
float sgn(float x)
{
return (float)(0.f < x) - (float)(x < 0.f);
}
float srgb_transfer_function(float a)
{
return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
}
float srgb_transfer_function_inv(float a)
{
return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
}
Lab linear_srgb_to_oklab(RGB c)
{
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
float l_ = cbrtf(l);
float m_ = cbrtf(m);
float s_ = cbrtf(s);
return {
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_,
};
}
RGB oklab_to_linear_srgb(Lab c)
{
float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
return {
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s,
};
}
// Finds the maximum saturation possible for a given hue that fits in sRGB
// Saturation here is defined as S = C/L
// a and b must be normalized so a^2 + b^2 == 1
float compute_max_saturation(float a, float b)
{
// Max saturation will be when one of r, g or b goes below zero.
// Select different coefficients depending on which component goes below zero first
float k0, k1, k2, k3, k4, wl, wm, ws;
if (-1.88170328f * a - 0.80936493f * b > 1)
{
// Red component
k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
}
else if (1.81444104f * a - 1.19445276f * b > 1)
{
// Green component
k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
}
else
{
// Blue component
k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
}
// Approximate max saturation using a polynomial:
float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
// Do one step Halley's method to get closer
// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
// this should be sufficient for most applications, otherwise do two/three steps
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
{
float l_ = 1.f + S * k_l;
float m_ = 1.f + S * k_m;
float s_ = 1.f + S * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float l_dS = 3.f * k_l * l_ * l_;
float m_dS = 3.f * k_m * m_ * m_;
float s_dS = 3.f * k_s * s_ * s_;
float l_dS2 = 6.f * k_l * k_l * l_;
float m_dS2 = 6.f * k_m * k_m * m_;
float s_dS2 = 6.f * k_s * k_s * s_;
float f = wl * l + wm * m + ws * s;
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
}
return S;
}
// finds L_cusp and C_cusp for a given hue
// a and b must be normalized so a^2 + b^2 == 1
LC find_cusp(float a, float b)
{
// First, find the maximum saturation (saturation S = C/L)
float S_cusp = compute_max_saturation(a, b);
// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b });
float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
float C_cusp = L_cusp * S_cusp;
return { L_cusp , C_cusp };
}
// Finds intersection of the line defined by
// L = L0 * (1 - t) + t * L1;
// C = t * C1;
// a and b must be normalized so a^2 + b^2 == 1
float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
{
// Find the intersection for upper and lower half seprately
float t;
if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f)
{
// Lower half
t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1));
}
else
{
// Upper half
// First intersect with triangle
t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1));
// Then one step Halley's method
{
float dL = L1 - L0;
float dC = C1;
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
float l_dt = dL + dC * k_l;
float m_dt = dL + dC * k_m;
float s_dt = dL + dC * k_s;
// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
{
float L = L0 * (1.f - t) + t * L1;
float C = t * C1;
float l_ = L + C * k_l;
float m_ = L + C * k_m;
float s_ = L + C * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float ldt = 3 * l_dt * l_ * l_;
float mdt = 3 * m_dt * m_ * m_;
float sdt = 3 * s_dt * s_ * s_;
float ldt2 = 6 * l_dt * l_dt * l_;
float mdt2 = 6 * m_dt * m_dt * m_;
float sdt2 = 6 * s_dt * s_dt * s_;
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1;
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
float t_r = -r * u_r;
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1;
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
float t_g = -g * u_g;
b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1;
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
float t_b = -b * u_b;
t_r = u_r >= 0.f ? t_r : FLT_MAX;
t_g = u_g >= 0.f ? t_g : FLT_MAX;
t_b = u_b >= 0.f ? t_b : FLT_MAX;
t += fmin(t_r, fmin(t_g, t_b));
}
}
}
return t;
}
float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
{
// Find the cusp of the gamut triangle
LC cusp = find_cusp(a, b);
return find_gamut_intersection(a, b, L1, C1, L0, cusp);
}
RGB gamut_clip_preserve_chroma(RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float L0 = clamp(L, 0, 1);
float t = find_gamut_intersection(a_, b_, L, C, L0);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
}
RGB gamut_clip_project_to_0_5(RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float L0 = 0.5;
float t = find_gamut_intersection(a_, b_, L, C, L0);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
}
RGB gamut_clip_project_to_L_cusp(RGB rgb)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
LC cusp = find_cusp(a_, b_);
float L0 = cusp.L;
float t = find_gamut_intersection(a_, b_, L, C, L0);
float L_clipped = L0 * (1 - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
}
RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
float Ld = L - 0.5f;
float e1 = 0.5f + fabs(Ld) + alpha * C;
float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld))));
float t = find_gamut_intersection(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
}
RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
{
if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
return rgb;
Lab lab = linear_srgb_to_oklab(rgb);
float L = lab.L;
float eps = 0.00001f;
float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
float a_ = lab.a / C;
float b_ = lab.b / C;
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
LC cusp = find_cusp(a_, b_);
float Ld = L - cusp.L;
float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L);
float e1 = 0.5f * k + fabs(Ld) + alpha * C / k;
float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld))));
float t = find_gamut_intersection(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
}
float toe(float x)
{
constexpr float k_1 = 0.206f;
constexpr float k_2 = 0.03f;
constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
}
float toe_inv(float x)
{
constexpr float k_1 = 0.206f;
constexpr float k_2 = 0.03f;
constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
return (x * x + k_1 * x) / (k_3 * (x + k_2));
}
ST to_ST(LC cusp)
{
float L = cusp.L;
float C = cusp.C;
return { C / L, C / (1 - L) };
}
// Returns a smooth approximation of the location of the cusp
// This polynomial was created by an optimization process
// It has been designed so that S_mid < S_max and T_mid < T_max
ST get_ST_mid(float a_, float b_)
{
float S = 0.11516993f + 1.f / (
+7.44778970f + 4.15901240f * b_
+ a_ * (-2.19557347f + 1.75198401f * b_
+ a_ * (-2.13704948f - 10.02301043f * b_
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
)))
);
float T = 0.11239642f + 1.f / (
+1.61320320f - 0.68124379f * b_
+ a_ * (+0.40370612f + 0.90148123f * b_
+ a_ * (-0.27087943f + 0.61223990f * b_
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
)))
);
return { S, T };
}
struct Cs { float C_0; float C_mid; float C_max; };
Cs get_Cs(float L, float a_, float b_)
{
LC cusp = find_cusp(a_, b_);
float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
ST ST_max = to_ST(cusp);
// Scale factor to compensate for the curved part of gamut shape:
float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
float C_mid;
{
ST ST_mid = get_ST_mid(a_, b_);
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
float C_a = L * ST_mid.S;
float C_b = (1.f - L) * ST_mid.T;
C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
}
float C_0;
{
// for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.
float C_a = L * 0.4f;
float C_b = (1.f - L) * 0.8f;
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
}
return { C_0, C_mid, C_max };
}
RGB okhsl_to_srgb(HSL hsl)
{
float h = hsl.h;
float s = hsl.s;
float l = hsl.l;
if (l == 1.0f)
{
return { 1.f, 1.f, 1.f };
}
else if (l == 0.f)
{
return { 0.f, 0.f, 0.f };
}
float a_ = cosf(2.f * pi * h);
float b_ = sinf(2.f * pi * h);
float L = toe_inv(l);
Cs cs = get_Cs(L, a_, b_);
float C_0 = cs.C_0;
float C_mid = cs.C_mid;
float C_max = cs.C_max;
float mid = 0.8f;
float mid_inv = 1.25f;
float C, t, k_0, k_1, k_2;
if (s < mid)
{
t = mid_inv * s;
k_1 = mid * C_0;
k_2 = (1.f - k_1 / C_mid);
C = t * k_1 / (1.f - k_2 * t);
}
else
{
t = (s - mid)/ (1 - mid);
k_0 = C_mid;
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
k_2 = (1.f - (k_1) / (C_max - C_mid));
C = k_0 + t * k_1 / (1.f - k_2 * t);
}
RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
return {
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b),
};
}
HSL srgb_to_okhsl(RGB rgb)
{
Lab lab = linear_srgb_to_oklab({
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
});
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
float a_ = lab.a / C;
float b_ = lab.b / C;
float L = lab.L;
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
Cs cs = get_Cs(L, a_, b_);
float C_0 = cs.C_0;
float C_mid = cs.C_mid;
float C_max = cs.C_max;
// Inverse of the interpolation in okhsl_to_srgb:
float mid = 0.8f;
float mid_inv = 1.25f;
float s;
if (C < C_mid)
{
float k_1 = mid * C_0;
float k_2 = (1.f - k_1 / C_mid);
float t = C / (k_1 + k_2 * C);
s = t * mid;
}
else
{
float k_0 = C_mid;
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
float k_2 = (1.f - (k_1) / (C_max - C_mid));
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
s = mid + (1.f - mid) * t;
}
float l = toe(L);
return { h, s, l };
}
RGB okhsv_to_srgb(HSV hsv)
{
float h = hsv.h;
float s = hsv.s;
float v = hsv.v;
float a_ = cosf(2.f * pi * h);
float b_ = sinf(2.f * pi * h);
LC cusp = find_cusp(a_, b_);
ST ST_max = to_ST(cusp);
float S_max = ST_max.S;
float T_max = ST_max.T;
float S_0 = 0.5f;
float k = 1 - S_0 / S_max;
// first we compute L and V as if the gamut is a perfect triangle:
// L, C when v==1:
float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s);
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
float L = v * L_v;
float C = v * C_v;
// then we compensate for both toe and the curved top part of the triangle:
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
float L_new = toe_inv(L);
C = C * L_new / L;
L = L_new;
RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
L = L * scale_L;
C = C * scale_L;
RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
return {
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b),
};
}
HSV srgb_to_okhsv(RGB rgb)
{
Lab lab = linear_srgb_to_oklab({
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
});
float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
float a_ = lab.a / C;
float b_ = lab.b / C;
float L = lab.L;
float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
LC cusp = find_cusp(a_, b_);
ST ST_max = to_ST(cusp);
float S_max = ST_max.S;
float T_max = ST_max.T;
float S_0 = 0.5f;
float k = 1 - S_0 / S_max;
// first we find L_v, C_v, L_vt and C_vt
float t = T_max / (C + L * T_max);
float L_v = t * L;
float C_v = t * C;
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
L = L / scale_L;
C = C / scale_L;
C = C * toe(L) / L;
L = toe(L);
// we can now compute v and s:
float v = L / L_v;
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
return { h, s, v };
}
};
#endif // OK_COLOR_H

663
thirdparty/misc/ok_color_shader.h vendored Normal file
View file

@ -0,0 +1,663 @@
// Copyright(c) 2021 Björn Ottosson
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files(the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef OK_COLOR_SHADER_H
#define OK_COLOR_SHADER_H
#include "core/string/ustring.h"
static String OK_COLOR_SHADER = R"(shader_type canvas_item;
const float M_PI = 3.1415926535897932384626433832795;
float cbrt( float x )
{
return sign(x)*pow(abs(x),1.0f/3.0f);
}
float srgb_transfer_function(float a)
{
return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
}
float srgb_transfer_function_inv(float a)
{
return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
}
vec3 linear_srgb_to_oklab(vec3 c)
{
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
float l_ = cbrt(l);
float m_ = cbrt(m);
float s_ = cbrt(s);
return vec3(
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
);
}
vec3 oklab_to_linear_srgb(vec3 c)
{
float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
return vec3(
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
);
}
// Finds the maximum saturation possible for a given hue that fits in sRGB
// Saturation here is defined as S = C/L
// a and b must be normalized so a^2 + b^2 == 1
float compute_max_saturation(float a, float b)
{
// Max saturation will be when one of r, g or b goes below zero.
// Select different coefficients depending on which component goes below zero first
float k0, k1, k2, k3, k4, wl, wm, ws;
if (-1.88170328f * a - 0.80936493f * b > 1.f)
{
// Red component
k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
}
else if (1.81444104f * a - 1.19445276f * b > 1.f)
{
// Green component
k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
}
else
{
// Blue component
k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
}
// Approximate max saturation using a polynomial:
float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
// Do one step Halley's method to get closer
// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
// this should be sufficient for most applications, otherwise do two/three steps
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
{
float l_ = 1.f + S * k_l;
float m_ = 1.f + S * k_m;
float s_ = 1.f + S * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float l_dS = 3.f * k_l * l_ * l_;
float m_dS = 3.f * k_m * m_ * m_;
float s_dS = 3.f * k_s * s_ * s_;
float l_dS2 = 6.f * k_l * k_l * l_;
float m_dS2 = 6.f * k_m * k_m * m_;
float s_dS2 = 6.f * k_s * k_s * s_;
float f = wl * l + wm * m + ws * s;
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
}
return S;
}
// finds L_cusp and C_cusp for a given hue
// a and b must be normalized so a^2 + b^2 == 1
vec2 find_cusp(float a, float b)
{
// First, find the maximum saturation (saturation S = C/L)
float S_cusp = compute_max_saturation(a, b);
// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
float C_cusp = L_cusp * S_cusp;
return vec2( L_cusp , C_cusp );
} )"
R"(// Finds intersection of the line defined by
// L = L0 * (1 - t) + t * L1;
// C = t * C1;
// a and b must be normalized so a^2 + b^2 == 1
float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp)
{
// Find the intersection for upper and lower half seprately
float t;
if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f)
{
// Lower half
t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
}
else
{
// Upper half
// First intersect with triangle
t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1));
// Then one step Halley's method
{
float dL = L1 - L0;
float dC = C1;
float k_l = +0.3963377774f * a + 0.2158037573f * b;
float k_m = -0.1055613458f * a - 0.0638541728f * b;
float k_s = -0.0894841775f * a - 1.2914855480f * b;
float l_dt = dL + dC * k_l;
float m_dt = dL + dC * k_m;
float s_dt = dL + dC * k_s;
// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
{
float L = L0 * (1.f - t) + t * L1;
float C = t * C1;
float l_ = L + C * k_l;
float m_ = L + C * k_m;
float s_ = L + C * k_s;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float ldt = 3.f * l_dt * l_ * l_;
float mdt = 3.f * m_dt * m_ * m_;
float sdt = 3.f * s_dt * s_ * s_;
float ldt2 = 6.f * l_dt * l_dt * l_;
float mdt2 = 6.f * m_dt * m_dt * m_;
float sdt2 = 6.f * s_dt * s_dt * s_;
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
float t_r = -r * u_r;
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
float t_g = -g * u_g;
float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
float t_b = -b * u_b;
t_r = u_r >= 0.f ? t_r : 10000.f;
t_g = u_g >= 0.f ? t_g : 10000.f;
t_b = u_b >= 0.f ? t_b : 10000.f;
t += min(t_r, min(t_g, t_b));
}
}
}
return t;
}
float find_gamut_intersection_5(float a, float b, float L1, float C1, float L0)
{
// Find the cusp of the gamut triangle
vec2 cusp = find_cusp(a, b);
return find_gamut_intersection(a, b, L1, C1, L0, cusp);
})"
R"(
vec3 gamut_clip_preserve_chroma(vec3 rgb)
{
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
return rgb;
vec3 lab = linear_srgb_to_oklab(rgb);
float L = lab.x;
float eps = 0.00001f;
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
float a_ = lab.y / C;
float b_ = lab.z / C;
float L0 = clamp(L, 0.f, 1.f);
float t = find_gamut_intersection_5(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
}
vec3 gamut_clip_project_to_0_5(vec3 rgb)
{
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
return rgb;
vec3 lab = linear_srgb_to_oklab(rgb);
float L = lab.x;
float eps = 0.00001f;
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
float a_ = lab.y / C;
float b_ = lab.z / C;
float L0 = 0.5;
float t = find_gamut_intersection_5(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
}
vec3 gamut_clip_project_to_L_cusp(vec3 rgb)
{
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
return rgb;
vec3 lab = linear_srgb_to_oklab(rgb);
float L = lab.x;
float eps = 0.00001f;
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
float a_ = lab.y / C;
float b_ = lab.z / C;
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
vec2 cusp = find_cusp(a_, b_);
float L0 = cusp.x;
float t = find_gamut_intersection_5(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
}
vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha)
{
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
return rgb;
vec3 lab = linear_srgb_to_oklab(rgb);
float L = lab.x;
float eps = 0.00001f;
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
float a_ = lab.y / C;
float b_ = lab.z / C;
float Ld = L - 0.5f;
float e1 = 0.5f + abs(Ld) + alpha * C;
float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
float t = find_gamut_intersection_5(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
}
vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha)
{
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
return rgb;
vec3 lab = linear_srgb_to_oklab(rgb);
float L = lab.x;
float eps = 0.00001f;
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
float a_ = lab.y / C;
float b_ = lab.z / C;
// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
vec2 cusp = find_cusp(a_, b_);
float Ld = L - cusp.x;
float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
float t = find_gamut_intersection_5(a_, b_, L, C, L0);
float L_clipped = L0 * (1.f - t) + t * L;
float C_clipped = t * C;
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
}
float toe(float x)
{
float k_1 = 0.206f;
float k_2 = 0.03f;
float k_3 = (1.f + k_1) / (1.f + k_2);
return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
}
float toe_inv(float x)
{
float k_1 = 0.206f;
float k_2 = 0.03f;
float k_3 = (1.f + k_1) / (1.f + k_2);
return (x * x + k_1 * x) / (k_3 * (x + k_2));
}
)"
R"(vec2 to_ST(vec2 cusp)
{
float L = cusp.x;
float C = cusp.y;
return vec2( C / L, C / (1.f - L) );
}
// Returns a smooth approximation of the location of the cusp
// This polynomial was created by an optimization process
// It has been designed so that S_mid < S_max and T_mid < T_max
vec2 get_ST_mid(float a_, float b_)
{
float S = 0.11516993f + 1.f / (
+7.44778970f + 4.15901240f * b_
+ a_ * (-2.19557347f + 1.75198401f * b_
+ a_ * (-2.13704948f - 10.02301043f * b_
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
)))
);
float T = 0.11239642f + 1.f / (
+1.61320320f - 0.68124379f * b_
+ a_ * (+0.40370612f + 0.90148123f * b_
+ a_ * (-0.27087943f + 0.61223990f * b_
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
)))
);
return vec2( S, T );
}
vec3 get_Cs(float L, float a_, float b_)
{
vec2 cusp = find_cusp(a_, b_);
float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
vec2 ST_max = to_ST(cusp);
// Scale factor to compensate for the curved part of gamut shape:
float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
float C_mid;
{
vec2 ST_mid = get_ST_mid(a_, b_);
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
float C_a = L * ST_mid.x;
float C_b = (1.f - L) * ST_mid.y;
C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
}
float C_0;
{
// for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2.
float C_a = L * 0.4f;
float C_b = (1.f - L) * 0.8f;
// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
}
return vec3( C_0, C_mid, C_max );
}
vec3 okhsl_to_srgb(vec3 hsl)
{
float h = hsl.x;
float s = hsl.y;
float l = hsl.z;
if (l == 1.0f)
{
return vec3( 1.f, 1.f, 1.f );
}
else if (l == 0.f)
{
return vec3( 0.f, 0.f, 0.f );
}
float a_ = cos(2.f * M_PI * h);
float b_ = sin(2.f * M_PI * h);
float L = toe_inv(l);
vec3 cs = get_Cs(L, a_, b_);
float C_0 = cs.x;
float C_mid = cs.y;
float C_max = cs.z;
float mid = 0.8f;
float mid_inv = 1.25f;
float C, t, k_0, k_1, k_2;
if (s < mid)
{
t = mid_inv * s;
k_1 = mid * C_0;
k_2 = (1.f - k_1 / C_mid);
C = t * k_1 / (1.f - k_2 * t);
}
else
{
t = (s - mid)/ (1.f - mid);
k_0 = C_mid;
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
k_2 = (1.f - (k_1) / (C_max - C_mid));
C = k_0 + t * k_1 / (1.f - k_2 * t);
}
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
return vec3(
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b)
);
}
vec3 srgb_to_okhsl(vec3 rgb)
{
vec3 lab = linear_srgb_to_oklab(vec3(
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
));
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
float a_ = lab.y / C;
float b_ = lab.z / C;
float L = lab.x;
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
vec3 cs = get_Cs(L, a_, b_);
float C_0 = cs.x;
float C_mid = cs.y;
float C_max = cs.z;
// Inverse of the interpolation in okhsl_to_srgb:
float mid = 0.8f;
float mid_inv = 1.25f;
float s;
if (C < C_mid)
{
float k_1 = mid * C_0;
float k_2 = (1.f - k_1 / C_mid);
float t = C / (k_1 + k_2 * C);
s = t * mid;
}
else
{
float k_0 = C_mid;
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
float k_2 = (1.f - (k_1) / (C_max - C_mid));
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
s = mid + (1.f - mid) * t;
}
float l = toe(L);
return vec3( h, s, l );
}
vec3 okhsv_to_srgb(vec3 hsv)
{
float h = hsv.x;
float s = hsv.y;
float v = hsv.z;
float a_ = cos(2.f * M_PI * h);
float b_ = sin(2.f * M_PI * h);
vec2 cusp = find_cusp(a_, b_);
vec2 ST_max = to_ST(cusp);
float S_max = ST_max.x;
float T_max = ST_max.y;
float S_0 = 0.5f;
float k = 1.f- S_0 / S_max;
// first we compute L and V as if the gamut is a perfect triangle:
// L, C when v==1:
float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
float L = v * L_v;
float C = v * C_v;
// then we compensate for both toe and the curved top part of the triangle:
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
float L_new = toe_inv(L);
C = C * L_new / L;
L = L_new;
vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
L = L * scale_L;
C = C * scale_L;
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
return vec3(
srgb_transfer_function(rgb.r),
srgb_transfer_function(rgb.g),
srgb_transfer_function(rgb.b)
);
}
)"
R"(
vec3 srgb_to_okhsv(vec3 rgb)
{
vec3 lab = linear_srgb_to_oklab(vec3(
srgb_transfer_function_inv(rgb.r),
srgb_transfer_function_inv(rgb.g),
srgb_transfer_function_inv(rgb.b)
));
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
float a_ = lab.y / C;
float b_ = lab.z / C;
float L = lab.x;
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
vec2 cusp = find_cusp(a_, b_);
vec2 ST_max = to_ST(cusp);
float S_max = ST_max.x;
float T_max = ST_max.y;
float S_0 = 0.5f;
float k = 1.f - S_0 / S_max;
// first we find L_v, C_v, L_vt and C_vt
float t = T_max / (C + L * T_max);
float L_v = t * L;
float C_v = t * C;
float L_vt = toe_inv(L_v);
float C_vt = C_v * L_vt / L_v;
// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
L = L / scale_L;
C = C / scale_L;
C = C * toe(L) / L;
L = toe(L);
// we can now compute v and s:
float v = L / L_v;
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
return vec3 (h, s, v );
})";
#endif