C#: Expose Transform2D.Determinant()

This commit is contained in:
Raul Santos 2023-10-03 17:27:43 +02:00
parent 4bef4d9808
commit 262671c644
No known key found for this signature in database
GPG key ID: B532473AE3A803E4

View file

@ -47,7 +47,7 @@ namespace Godot
{
get
{
real_t detSign = Mathf.Sign(BasisDeterminant());
real_t detSign = Mathf.Sign(Determinant());
return new Vector2(X.Length(), detSign * Y.Length());
}
}
@ -59,7 +59,7 @@ namespace Godot
{
get
{
real_t detSign = Mathf.Sign(BasisDeterminant());
real_t detSign = Mathf.Sign(Determinant());
return Mathf.Acos(X.Normalized().Dot(detSign * Y.Normalized())) - Mathf.Pi * 0.5f;
}
}
@ -135,7 +135,7 @@ namespace Godot
/// <returns>The inverse transformation matrix.</returns>
public readonly Transform2D AffineInverse()
{
real_t det = BasisDeterminant();
real_t det = Determinant();
if (det == 0)
throw new InvalidOperationException("Matrix determinant is zero and cannot be inverted.");
@ -157,15 +157,16 @@ namespace Godot
/// <summary>
/// Returns the determinant of the basis matrix. If the basis is
/// uniformly scaled, its determinant is the square of the scale.
/// uniformly scaled, then its determinant equals the square of the
/// scale factor.
///
/// A negative determinant means the Y scale is negative.
/// A zero determinant means the basis isn't invertible,
/// and is usually considered invalid.
/// A negative determinant means the basis was flipped, so one part of
/// the scale is negative. A zero determinant means the basis isn't
/// invertible, and is usually considered invalid.
/// </summary>
/// <returns>The determinant of the basis matrix.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private readonly real_t BasisDeterminant()
public readonly real_t Determinant()
{
return (X.X * Y.Y) - (X.Y * Y.X);
}