C#: Expose Transform2D.Determinant()
This commit is contained in:
parent
4bef4d9808
commit
262671c644
1 changed files with 9 additions and 8 deletions
|
@ -47,7 +47,7 @@ namespace Godot
|
|||
{
|
||||
get
|
||||
{
|
||||
real_t detSign = Mathf.Sign(BasisDeterminant());
|
||||
real_t detSign = Mathf.Sign(Determinant());
|
||||
return new Vector2(X.Length(), detSign * Y.Length());
|
||||
}
|
||||
}
|
||||
|
@ -59,7 +59,7 @@ namespace Godot
|
|||
{
|
||||
get
|
||||
{
|
||||
real_t detSign = Mathf.Sign(BasisDeterminant());
|
||||
real_t detSign = Mathf.Sign(Determinant());
|
||||
return Mathf.Acos(X.Normalized().Dot(detSign * Y.Normalized())) - Mathf.Pi * 0.5f;
|
||||
}
|
||||
}
|
||||
|
@ -135,7 +135,7 @@ namespace Godot
|
|||
/// <returns>The inverse transformation matrix.</returns>
|
||||
public readonly Transform2D AffineInverse()
|
||||
{
|
||||
real_t det = BasisDeterminant();
|
||||
real_t det = Determinant();
|
||||
|
||||
if (det == 0)
|
||||
throw new InvalidOperationException("Matrix determinant is zero and cannot be inverted.");
|
||||
|
@ -157,15 +157,16 @@ namespace Godot
|
|||
|
||||
/// <summary>
|
||||
/// Returns the determinant of the basis matrix. If the basis is
|
||||
/// uniformly scaled, its determinant is the square of the scale.
|
||||
/// uniformly scaled, then its determinant equals the square of the
|
||||
/// scale factor.
|
||||
///
|
||||
/// A negative determinant means the Y scale is negative.
|
||||
/// A zero determinant means the basis isn't invertible,
|
||||
/// and is usually considered invalid.
|
||||
/// A negative determinant means the basis was flipped, so one part of
|
||||
/// the scale is negative. A zero determinant means the basis isn't
|
||||
/// invertible, and is usually considered invalid.
|
||||
/// </summary>
|
||||
/// <returns>The determinant of the basis matrix.</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
private readonly real_t BasisDeterminant()
|
||||
public readonly real_t Determinant()
|
||||
{
|
||||
return (X.X * Y.Y) - (X.Y * Y.X);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue