begin new serialization framework

also got rid of STL dependency on triangulator
This commit is contained in:
Juan Linietsky 2015-02-15 01:19:46 -03:00
parent 7ebb224ec1
commit 2185c018f6
13 changed files with 729 additions and 206 deletions

View file

@ -316,6 +316,11 @@ float _OS::get_time_scale() {
return OS::get_singleton()->get_time_scale(); return OS::get_singleton()->get_time_scale();
} }
bool _OS::is_ok_left_and_cancel_right() const {
return OS::get_singleton()->get_swap_ok_cancel();
}
/* /*
enum Weekday { enum Weekday {
DAY_SUNDAY, DAY_SUNDAY,
@ -699,6 +704,8 @@ void _OS::_bind_methods() {
ObjectTypeDB::bind_method(_MD("get_system_dir","dir"),&_OS::get_system_dir); ObjectTypeDB::bind_method(_MD("get_system_dir","dir"),&_OS::get_system_dir);
ObjectTypeDB::bind_method(_MD("get_unique_ID"),&_OS::get_unique_ID); ObjectTypeDB::bind_method(_MD("get_unique_ID"),&_OS::get_unique_ID);
ObjectTypeDB::bind_method(_MD("is_ok_left_and_cancel_right"),&_OS::is_ok_left_and_cancel_right);
ObjectTypeDB::bind_method(_MD("get_frames_per_second"),&_OS::get_frames_per_second); ObjectTypeDB::bind_method(_MD("get_frames_per_second"),&_OS::get_frames_per_second);
ObjectTypeDB::bind_method(_MD("print_all_textures_by_size"),&_OS::print_all_textures_by_size); ObjectTypeDB::bind_method(_MD("print_all_textures_by_size"),&_OS::print_all_textures_by_size);

View file

@ -220,6 +220,8 @@ public:
void set_time_scale(float p_scale); void set_time_scale(float p_scale);
float get_time_scale(); float get_time_scale();
bool is_ok_left_and_cancel_right() const;
static _OS *get_singleton() { return singleton; } static _OS *get_singleton() { return singleton; }
_OS(); _OS();

View file

@ -22,9 +22,9 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <math.h> #include <math.h>
#include <algorithm>
#include "triangulator.h" #include "triangulator.h"
using namespace std;
#define TRIANGULATOR_VERTEXTYPE_REGULAR 0 #define TRIANGULATOR_VERTEXTYPE_REGULAR 0
#define TRIANGULATOR_VERTEXTYPE_START 1 #define TRIANGULATOR_VERTEXTYPE_START 1
@ -163,9 +163,9 @@ int TriangulatorPartition::Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21,
} }
//removes holes from inpolys by merging them with non-holes //removes holes from inpolys by merging them with non-holes
int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *outpolys) { int TriangulatorPartition::RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys) {
list<TriangulatorPoly> polys; List<TriangulatorPoly> polys;
list<TriangulatorPoly>::iterator holeiter,polyiter,iter,iter2; List<TriangulatorPoly>::Element *holeiter,*polyiter,*iter,*iter2;
long i,i2,holepointindex,polypointindex; long i,i2,holepointindex,polypointindex;
Vector2 holepoint,polypoint,bestpolypoint; Vector2 holepoint,polypoint,bestpolypoint;
Vector2 linep1,linep2; Vector2 linep1,linep2;
@ -177,15 +177,15 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
//check for trivial case (no holes) //check for trivial case (no holes)
hasholes = false; hasholes = false;
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) { for(iter = inpolys->front(); iter; iter=iter->next()) {
if(iter->IsHole()) { if(iter->get().IsHole()) {
hasholes = true; hasholes = true;
break; break;
} }
} }
if(!hasholes) { if(!hasholes) {
for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) { for(iter = inpolys->front(); iter; iter=iter->next()) {
outpolys->push_back(*iter); outpolys->push_back(iter->get());
} }
return 1; return 1;
} }
@ -195,8 +195,8 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
while(1) { while(1) {
//find the hole point with the largest x //find the hole point with the largest x
hasholes = false; hasholes = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) { for(iter = polys.front(); iter; iter=iter->next()) {
if(!iter->IsHole()) continue; if(!iter->get().IsHole()) continue;
if(!hasholes) { if(!hasholes) {
hasholes = true; hasholes = true;
@ -204,38 +204,38 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
holepointindex = 0; holepointindex = 0;
} }
for(i=0; i < iter->GetNumPoints(); i++) { for(i=0; i < iter->get().GetNumPoints(); i++) {
if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) { if(iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
holeiter = iter; holeiter = iter;
holepointindex = i; holepointindex = i;
} }
} }
} }
if(!hasholes) break; if(!hasholes) break;
holepoint = holeiter->GetPoint(holepointindex); holepoint = holeiter->get().GetPoint(holepointindex);
pointfound = false; pointfound = false;
for(iter = polys.begin(); iter!=polys.end(); iter++) { for(iter = polys.front(); iter; iter=iter->next()) {
if(iter->IsHole()) continue; if(iter->get().IsHole()) continue;
for(i=0; i < iter->GetNumPoints(); i++) { for(i=0; i < iter->get().GetNumPoints(); i++) {
if(iter->GetPoint(i).x <= holepoint.x) continue; if(iter->get().GetPoint(i).x <= holepoint.x) continue;
if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())), if(!InCone(iter->get().GetPoint((i+iter->get().GetNumPoints()-1)%(iter->get().GetNumPoints())),
iter->GetPoint(i), iter->get().GetPoint(i),
iter->GetPoint((i+1)%(iter->GetNumPoints())), iter->get().GetPoint((i+1)%(iter->get().GetNumPoints())),
holepoint)) holepoint))
continue; continue;
polypoint = iter->GetPoint(i); polypoint = iter->get().GetPoint(i);
if(pointfound) { if(pointfound) {
v1 = Normalize(polypoint-holepoint); v1 = Normalize(polypoint-holepoint);
v2 = Normalize(bestpolypoint-holepoint); v2 = Normalize(bestpolypoint-holepoint);
if(v2.x > v1.x) continue; if(v2.x > v1.x) continue;
} }
pointvisible = true; pointvisible = true;
for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) { for(iter2 = polys.front(); iter2; iter2=iter2->next()) {
if(iter2->IsHole()) continue; if(iter2->get().IsHole()) continue;
for(i2=0; i2 < iter2->GetNumPoints(); i2++) { for(i2=0; i2 < iter2->get().GetNumPoints(); i2++) {
linep1 = iter2->GetPoint(i2); linep1 = iter2->get().GetPoint(i2);
linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints())); linep2 = iter2->get().GetPoint((i2+1)%(iter2->get().GetNumPoints()));
if(Intersects(holepoint,polypoint,linep1,linep2)) { if(Intersects(holepoint,polypoint,linep1,linep2)) {
pointvisible = false; pointvisible = false;
break; break;
@ -254,18 +254,18 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
if(!pointfound) return 0; if(!pointfound) return 0;
newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2); newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
i2 = 0; i2 = 0;
for(i=0;i<=polypointindex;i++) { for(i=0;i<=polypointindex;i++) {
newpoly[i2] = polyiter->GetPoint(i); newpoly[i2] = polyiter->get().GetPoint(i);
i2++; i2++;
} }
for(i=0;i<=holeiter->GetNumPoints();i++) { for(i=0;i<=holeiter->get().GetNumPoints();i++) {
newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints()); newpoly[i2] = holeiter->get().GetPoint((i+holepointindex)%holeiter->get().GetNumPoints());
i2++; i2++;
} }
for(i=polypointindex;i<polyiter->GetNumPoints();i++) { for(i=polypointindex;i<polyiter->get().GetNumPoints();i++) {
newpoly[i2] = polyiter->GetPoint(i); newpoly[i2] = polyiter->get().GetPoint(i);
i2++; i2++;
} }
@ -274,8 +274,8 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
polys.push_back(newpoly); polys.push_back(newpoly);
} }
for(iter = polys.begin(); iter!=polys.end(); iter++) { for(iter = polys.front(); iter; iter=iter->next()) {
outpolys->push_back(*iter); outpolys->push_back(iter->get());
} }
return 1; return 1;
@ -366,7 +366,7 @@ void TriangulatorPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *ve
} }
//triangulation by ear removal //triangulation by ear removal
int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
long numvertices; long numvertices;
PartitionVertex *vertices; PartitionVertex *vertices;
PartitionVertex *ear; PartitionVertex *ear;
@ -440,20 +440,20 @@ int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<Triangula
return 1; return 1;
} }
int TriangulatorPartition::Triangulate_EC(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
list<TriangulatorPoly> outpolys; List<TriangulatorPoly> outpolys;
list<TriangulatorPoly>::iterator iter; List<TriangulatorPoly>::Element*iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0; if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();iter++) { for(iter=outpolys.front();iter;iter=iter->next()) {
if(!Triangulate_EC(&(*iter),triangles)) return 0; if(!Triangulate_EC(&(iter->get()),triangles)) return 0;
} }
return 1; return 1;
} }
int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) { int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
list<TriangulatorPoly> triangles; List<TriangulatorPoly> triangles;
list<TriangulatorPoly>::iterator iter1,iter2; List<TriangulatorPoly>::Element *iter1,*iter2;
TriangulatorPoly *poly1,*poly2; TriangulatorPoly *poly1,*poly2;
TriangulatorPoly newpoly; TriangulatorPoly newpoly;
Vector2 d1,d2,p1,p2,p3; Vector2 d1,d2,p1,p2,p3;
@ -480,17 +480,17 @@ int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<Trian
if(!Triangulate_EC(poly,&triangles)) return 0; if(!Triangulate_EC(poly,&triangles)) return 0;
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) { for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
poly1 = &(*iter1); poly1 = &(iter1->get());
for(i11=0;i11<poly1->GetNumPoints();i11++) { for(i11=0;i11<poly1->GetNumPoints();i11++) {
d1 = poly1->GetPoint(i11); d1 = poly1->GetPoint(i11);
i12 = (i11+1)%(poly1->GetNumPoints()); i12 = (i11+1)%(poly1->GetNumPoints());
d2 = poly1->GetPoint(i12); d2 = poly1->GetPoint(i12);
isdiagonal = false; isdiagonal = false;
for(iter2 = iter1; iter2 != triangles.end(); iter2++) { for(iter2 = iter1; iter2 ; iter2=iter2->next()) {
if(iter1 == iter2) continue; if(iter1 == iter2) continue;
poly2 = &(*iter2); poly2 = &(iter2->get());
for(i21=0;i21<poly2->GetNumPoints();i21++) { for(i21=0;i21<poly2->GetNumPoints();i21++) {
if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue; if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
@ -536,28 +536,28 @@ int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<Trian
} }
triangles.erase(iter2); triangles.erase(iter2);
*iter1 = newpoly; iter1->get() = newpoly;
poly1 = &(*iter1); poly1 = &(iter1->get());
i11 = -1; i11 = -1;
continue; continue;
} }
} }
for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) { for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
parts->push_back(*iter1); parts->push_back(iter1->get());
} }
return 1; return 1;
} }
int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *parts) { int TriangulatorPartition::ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts) {
list<TriangulatorPoly> outpolys; List<TriangulatorPoly> outpolys;
list<TriangulatorPoly>::iterator iter; List<TriangulatorPoly>::Element* iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0; if(!RemoveHoles(inpolys,&outpolys)) return 0;
for(iter=outpolys.begin();iter!=outpolys.end();iter++) { for(iter=outpolys.front();iter;iter=iter->next()) {
if(!ConvexPartition_HM(&(*iter),parts)) return 0; if(!ConvexPartition_HM(&(iter->get()),parts)) return 0;
} }
return 1; return 1;
} }
@ -565,14 +565,14 @@ int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, l
//minimum-weight polygon triangulation by dynamic programming //minimum-weight polygon triangulation by dynamic programming
//O(n^3) time complexity //O(n^3) time complexity
//O(n^2) space complexity //O(n^2) space complexity
int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
long i,j,k,gap,n; long i,j,k,gap,n;
DPState **dpstates; DPState **dpstates;
Vector2 p1,p2,p3,p4; Vector2 p1,p2,p3,p4;
long bestvertex; long bestvertex;
real_t weight,minweight,d1,d2; real_t weight,minweight,d1,d2;
Diagonal diagonal,newdiagonal; Diagonal diagonal,newdiagonal;
list<Diagonal> diagonals; List<Diagonal> diagonals;
TriangulatorPoly triangle; TriangulatorPoly triangle;
int ret = 1; int ret = 1;
@ -666,7 +666,7 @@ int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<Triangul
newdiagonal.index2 = n-1; newdiagonal.index2 = n-1;
diagonals.push_back(newdiagonal); diagonals.push_back(newdiagonal);
while(!diagonals.empty()) { while(!diagonals.empty()) {
diagonal = *(diagonals.begin()); diagonal = (diagonals.front()->get());
diagonals.pop_front(); diagonals.pop_front();
bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex; bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
if(bestvertex == -1) { if(bestvertex == -1) {
@ -697,7 +697,7 @@ int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<Triangul
void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) { void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
Diagonal newdiagonal; Diagonal newdiagonal;
list<Diagonal> *pairs; List<Diagonal> *pairs;
long w2; long w2;
w2 = dpstates[a][b].weight; w2 = dpstates[a][b].weight;
@ -712,15 +712,15 @@ void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j,
pairs->push_front(newdiagonal); pairs->push_front(newdiagonal);
dpstates[a][b].weight = w; dpstates[a][b].weight = w;
} else { } else {
if((!pairs->empty())&&(i <= pairs->begin()->index1)) return; if((!pairs->empty())&&(i <= pairs->front()->get().index1)) return;
while((!pairs->empty())&&(pairs->begin()->index2 >= j)) pairs->pop_front(); while((!pairs->empty())&&(pairs->front()->get().index2 >= j)) pairs->pop_front();
pairs->push_front(newdiagonal); pairs->push_front(newdiagonal);
} }
} }
void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs; List<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter; List<Diagonal>::Element *iter,*lastiter;
long top; long top;
long w; long w;
@ -733,25 +733,29 @@ void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *verti
} }
if(j-i > 1) { if(j-i > 1) {
pairs = &(dpstates[i][j].pairs); pairs = &(dpstates[i][j].pairs);
iter = pairs->end(); iter = NULL;
lastiter = pairs->end(); lastiter = NULL;
while(iter!=pairs->begin()) { while(iter!=pairs->front()) {
iter--; if (!iter)
if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter; iter=pairs->back();
else
iter=iter->prev();
if(!IsReflex(vertices[iter->get().index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
else break; else break;
} }
if(lastiter == pairs->end()) w++; if(lastiter == NULL) w++;
else { else {
if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->index1].p)) w++; if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->get().index1].p)) w++;
else top = lastiter->index1; else top = lastiter->get().index1;
} }
} }
UpdateState(i,k,w,top,j,dpstates); UpdateState(i,k,w,top,j,dpstates);
} }
void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
list<Diagonal> *pairs; List<Diagonal> *pairs;
list<Diagonal>::iterator iter,lastiter; List<Diagonal>::Element* iter,*lastiter;
long top; long top;
long w; long w;
@ -766,36 +770,36 @@ void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *verti
if (k-j > 1) { if (k-j > 1) {
pairs = &(dpstates[j][k].pairs); pairs = &(dpstates[j][k].pairs);
iter = pairs->begin(); iter = pairs->front();
if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p))) { if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p))) {
lastiter = iter; lastiter = iter;
while(iter!=pairs->end()) { while(iter!=NULL) {
if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) { if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p)) {
lastiter = iter; lastiter = iter;
iter++; iter=iter->next();
} }
else break; else break;
} }
if(IsReflex(vertices[lastiter->index2].p,vertices[k].p,vertices[i].p)) w++; if(IsReflex(vertices[lastiter->get().index2].p,vertices[k].p,vertices[i].p)) w++;
else top = lastiter->index2; else top = lastiter->get().index2;
} else w++; } else w++;
} }
UpdateState(i,k,w,j,top,dpstates); UpdateState(i,k,w,j,top,dpstates);
} }
int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) { int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
Vector2 p1,p2,p3,p4; Vector2 p1,p2,p3,p4;
PartitionVertex *vertices; PartitionVertex *vertices;
DPState2 **dpstates; DPState2 **dpstates;
long i,j,k,n,gap; long i,j,k,n,gap;
list<Diagonal> diagonals,diagonals2; List<Diagonal> diagonals,diagonals2;
Diagonal diagonal,newdiagonal; Diagonal diagonal,newdiagonal;
list<Diagonal> *pairs,*pairs2; List<Diagonal> *pairs,*pairs2;
list<Diagonal>::iterator iter,iter2; List<Diagonal>::Element* iter,*iter2;
int ret; int ret;
TriangulatorPoly newpoly; TriangulatorPoly newpoly;
list<long> indices; List<long> indices;
list<long>::iterator iiter; List<long>::Element* iiter;
bool ijreal,jkreal; bool ijreal,jkreal;
n = poly->GetNumPoints(); n = poly->GetNumPoints();
@ -903,7 +907,7 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
newdiagonal.index2 = n-1; newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal); diagonals.push_front(newdiagonal);
while(!diagonals.empty()) { while(!diagonals.empty()) {
diagonal = *(diagonals.begin()); diagonal = (diagonals.front()->get());
diagonals.pop_front(); diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <=1) continue; if((diagonal.index2 - diagonal.index1) <=1) continue;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
@ -912,23 +916,23 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
break; break;
} }
if(!vertices[diagonal.index1].isConvex) { if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end(); iter = pairs->back();
iter--;
j = iter->index2; j = iter->get().index2;
newdiagonal.index1 = j; newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2; newdiagonal.index2 = diagonal.index2;
diagonals.push_front(newdiagonal); diagonals.push_front(newdiagonal);
if((j - diagonal.index1)>1) { if((j - diagonal.index1)>1) {
if(iter->index1 != iter->index2) { if(iter->get().index1 != iter->get().index2) {
pairs2 = &(dpstates[diagonal.index1][j].pairs); pairs2 = &(dpstates[diagonal.index1][j].pairs);
while(1) { while(1) {
if(pairs2->empty()) { if(pairs2->empty()) {
ret = 0; ret = 0;
break; break;
} }
iter2 = pairs2->end(); iter2 = pairs2->back();
iter2--;
if(iter->index1 != iter2->index1) pairs2->pop_back(); if(iter->get().index1 != iter2->get().index1) pairs2->pop_back();
else break; else break;
} }
if(ret == 0) break; if(ret == 0) break;
@ -938,21 +942,21 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
diagonals.push_front(newdiagonal); diagonals.push_front(newdiagonal);
} }
} else { } else {
iter = pairs->begin(); iter = pairs->front();
j = iter->index1; j = iter->get().index1;
newdiagonal.index1 = diagonal.index1; newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = j; newdiagonal.index2 = j;
diagonals.push_front(newdiagonal); diagonals.push_front(newdiagonal);
if((diagonal.index2 - j) > 1) { if((diagonal.index2 - j) > 1) {
if(iter->index1 != iter->index2) { if(iter->get().index1 != iter->get().index2) {
pairs2 = &(dpstates[j][diagonal.index2].pairs); pairs2 = &(dpstates[j][diagonal.index2].pairs);
while(1) { while(1) {
if(pairs2->empty()) { if(pairs2->empty()) {
ret = 0; ret = 0;
break; break;
} }
iter2 = pairs2->begin(); iter2 = pairs2->front();
if(iter->index2 != iter2->index2) pairs2->pop_front(); if(iter->get().index2 != iter2->get().index2) pairs2->pop_front();
else break; else break;
} }
if(ret == 0) break; if(ret == 0) break;
@ -978,7 +982,7 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
newdiagonal.index2 = n-1; newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal); diagonals.push_front(newdiagonal);
while(!diagonals.empty()) { while(!diagonals.empty()) {
diagonal = *(diagonals.begin()); diagonal = (diagonals.front())->get();
diagonals.pop_front(); diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue; if((diagonal.index2 - diagonal.index1) <= 1) continue;
@ -989,21 +993,20 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
diagonals2.push_front(diagonal); diagonals2.push_front(diagonal);
while(!diagonals2.empty()) { while(!diagonals2.empty()) {
diagonal = *(diagonals2.begin()); diagonal = (diagonals2.front()->get());
diagonals2.pop_front(); diagonals2.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue; if((diagonal.index2 - diagonal.index1) <= 1) continue;
ijreal = true; ijreal = true;
jkreal = true; jkreal = true;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if(!vertices[diagonal.index1].isConvex) { if(!vertices[diagonal.index1].isConvex) {
iter = pairs->end(); iter = pairs->back();
iter--; j = iter->get().index2;
j = iter->index2; if(iter->get().index1 != iter->get().index2) ijreal = false;
if(iter->index1 != iter->index2) ijreal = false;
} else { } else {
iter = pairs->begin(); iter = pairs->front();
j = iter->index1; j = iter->get().index1;
if(iter->index1 != iter->index2) jkreal = false; if(iter->get().index1 != iter->get().index2) jkreal = false;
} }
newdiagonal.index1 = diagonal.index1; newdiagonal.index1 = diagonal.index1;
@ -1028,8 +1031,8 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
indices.sort(); indices.sort();
newpoly.Init((long)indices.size()); newpoly.Init((long)indices.size());
k=0; k=0;
for(iiter = indices.begin();iiter!=indices.end();iiter++) { for(iiter = indices.front();iiter;iiter=iiter->next()) {
newpoly[k] = vertices[*iiter].p; newpoly[k] = vertices[iiter->get()].p;
k++; k++;
} }
parts->push_back(newpoly); parts->push_back(newpoly);
@ -1049,8 +1052,8 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
//the algorithm used here is outlined in the book //the algorithm used here is outlined in the book
//"Computational Geometry: Algorithms and Applications" //"Computational Geometry: Algorithms and Applications"
//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars //by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *monotonePolys) { int TriangulatorPartition::MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys) {
list<TriangulatorPoly>::iterator iter; List<TriangulatorPoly>::Element *iter;
MonotoneVertex *vertices; MonotoneVertex *vertices;
long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices; long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
long polystartindex, polyendindex; long polystartindex, polyendindex;
@ -1060,8 +1063,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
bool error = false; bool error = false;
numvertices = 0; numvertices = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) { for(iter = inpolys->front(); iter ; iter=iter->next()) {
numvertices += iter->GetNumPoints(); numvertices += iter->get().GetNumPoints();
} }
maxnumvertices = numvertices*3; maxnumvertices = numvertices*3;
@ -1069,8 +1072,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newnumvertices = numvertices; newnumvertices = numvertices;
polystartindex = 0; polystartindex = 0;
for(iter = inpolys->begin(); iter != inpolys->end(); iter++) { for(iter = inpolys->front(); iter ; iter=iter->next()) {
poly = &(*iter); poly = &(iter->get());
polyendindex = polystartindex + poly->GetNumPoints()-1; polyendindex = polystartindex + poly->GetNumPoints()-1;
for(i=0;i<poly->GetNumPoints();i++) { for(i=0;i<poly->GetNumPoints();i++) {
vertices[i+polystartindex].p = poly->GetPoint(i); vertices[i+polystartindex].p = poly->GetPoint(i);
@ -1085,7 +1088,9 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//construct the priority queue //construct the priority queue
long *priority = new long [numvertices]; long *priority = new long [numvertices];
for(i=0;i<numvertices;i++) priority[i] = i; for(i=0;i<numvertices;i++) priority[i] = i;
std::sort(priority,&(priority[numvertices]),VertexSorter(vertices)); SortArray<long,VertexSorter> sorter;
sorter.compare.vertices=vertices;
sorter.sort(priority,numvertices);
//determine vertex types //determine vertex types
char *vertextypes = new char[maxnumvertices]; char *vertextypes = new char[maxnumvertices];
@ -1118,13 +1123,13 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//binary search tree that holds edges intersecting the scanline //binary search tree that holds edges intersecting the scanline
//note that while set doesn't actually have to be implemented as a tree //note that while set doesn't actually have to be implemented as a tree
//complexity requirements for operations are the same as for the balanced binary search tree //complexity requirements for operations are the same as for the balanced binary search tree
set<ScanLineEdge> edgeTree; Set<ScanLineEdge> edgeTree;
//store iterators to the edge tree elements //store iterators to the edge tree elements
//this makes deleting existing edges much faster //this makes deleting existing edges much faster
set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter; Set<ScanLineEdge>::Element **edgeTreeIterators,*edgeIter;
edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices]; edgeTreeIterators = new Set<ScanLineEdge>::Element*[maxnumvertices];
pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet; // Pair<Set<ScanLineEdge>::Element*,bool> edgeTreeRet;
for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end(); for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = NULL;
//for each vertex //for each vertex
for(i=0;i<numvertices;i++) { for(i=0;i<numvertices;i++) {
@ -1141,8 +1146,7 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p; newedge.p1 = v->p;
newedge.p2 = vertices[v->next].p; newedge.p2 = vertices[v->next].p;
newedge.index = vindex; newedge.index = vindex;
edgeTreeRet = edgeTree.insert(newedge); edgeTreeIterators[vindex] = edgeTree.insert(newedge);
edgeTreeIterators[vindex] = edgeTreeRet.first;
helpers[vindex] = vindex; helpers[vindex] = vindex;
break; break;
@ -1162,24 +1166,24 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p; newedge.p1 = v->p;
newedge.p2 = v->p; newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge); edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) { if(edgeIter == edgeTree.front()) {
error = true; error = true;
break; break;
} }
edgeIter--; edgeIter=edgeIter->prev();
//Insert the diagonal connecting vi to helper(ej) in D. //Insert the diagonal connecting vi to helper(ej) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index], AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers); vertextypes, edgeTreeIterators, &edgeTree, helpers);
vindex2 = newnumvertices-2; vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]); v2 = &(vertices[vindex2]);
//helper(e j)<29>vi //helper(e j)<29>vi
helpers[edgeIter->index] = vindex; helpers[edgeIter->get().index] = vindex;
//Insert ei in T and set helper(ei) to vi. //Insert ei in T and set helper(ei) to vi.
newedge.p1 = v2->p; newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p; newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2; newedge.index = vindex2;
edgeTreeRet = edgeTree.insert(newedge);
edgeTreeIterators[vindex2] = edgeTreeRet.first; edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
helpers[vindex2] = vindex2; helpers[vindex2] = vindex2;
break; break;
@ -1198,19 +1202,19 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p; newedge.p1 = v->p;
newedge.p2 = v->p; newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge); edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) { if(edgeIter == edgeTree.front()) {
error = true; error = true;
break; break;
} }
edgeIter--; edgeIter=edgeIter->prev();
//if helper(ej) is a merge vertex //if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) { if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D. //Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index], AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers); vertextypes, edgeTreeIterators, &edgeTree, helpers);
} }
//helper(e j)<29>vi //helper(e j)<29>vi
helpers[edgeIter->index] = vindex2; helpers[edgeIter->get().index] = vindex2;
break; break;
case TRIANGULATOR_VERTEXTYPE_REGULAR: case TRIANGULATOR_VERTEXTYPE_REGULAR:
@ -1230,27 +1234,26 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v2->p; newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p; newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2; newedge.index = vindex2;
edgeTreeRet = edgeTree.insert(newedge); edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
edgeTreeIterators[vindex2] = edgeTreeRet.first;
helpers[vindex2] = vindex; helpers[vindex2] = vindex;
} else { } else {
//Search in T to find the edge ej directly left of vi. //Search in T to find the edge ej directly left of vi.
newedge.p1 = v->p; newedge.p1 = v->p;
newedge.p2 = v->p; newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge); edgeIter = edgeTree.lower_bound(newedge);
if(edgeIter == edgeTree.begin()) { if(edgeIter == edgeTree.front()) {
error = true; error = true;
break; break;
} }
edgeIter--; edgeIter=edgeIter->prev();
//if helper(ej) is a merge vertex //if helper(ej) is a merge vertex
if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) { if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D. //Insert the diagonal connecting vi to helper(e j) in D.
AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index], AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers); vertextypes, edgeTreeIterators, &edgeTree, helpers);
} }
//helper(e j)<29>vi //helper(e j)<29>vi
helpers[edgeIter->index] = vindex; helpers[edgeIter->get().index] = vindex;
} }
break; break;
} }
@ -1308,8 +1311,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//adds a diagonal to the doubly-connected list of vertices //adds a diagonal to the doubly-connected list of vertices
void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
char *vertextypes, set<ScanLineEdge>::iterator *edgeTreeIterators, char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
set<ScanLineEdge> *edgeTree, long *helpers) Set<ScanLineEdge> *edgeTree, long *helpers)
{ {
long newindex1,newindex2; long newindex1,newindex2;
@ -1337,13 +1340,13 @@ void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numverti
vertextypes[newindex1] = vertextypes[index1]; vertextypes[newindex1] = vertextypes[index1];
edgeTreeIterators[newindex1] = edgeTreeIterators[index1]; edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
helpers[newindex1] = helpers[index1]; helpers[newindex1] = helpers[index1];
if(edgeTreeIterators[newindex1] != edgeTree->end()) if(edgeTreeIterators[newindex1] != NULL)
edgeTreeIterators[newindex1]->index = newindex1; edgeTreeIterators[newindex1]->get().index = newindex1;
vertextypes[newindex2] = vertextypes[index2]; vertextypes[newindex2] = vertextypes[index2];
edgeTreeIterators[newindex2] = edgeTreeIterators[index2]; edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
helpers[newindex2] = helpers[index2]; helpers[newindex2] = helpers[index2];
if(edgeTreeIterators[newindex2] != edgeTree->end()) if(edgeTreeIterators[newindex2] != NULL)
edgeTreeIterators[newindex2]->index = newindex2; edgeTreeIterators[newindex2]->get().index = newindex2;
} }
bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) { bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
@ -1354,8 +1357,12 @@ bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
return false; return false;
} }
//sorts in the falling order of y values, if y is equal, x is used instead //sorts in the falling order of y values, if y is equal, x is used instead
bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) { bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) const {
if(vertices[index1].p.y > vertices[index2].p.y) return true; if(vertices[index1].p.y > vertices[index2].p.y) return true;
else if(vertices[index1].p.y == vertices[index2].p.y) { else if(vertices[index1].p.y == vertices[index2].p.y) {
if(vertices[index1].p.x > vertices[index2].p.x) return true; if(vertices[index1].p.x > vertices[index2].p.x) return true;
@ -1392,7 +1399,7 @@ bool TriangulatorPartition::ScanLineEdge::operator < (const ScanLineEdge & other
//triangulates monotone polygon //triangulates monotone polygon
//O(n) time, O(n) space complexity //O(n) time, O(n) space complexity
int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles) {
long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex; long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
Vector2 *points; Vector2 *points;
long numpoints; long numpoints;
@ -1524,19 +1531,19 @@ int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<Tr
return 1; return 1;
} }
int TriangulatorPartition::Triangulate_MONO(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
list<TriangulatorPoly> monotone; List<TriangulatorPoly> monotone;
list<TriangulatorPoly>::iterator iter; List<TriangulatorPoly>::Element* iter;
if(!MonotonePartition(inpolys,&monotone)) return 0; if(!MonotonePartition(inpolys,&monotone)) return 0;
for(iter = monotone.begin(); iter!=monotone.end();iter++) { for(iter = monotone.front(); iter;iter=iter->next()) {
if(!TriangulateMonotone(&(*iter),triangles)) return 0; if(!TriangulateMonotone(&(iter->get()),triangles)) return 0;
} }
return 1; return 1;
} }
int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) { int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
list<TriangulatorPoly> polys; List<TriangulatorPoly> polys;
polys.push_back(*poly); polys.push_back(*poly);
return Triangulate_MONO(&polys, triangles); return Triangulate_MONO(&polys, triangles);

View file

@ -22,9 +22,8 @@
#define TRIANGULATOR_H #define TRIANGULATOR_H
#include "math_2d.h" #include "math_2d.h"
#include <list> #include "list.h"
#include <set> #include "set.h"
//2D point structure //2D point structure
@ -119,11 +118,9 @@ protected:
long next; long next;
}; };
class VertexSorter{ struct VertexSorter{
MonotoneVertex *vertices; mutable MonotoneVertex *vertices;
public: bool operator() (long index1, long index2) const;
VertexSorter(MonotoneVertex *v) : vertices(v) {}
bool operator() (long index1, long index2);
}; };
struct Diagonal { struct Diagonal {
@ -142,7 +139,7 @@ protected:
struct DPState2 { struct DPState2 {
bool visible; bool visible;
long weight; long weight;
std::list<Diagonal> pairs; List<Diagonal> pairs;
}; };
//edge that intersects the scanline //edge that intersects the scanline
@ -182,11 +179,11 @@ protected:
//helper functions for MonotonePartition //helper functions for MonotonePartition
bool Below(Vector2 &p1, Vector2 &p2); bool Below(Vector2 &p1, Vector2 &p2);
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
char *vertextypes, std::set<ScanLineEdge>::iterator *edgeTreeIterators, char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
std::set<ScanLineEdge> *edgeTree, long *helpers); Set<ScanLineEdge> *edgeTree, long *helpers);
//triangulates a monotone polygon, used in Triangulate_MONO //triangulates a monotone polygon, used in Triangulate_MONO
int TriangulateMonotone(TriangulatorPoly *inPoly, std::list<TriangulatorPoly> *triangles); int TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles);
public: public:
@ -200,7 +197,7 @@ public:
// vertices of all hole polys have to be in clockwise order // vertices of all hole polys have to be in clockwise order
// outpolys : a list of polygons without holes // outpolys : a list of polygons without holes
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int RemoveHoles(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *outpolys); int RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys);
//triangulates a polygon by ear clipping //triangulates a polygon by ear clipping
//time complexity O(n^2), n is the number of vertices //time complexity O(n^2), n is the number of vertices
@ -210,7 +207,7 @@ public:
// vertices have to be in counter-clockwise order // vertices have to be in counter-clockwise order
// triangles : a list of triangles (result) // triangles : a list of triangles (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int Triangulate_EC(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); int Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a list of polygons that may contain holes by ear clipping algorithm //triangulates a list of polygons that may contain holes by ear clipping algorithm
//first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
@ -222,7 +219,7 @@ public:
// vertices of all hole polys have to be in clockwise order // vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result) // triangles : a list of triangles (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int Triangulate_EC(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles); int Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
//creates an optimal polygon triangulation in terms of minimal edge length //creates an optimal polygon triangulation in terms of minimal edge length
//time complexity: O(n^3), n is the number of vertices //time complexity: O(n^3), n is the number of vertices
@ -232,7 +229,7 @@ public:
// vertices have to be in counter-clockwise order // vertices have to be in counter-clockwise order
// triangles : a list of triangles (result) // triangles : a list of triangles (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int Triangulate_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); int Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a polygons by firstly partitioning it into monotone polygons //triangulates a polygons by firstly partitioning it into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices //time complexity: O(n*log(n)), n is the number of vertices
@ -242,7 +239,7 @@ public:
// vertices have to be in counter-clockwise order // vertices have to be in counter-clockwise order
// triangles : a list of triangles (result) // triangles : a list of triangles (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int Triangulate_MONO(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles); int Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a list of polygons by firstly partitioning them into monotone polygons //triangulates a list of polygons by firstly partitioning them into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices //time complexity: O(n*log(n)), n is the number of vertices
@ -253,7 +250,7 @@ public:
// vertices of all hole polys have to be in clockwise order // vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result) // triangles : a list of triangles (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int Triangulate_MONO(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles); int Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
//creates a monotone partition of a list of polygons that can contain holes //creates a monotone partition of a list of polygons that can contain holes
//time complexity: O(n*log(n)), n is the number of vertices //time complexity: O(n*log(n)), n is the number of vertices
@ -264,7 +261,7 @@ public:
// vertices of all hole polys have to be in clockwise order // vertices of all hole polys have to be in clockwise order
// monotonePolys : a list of monotone polygons (result) // monotonePolys : a list of monotone polygons (result)
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int MonotonePartition(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *monotonePolys); int MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys);
//partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm //the algorithm gives at most four times the number of parts as the optimal algorithm
@ -277,7 +274,7 @@ public:
// vertices have to be in counter-clockwise order // vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons // parts : resulting list of convex polygons
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int ConvexPartition_HM(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts); int ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
//partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm //the algorithm gives at most four times the number of parts as the optimal algorithm
@ -291,7 +288,7 @@ public:
// vertices of all hole polys have to be in clockwise order // vertices of all hole polys have to be in clockwise order
// parts : resulting list of convex polygons // parts : resulting list of convex polygons
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int ConvexPartition_HM(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *parts); int ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts);
//optimal convex partitioning (in terms of number of resulting convex polygons) //optimal convex partitioning (in terms of number of resulting convex polygons)
//using the Keil-Snoeyink algorithm //using the Keil-Snoeyink algorithm
@ -302,7 +299,7 @@ public:
// vertices have to be in counter-clockwise order // vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons // parts : resulting list of convex polygons
//returns 1 on success, 0 on failure //returns 1 on success, 0 on failure
int ConvexPartition_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts); int ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
}; };

View file

@ -249,6 +249,37 @@ private:
return (node!=_data._nil)?node:NULL; return (node!=_data._nil)?node:NULL;
} }
Element *_lower_bound(const T& p_value) const {
Element *node = _data._root->left;
Element *prev = NULL;
C less;
while(node!=_data._nil) {
prev=node;
if (less(p_value,node->value))
node=node->left;
else if (less(node->value,p_value))
node=node->right;
else
break; // found
}
if (node==_data._nil) {
if (prev==NULL)
return NULL;
if (less(prev->value,p_value)) {
prev=prev->_next;
}
return prev;
} else
return node;
}
Element *_insert(const T& p_value, bool& r_exists) { Element *_insert(const T& p_value, bool& r_exists) {
@ -583,6 +614,12 @@ public:
return e; return e;
} }
Element *lower_bound(const T& p_value) const {
return _lower_bound(p_value);
}
inline int size() const { return _data.size_cache; } inline int size() const { return _data.size_cache; }
int calculate_depth() const { int calculate_depth() const {
// used for debug mostly // used for debug mostly

View file

@ -2631,8 +2631,13 @@ Variant Variant::call(const StringName& p_method,VARIANT_ARG_DECLARE) {
return ret; return ret;
} }
void Variant::construct_from_string(const String& p_string,Variant& r_value,ObjectConstruct p_obj_construct,void *p_construct_ud) {
String Variant::get_construct_string() const { r_value=Variant();
}
String Variant::get_construct_string(ObjectDeConstruct p_obj_deconstruct,void *p_deconstruct_ud) const {
switch( type ) { switch( type ) {
@ -2640,7 +2645,7 @@ String Variant::get_construct_string() const {
case BOOL: return _data._bool ? "true" : "false"; case BOOL: return _data._bool ? "true" : "false";
case INT: return String::num(_data._int); case INT: return String::num(_data._int);
case REAL: return String::num(_data._real); case REAL: return String::num(_data._real);
case STRING: return "\""+*reinterpret_cast<const String*>(_data._mem)+"\""; case STRING: return "\""+reinterpret_cast<const String*>(_data._mem)->c_escape()+"\"";
case VECTOR2: return "Vector2("+operator Vector2()+")"; case VECTOR2: return "Vector2("+operator Vector2()+")";
case RECT2: return "Rect2("+operator Rect2()+")"; case RECT2: return "Rect2("+operator Rect2()+")";
case MATRIX32: return "Matrix32("+operator Matrix32()+")"; case MATRIX32: return "Matrix32("+operator Matrix32()+")";
@ -2651,7 +2656,7 @@ String Variant::get_construct_string() const {
case QUAT: return "Quat("+operator Quat()+")"; case QUAT: return "Quat("+operator Quat()+")";
case MATRIX3: return "Matrix3("+operator Matrix3()+")"; case MATRIX3: return "Matrix3("+operator Matrix3()+")";
case TRANSFORM: return "Transform("+operator Transform()+")"; case TRANSFORM: return "Transform("+operator Transform()+")";
case NODE_PATH: return "@\""+operator NodePath()+"\""; case NODE_PATH: return "@\""+String(operator NodePath()).c_escape()+"\"";
case INPUT_EVENT: return "InputEvent()"; case INPUT_EVENT: return "InputEvent()";
case COLOR: return "Color("+String::num( operator Color().r)+","+String::num( operator Color().g)+","+String::num( operator Color().b)+","+String::num( operator Color().a)+")" ; case COLOR: return "Color("+String::num( operator Color().r)+","+String::num( operator Color().g)+","+String::num( operator Color().b)+","+String::num( operator Color().a)+")" ;
case DICTIONARY: { case DICTIONARY: {
@ -2667,8 +2672,8 @@ String Variant::get_construct_string() const {
for(List<Variant>::Element *E=keys.front();E;E=E->next()) { for(List<Variant>::Element *E=keys.front();E;E=E->next()) {
_VariantStrPair sp; _VariantStrPair sp;
sp.key=E->get().get_construct_string(); sp.key=E->get().get_construct_string(p_obj_deconstruct,p_deconstruct_ud);
sp.value=d[E->get()].get_construct_string(); sp.value=d[E->get()].get_construct_string(p_obj_deconstruct,p_deconstruct_ud);
pairs.push_back(sp); pairs.push_back(sp);
} }
@ -2686,50 +2691,50 @@ String Variant::get_construct_string() const {
case VECTOR3_ARRAY: { case VECTOR3_ARRAY: {
DVector<Vector3> vec = operator DVector<Vector3>(); DVector<Vector3> vec = operator DVector<Vector3>();
String str="["; String str="Vector3Array([";
for(int i=0;i<vec.size();i++) { for(int i=0;i<vec.size();i++) {
if (i>0) if (i>0)
str+=", "; str+=", ";
str+=Variant( vec[i] ).get_construct_string(); str+=Variant( vec[i] ).get_construct_string();
} }
return str+"]"; return str+"])";
} break; } break;
case STRING_ARRAY: { case STRING_ARRAY: {
DVector<String> vec = operator DVector<String>(); DVector<String> vec = operator DVector<String>();
String str="["; String str="StringArray([";
for(int i=0;i<vec.size();i++) { for(int i=0;i<vec.size();i++) {
if (i>0) if (i>0)
str+=", "; str+=", ";
str=str+=Variant( vec[i] ).get_construct_string(); str=str+=Variant( vec[i] ).get_construct_string();
} }
return str+"]"; return str+"])";
} break; } break;
case INT_ARRAY: { case INT_ARRAY: {
DVector<int> vec = operator DVector<int>(); DVector<int> vec = operator DVector<int>();
String str="["; String str="IntArray([";
for(int i=0;i<vec.size();i++) { for(int i=0;i<vec.size();i++) {
if (i>0) if (i>0)
str+=", "; str+=", ";
str=str+itos(vec[i]); str=str+itos(vec[i]);
} }
return str+"]"; return str+"])";
} break; } break;
case REAL_ARRAY: { case REAL_ARRAY: {
DVector<real_t> vec = operator DVector<real_t>(); DVector<real_t> vec = operator DVector<real_t>();
String str="["; String str="FloatArray([";
for(int i=0;i<vec.size();i++) { for(int i=0;i<vec.size();i++) {
if (i>0) if (i>0)
str+=", "; str+=", ";
str=str+rtos(vec[i]); str=str+rtos(vec[i]);
} }
return str+"]"; return str+"])";
} break; } break;
case ARRAY: { case ARRAY: {
@ -2738,16 +2743,20 @@ String Variant::get_construct_string() const {
for (int i=0; i<arr.size(); i++) { for (int i=0; i<arr.size(); i++) {
if (i) if (i)
str+=", "; str+=", ";
str += arr[i].get_construct_string(); str += arr[i].get_construct_string(p_obj_deconstruct,p_deconstruct_ud);
}; };
return str+"]"; return str+"]";
} break; } break;
case OBJECT: { case OBJECT: {
if (_get_obj().obj) if (_get_obj().obj) {
if (p_obj_deconstruct) {
return "Object(\""+p_obj_deconstruct(Variant(*this),p_deconstruct_ud).c_escape()+")";
} else {
return _get_obj().obj->get_type()+".new()"; return _get_obj().obj->get_type()+".new()";
else }
} else
return "null"; return "null";
} break; } break;

View file

@ -419,7 +419,11 @@ public:
static bool has_numeric_constant(Variant::Type p_type, const StringName& p_value); static bool has_numeric_constant(Variant::Type p_type, const StringName& p_value);
static int get_numeric_constant_value(Variant::Type p_type, const StringName& p_value); static int get_numeric_constant_value(Variant::Type p_type, const StringName& p_value);
String get_construct_string() const; typedef String (*ObjectDeConstruct)(const Variant& p_object,void *ud);
typedef void (*ObjectConstruct)(const String& p_text,void *ud,Variant& r_value);
String get_construct_string(ObjectDeConstruct p_obj_deconstruct=NULL,void *p_deconstruct_ud=NULL) const;
static void construct_from_string(const String& p_string,Variant& r_value,ObjectConstruct p_obj_construct=NULL,void *p_construct_ud=NULL);
void operator=(const Variant& p_variant); // only this is enough for all the other types void operator=(const Variant& p_variant); // only this is enough for all the other types
Variant(const Variant& p_variant); Variant(const Variant& p_variant);

View file

@ -0,0 +1,433 @@
#include "variant.h"
class VariantConstruct {
enum TokenType {
TK_CURLY_BRACKET_OPEN,
TK_CURLY_BRACKET_CLOSE,
TK_BRACKET_OPEN,
TK_BRACKET_CLOSE,
TK_IDENTIFIER,
TK_STRING,
TK_NUMBER,
TK_COLON,
TK_COMMA,
TK_EOF,
TK_MAX
};
enum Expecting {
EXPECT_OBJECT,
EXPECT_OBJECT_KEY,
EXPECT_COLON,
EXPECT_OBJECT_VALUE,
};
struct Token {
TokenType type;
Variant value;
};
static const char * tk_name[TK_MAX];
static String _print_var(const Variant& p_var);
static Error _get_token(const CharType *p_str,int &index, int p_len,Token& r_token,int &line,String &r_err_str);
static Error _parse_value(Variant &value,Token& token,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud);
static Error _parse_array(Array &array,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud);
static Error _parse_dict(Dictionary &object,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud);
public:
static Error parse(const String& p_string,Variant& r_ret,String &r_err_str,int &r_err_line,Variant::ObjectConstruct* p_construct,void* p_ud);
};
const char * VariantConstruct::tk_name[TK_MAX] = {
"'{'",
"'}'",
"'['",
"']'",
"identifier",
"string",
"number",
"':'",
"','",
"EOF",
};
Error VariantConstruct::_get_token(const CharType *p_str, int &idx, int p_len, Token& r_token,int &line,String &r_err_str) {
while (true) {
switch(p_str[idx]) {
case '\n': {
line++;
idx++;
break;
};
case 0: {
r_token.type=TK_EOF;
return OK;
} break;
case '{': {
r_token.type=TK_CURLY_BRACKET_OPEN;
idx++;
return OK;
};
case '}': {
r_token.type=TK_CURLY_BRACKET_CLOSE;
idx++;
return OK;
};
case '[': {
r_token.type=TK_BRACKET_OPEN;
idx++;
return OK;
};
case ']': {
r_token.type=TK_BRACKET_CLOSE;
idx++;
return OK;
};
case ':': {
r_token.type=TK_COLON;
idx++;
return OK;
};
case ',': {
r_token.type=TK_COMMA;
idx++;
return OK;
};
case '"': {
idx++;
String str;
while(true) {
if (p_str[idx]==0) {
r_err_str="Unterminated String";
return ERR_PARSE_ERROR;
} else if (p_str[idx]=='"') {
idx++;
break;
} else if (p_str[idx]=='\\') {
//escaped characters...
idx++;
CharType next = p_str[idx];
if (next==0) {
r_err_str="Unterminated String";
return ERR_PARSE_ERROR;
}
CharType res=0;
switch(next) {
case 'b': res=8; break;
case 't': res=9; break;
case 'n': res=10; break;
case 'f': res=12; break;
case 'r': res=13; break;
case '\"': res='\"'; break;
case '\\': res='\\'; break;
case '/': res='/'; break; //wtf
case 'u': {
//hexnumbarh - oct is deprecated
for(int j=0;j<4;j++) {
CharType c = p_str[idx+j+1];
if (c==0) {
r_err_str="Unterminated String";
return ERR_PARSE_ERROR;
}
if (!((c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F'))) {
r_err_str="Malformed hex constant in string";
return ERR_PARSE_ERROR;
}
CharType v;
if (c>='0' && c<='9') {
v=c-'0';
} else if (c>='a' && c<='f') {
v=c-'a';
v+=10;
} else if (c>='A' && c<='F') {
v=c-'A';
v+=10;
} else {
ERR_PRINT("BUG");
v=0;
}
res<<=4;
res|=v;
}
idx+=4; //will add at the end anyway
} break;
default: {
r_err_str="Invalid escape sequence";
return ERR_PARSE_ERROR;
} break;
}
str+=res;
} else {
if (p_str[idx]=='\n')
line++;
str+=p_str[idx];
}
idx++;
}
r_token.type=TK_STRING;
r_token.value=str;
return OK;
} break;
default: {
if (p_str[idx]<=32) {
idx++;
break;
}
if (p_str[idx]=='-' || (p_str[idx]>='0' && p_str[idx]<='9')) {
//a number
const CharType *rptr;
double number = String::to_double(&p_str[idx],&rptr);
idx+=(rptr - &p_str[idx]);
r_token.type=TK_NUMBER;
r_token.value=number;
return OK;
} else if ((p_str[idx]>='A' && p_str[idx]<='Z') || (p_str[idx]>='a' && p_str[idx]<='z')) {
String id;
while((p_str[idx]>='A' && p_str[idx]<='Z') || (p_str[idx]>='a' && p_str[idx]<='z')) {
id+=p_str[idx];
idx++;
}
r_token.type=TK_IDENTIFIER;
r_token.value=id;
return OK;
} else {
r_err_str="Unexpected character.";
return ERR_PARSE_ERROR;
}
}
}
}
return ERR_PARSE_ERROR;
}
Error VariantConstruct::_parse_value(Variant &value,Token& token,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud) {
if (token.type==TK_CURLY_BRACKET_OPEN) {
Dictionary d;
Error err = _parse_dict(d,p_str,index,p_len,line,r_err_str,p_construct,p_ud);
if (err)
return err;
value=d;
return OK;
} else if (token.type==TK_BRACKET_OPEN) {
Array a;
Error err = _parse_array(a,p_str,index,p_len,line,r_err_str,p_construct,p_ud);
if (err)
return err;
value=a;
return OK;
} else if (token.type==TK_IDENTIFIER) {
String id = token.value;
if (id=="true")
value=true;
else if (id=="false")
value=false;
else if (id=="null")
value=Variant();
else {
r_err_str="Expected 'true','false' or 'null', got '"+id+"'.";
return ERR_PARSE_ERROR;
}
return OK;
} else if (token.type==TK_NUMBER) {
value=token.value;
return OK;
} else if (token.type==TK_STRING) {
value=token.value;
return OK;
} else {
r_err_str="Expected value, got "+String(tk_name[token.type])+".";
return ERR_PARSE_ERROR;
}
return ERR_PARSE_ERROR;
}
Error VariantConstruct::_parse_array(Array &array,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud) {
Token token;
bool need_comma=false;
while(index<p_len) {
Error err = _get_token(p_str,index,p_len,token,line,r_err_str);
if (err!=OK)
return err;
if (token.type==TK_BRACKET_CLOSE) {
return OK;
}
if (need_comma) {
if (token.type!=TK_COMMA) {
r_err_str="Expected ','";
return ERR_PARSE_ERROR;
} else {
need_comma=false;
continue;
}
}
Variant v;
err = _parse_value(v,token,p_str,index,p_len,line,r_err_str,p_construct,p_ud);
if (err)
return err;
array.push_back(v);
need_comma=true;
}
return OK;
}
Error VariantConstruct::_parse_dict(Dictionary &dict,const CharType *p_str,int &index, int p_len,int &line,String &r_err_str,Variant::ObjectConstruct* p_construct,void* p_ud) {
bool at_key=true;
Variant key;
Token token;
bool need_comma=false;
while(index<p_len) {
if (at_key) {
Error err = _get_token(p_str,index,p_len,token,line,r_err_str);
if (err!=OK)
return err;
if (token.type==TK_CURLY_BRACKET_CLOSE) {
return OK;
}
if (need_comma) {
if (token.type!=TK_COMMA) {
r_err_str="Expected '}' or ','";
return ERR_PARSE_ERROR;
} else {
need_comma=false;
continue;
}
}
err = _parse_value(key,token,p_str,index,p_len,line,r_err_str,p_construct,p_ud);
if (err!=OK)
return err;
err = _get_token(p_str,index,p_len,token,line,r_err_str);
if (err!=OK)
return err;
if (token.type!=TK_COLON) {
r_err_str="Expected ':'";
return ERR_PARSE_ERROR;
}
at_key=false;
} else {
Error err = _get_token(p_str,index,p_len,token,line,r_err_str);
if (err!=OK)
return err;
Variant v;
err = _parse_value(v,token,p_str,index,p_len,line,r_err_str,p_construct,p_ud);
if (err)
return err;
dict[key]=v;
need_comma=true;
at_key=true;
}
}
return OK;
}
Error VariantConstruct::parse(const String& p_string,Variant& r_ret,String &r_err_str,int &r_err_line,Variant::ObjectConstruct* p_construct,void* p_ud) {
const CharType *str = p_string.ptr();
int idx = 0;
int len = p_string.length();
Token token;
r_err_line=0;
String aux_key;
Error err = _get_token(str,idx,len,token,r_err_line,r_err_str);
if (err)
return err;
return _parse_value(r_ret,token,str,idx,len,r_err_line,r_err_str,p_construct,p_ud);
}

Binary file not shown.

View file

@ -89,6 +89,8 @@ const char *GDFunctions::get_func_name(Function p_func) {
"printt", "printt",
"printerr", "printerr",
"printraw", "printraw",
"var2str",
"str2var",
"range", "range",
"load", "load",
"inst2dict", "inst2dict",
@ -577,10 +579,23 @@ void GDFunctions::call(Function p_func,const Variant **p_args,int p_arg_count,Va
r_ret=Variant(); r_ret=Variant();
} break; } break;
case VAR_TO_STR: {
VALIDATE_ARG_COUNT(1);
r_ret=p_args[0]->get_construct_string();
} break;
case STR_TO_VAR: {
VALIDATE_ARG_COUNT(1);
if (p_args[0]->get_type()!=Variant::STRING) {
r_error.error=Variant::CallError::CALL_ERROR_INVALID_ARGUMENT;
r_error.argument=0;
r_error.expected=Variant::STRING;
r_ret=Variant();
return;
}
Variant::construct_from_string(*p_args[0],r_ret);
} break;
case GEN_RANGE: { case GEN_RANGE: {
switch(p_arg_count) { switch(p_arg_count) {
case 0: { case 0: {
@ -861,7 +876,6 @@ void GDFunctions::call(Function p_func,const Variant **p_args,int p_arg_count,Va
} }
} }
r_ret = gdscr->_new(NULL,0,r_error); r_ret = gdscr->_new(NULL,0,r_error);
} break; } break;
@ -1224,6 +1238,18 @@ MethodInfo GDFunctions::get_info(Function p_func) {
return mi; return mi;
} break; } break;
case VAR_TO_STR: {
MethodInfo mi("var2str",PropertyInfo(Variant::NIL,"var"));
mi.return_val.type=Variant::STRING;
return mi;
} break;
case STR_TO_VAR: {
MethodInfo mi("str2var:var",PropertyInfo(Variant::STRING,"string"));
mi.return_val.type=Variant::NIL;
return mi;
} break;
case GEN_RANGE: { case GEN_RANGE: {
MethodInfo mi("range",PropertyInfo(Variant::NIL,"...")); MethodInfo mi("range",PropertyInfo(Variant::NIL,"..."));

View file

@ -85,6 +85,8 @@ public:
TEXT_PRINT_TABBED, TEXT_PRINT_TABBED,
TEXT_PRINTERR, TEXT_PRINTERR,
TEXT_PRINTRAW, TEXT_PRINTRAW,
VAR_TO_STR,
STR_TO_VAR,
GEN_RANGE, GEN_RANGE,
RESOURCE_LOAD, RESOURCE_LOAD,
INST2DICT, INST2DICT,

View file

@ -1439,7 +1439,6 @@ void OS_Windows::warp_mouse_pos(const Point2& p_to) {
SetCursorPos(p.x,p.y); SetCursorPos(p.x,p.y);
} }
} }
Point2 OS_Windows::get_mouse_pos() const { Point2 OS_Windows::get_mouse_pos() const {

View file

@ -113,7 +113,7 @@ void NavigationPolygon::clear_outlines(){
} }
void NavigationPolygon::make_polygons_from_outlines(){ void NavigationPolygon::make_polygons_from_outlines(){
std::list<TriangulatorPoly> in_poly,out_poly; List<TriangulatorPoly> in_poly,out_poly;
Vector2 outside_point(-1e10,-1e10); Vector2 outside_point(-1e10,-1e10);
@ -194,9 +194,9 @@ void NavigationPolygon::make_polygons_from_outlines(){
vertices.resize(0); vertices.resize(0);
Map<Vector2,int> points; Map<Vector2,int> points;
for(std::list<TriangulatorPoly>::iterator I = out_poly.begin();I!=out_poly.end();I++) { for(List<TriangulatorPoly>::Element*I = out_poly.front();I;I=I->next()) {
TriangulatorPoly& tp = *I; TriangulatorPoly& tp = I->get();
struct Polygon p; struct Polygon p;