Merge pull request #55128 from akien-mga/meshoptimizer-f4c356d79

This commit is contained in:
Rémi Verschelde 2021-11-22 12:22:59 +01:00 committed by GitHub
commit 2b287509eb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 178 additions and 36 deletions

View file

@ -333,7 +333,7 @@ File extracted from upstream release tarball:
## meshoptimizer
- Upstream: https://github.com/zeux/meshoptimizer
- Version: git (f5d83e879c48f8664783a69b4f50711d27549b66, 2021)
- Version: git (f4c356d79fadb99cbf432f7e199d823581b0e19e, 2021)
- License: MIT
Files extracted from upstream repository:

View file

@ -368,8 +368,7 @@ static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const
}
// split axis is one where the variance is largest
unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1
: 2;
unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1 : 2;
float split = mean[axis];
size_t middle = kdtreePartition(indices, count, points, stride, axis, split);

View file

@ -278,9 +278,30 @@ MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t verte
* meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M.
* Each 32-bit component is decoded in isolation; stride must be divisible by 4.
*/
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t vertex_count, size_t vertex_size);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride);
/**
* Vertex buffer filter encoders
* These functions can be used to encode data in a format that meshopt_decodeFilter can decode
*
* meshopt_encodeFilterOct encodes unit vectors with K-bit (K <= 16) signed X/Y as an output.
* Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is.
* Input data must contain 4 floats for every vector (count*4 total).
*
* meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding.
* Each component is stored as an 16-bit integer; stride must be equal to 8.
* Input data must contain 4 floats for every quaternion (count*4 total).
*
* meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24).
* Mantissa is shared between all components of a given vector as defined by stride; stride must be divisible by 4.
* Input data must contain stride/4 floats for every vector (count*stride/4 total).
* When individual (scalar) encoding is desired, simply pass stride=4 and adjust count accordingly.
*/
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data);
MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data);
/**
* Experimental: Mesh simplifier
@ -305,7 +326,7 @@ MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* d
/**
* Experimental: Mesh simplifier (sloppy)
* Reduces the number of triangles in the mesh, sacrificing mesh apperance for simplification performance
* Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance
* The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error.
* Returns the number of indices after simplification, with destination containing new index data
* The resulting index buffer references vertices from the original vertex buffer.

View file

@ -358,7 +358,7 @@ static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned
#if TRACE
printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
#endif
}
@ -1114,8 +1114,8 @@ static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char*
float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f;
printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n",
int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
#endif
return edge_collapses;
@ -1473,7 +1473,7 @@ size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned
kinds[vertex_kind[i]] += remap[i] == i;
printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n",
int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked]));
int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked]));
#endif
Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
@ -1649,9 +1649,9 @@ size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* ind
#if TRACE
printf("pass %d (%s): grid size %d, triangles %d, %s\n",
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
grid_size, int(triangles),
(triangles <= target_index_count / 3) ? "under" : "over");
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
grid_size, int(triangles),
(triangles <= target_index_count / 3) ? "under" : "over");
#endif
float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
@ -1778,9 +1778,9 @@ size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_pos
#if TRACE
printf("pass %d (%s): grid size %d, vertices %d, %s\n",
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
grid_size, int(vertices),
(vertices <= target_vertex_count) ? "under" : "over");
pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
grid_size, int(vertices),
(vertices <= target_vertex_count) ? "under" : "over");
#endif
float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices));

View file

@ -77,6 +77,8 @@
#endif
#ifdef SIMD_WASM
#undef __DEPRECATED
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <wasm_simd128.h>
#endif
@ -1028,7 +1030,7 @@ static unsigned int getCpuFeatures()
return cpuinfo[2];
}
unsigned int cpuid = getCpuFeatures();
static unsigned int cpuid = getCpuFeatures();
#endif
} // namespace meshopt

View file

@ -52,6 +52,7 @@
#endif
#ifdef SIMD_WASM
#undef __DEPRECATED
#include <wasm_simd128.h>
#endif
@ -160,7 +161,8 @@ static void decodeFilterExp(unsigned int* data, size_t count)
#endif
#if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
template <typename T> static void dispatchSimd(void (*process)(T*, size_t), T* data, size_t count, size_t stride)
template <typename T>
static void dispatchSimd(void (*process)(T*, size_t), T* data, size_t count, size_t stride)
{
assert(stride <= 4);
@ -791,52 +793,170 @@ static void decodeFilterExpSimd(unsigned int* data, size_t count)
} // namespace meshopt
void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size)
void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride)
{
using namespace meshopt;
assert(vertex_size == 4 || vertex_size == 8);
assert(stride == 4 || stride == 8);
#if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
if (vertex_size == 4)
dispatchSimd(decodeFilterOctSimd, static_cast<signed char*>(buffer), vertex_count, 4);
if (stride == 4)
dispatchSimd(decodeFilterOctSimd, static_cast<signed char*>(buffer), count, 4);
else
dispatchSimd(decodeFilterOctSimd, static_cast<short*>(buffer), vertex_count, 4);
dispatchSimd(decodeFilterOctSimd, static_cast<short*>(buffer), count, 4);
#else
if (vertex_size == 4)
decodeFilterOct(static_cast<signed char*>(buffer), vertex_count);
if (stride == 4)
decodeFilterOct(static_cast<signed char*>(buffer), count);
else
decodeFilterOct(static_cast<short*>(buffer), vertex_count);
decodeFilterOct(static_cast<short*>(buffer), count);
#endif
}
void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size)
void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride)
{
using namespace meshopt;
assert(vertex_size == 8);
(void)vertex_size;
assert(stride == 8);
(void)stride;
#if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
dispatchSimd(decodeFilterQuatSimd, static_cast<short*>(buffer), vertex_count, 4);
dispatchSimd(decodeFilterQuatSimd, static_cast<short*>(buffer), count, 4);
#else
decodeFilterQuat(static_cast<short*>(buffer), vertex_count);
decodeFilterQuat(static_cast<short*>(buffer), count);
#endif
}
void meshopt_decodeFilterExp(void* buffer, size_t vertex_count, size_t vertex_size)
void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride)
{
using namespace meshopt;
assert(vertex_size % 4 == 0);
assert(stride > 0 && stride % 4 == 0);
#if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
dispatchSimd(decodeFilterExpSimd, static_cast<unsigned int*>(buffer), vertex_count * (vertex_size / 4), 1);
dispatchSimd(decodeFilterExpSimd, static_cast<unsigned int*>(buffer), count * (stride / 4), 1);
#else
decodeFilterExp(static_cast<unsigned int*>(buffer), vertex_count * (vertex_size / 4));
decodeFilterExp(static_cast<unsigned int*>(buffer), count * (stride / 4));
#endif
}
void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data)
{
assert(stride == 4 || stride == 8);
assert(bits >= 1 && bits <= 16);
signed char* d8 = static_cast<signed char*>(destination);
short* d16 = static_cast<short*>(destination);
int bytebits = int(stride * 2);
for (size_t i = 0; i < count; ++i)
{
const float* n = &data[i * 4];
// octahedral encoding of a unit vector
float nx = n[0], ny = n[1], nz = n[2], nw = n[3];
float nl = fabsf(nx) + fabsf(ny) + fabsf(nz);
float ns = nl == 0.f ? 0.f : 1.f / nl;
nx *= ns;
ny *= ns;
float u = (nz >= 0.f) ? nx : (1 - fabsf(ny)) * (nx >= 0.f ? 1.f : -1.f);
float v = (nz >= 0.f) ? ny : (1 - fabsf(nx)) * (ny >= 0.f ? 1.f : -1.f);
int fu = meshopt_quantizeSnorm(u, bits);
int fv = meshopt_quantizeSnorm(v, bits);
int fo = meshopt_quantizeSnorm(1.f, bits);
int fw = meshopt_quantizeSnorm(nw, bytebits);
if (stride == 4)
{
d8[i * 4 + 0] = (signed char)(fu);
d8[i * 4 + 1] = (signed char)(fv);
d8[i * 4 + 2] = (signed char)(fo);
d8[i * 4 + 3] = (signed char)(fw);
}
else
{
d16[i * 4 + 0] = short(fu);
d16[i * 4 + 1] = short(fv);
d16[i * 4 + 2] = short(fo);
d16[i * 4 + 3] = short(fw);
}
}
}
void meshopt_encodeFilterQuat(void* destination_, size_t count, size_t stride, int bits, const float* data)
{
assert(stride == 8);
assert(bits >= 4 && bits <= 16);
(void)stride;
short* destination = static_cast<short*>(destination_);
const float scaler = sqrtf(2.f);
for (size_t i = 0; i < count; ++i)
{
const float* q = &data[i * 4];
short* d = &destination[i * 4];
// establish maximum quaternion component
int qc = 0;
qc = fabsf(q[1]) > fabsf(q[qc]) ? 1 : qc;
qc = fabsf(q[2]) > fabsf(q[qc]) ? 2 : qc;
qc = fabsf(q[3]) > fabsf(q[qc]) ? 3 : qc;
// we use double-cover properties to discard the sign
float sign = q[qc] < 0.f ? -1.f : 1.f;
// note: we always encode a cyclical swizzle to be able to recover the order via rotation
d[0] = short(meshopt_quantizeSnorm(q[(qc + 1) & 3] * scaler * sign, bits));
d[1] = short(meshopt_quantizeSnorm(q[(qc + 2) & 3] * scaler * sign, bits));
d[2] = short(meshopt_quantizeSnorm(q[(qc + 3) & 3] * scaler * sign, bits));
d[3] = short((meshopt_quantizeSnorm(1.f, bits) & ~3) | qc);
}
}
void meshopt_encodeFilterExp(void* destination_, size_t count, size_t stride, int bits, const float* data)
{
assert(stride > 0 && stride % 4 == 0);
assert(bits >= 1 && bits <= 24);
unsigned int* destination = static_cast<unsigned int*>(destination_);
size_t stride_float = stride / sizeof(float);
for (size_t i = 0; i < count; ++i)
{
const float* v = &data[i * stride_float];
unsigned int* d = &destination[i * stride_float];
// use maximum exponent to encode values; this guarantess that mantissa is [-1, 1]
int exp = -100;
for (size_t j = 0; j < stride_float; ++j)
{
int e;
frexp(v[j], &e);
exp = (exp < e) ? e : exp;
}
// note that we additionally scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
exp -= (bits - 1);
// compute renormalized rounded mantissa for each component
int mmask = (1 << 24) - 1;
for (size_t j = 0; j < stride_float; ++j)
{
int m = int(ldexp(v[j], -exp) + (v[j] >= 0 ? 0.5f : -0.5f));
d[j] = (m & mmask) | (unsigned(exp) << 24);
}
}
}
#undef SIMD_SSE
#undef SIMD_NEON
#undef SIMD_WASM