Fixed Timestep Interpolation (3D)

Adds 3D fixed timestep interpolation to the rendering server.
This does not yet include support for multimeshes or particles.

Co-authored-by: lawnjelly <lawnjelly@gmail.com>
This commit is contained in:
Ricardo Buring 2024-05-26 19:39:28 +02:00
parent 42e5b3ac2d
commit 2f8ab4a654
31 changed files with 1470 additions and 69 deletions

View file

@ -34,6 +34,12 @@
#include "core/os/os.h"
#include "core/string/ustring.h"
// Optional physics interpolation warnings try to include the path to the relevant node.
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
#include "core/config/project_settings.h"
#include "scene/main/node.h"
#endif
static ErrorHandlerList *error_handler_list = nullptr;
void add_error_handler(ErrorHandlerList *p_handler) {
@ -128,3 +134,48 @@ void _err_print_index_error(const char *p_function, const char *p_file, int p_li
void _err_flush_stdout() {
fflush(stdout);
}
// Prevent error spam by limiting the warnings to a certain frequency.
void _physics_interpolation_warning(const char *p_function, const char *p_file, int p_line, ObjectID p_id, const char *p_warn_string) {
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
const uint32_t warn_max = 2048;
const uint32_t warn_timeout_seconds = 15;
static uint32_t warn_count = warn_max;
static uint32_t warn_timeout = warn_timeout_seconds;
uint32_t time_now = UINT32_MAX;
if (warn_count) {
warn_count--;
}
if (!warn_count) {
time_now = OS::get_singleton()->get_ticks_msec() / 1000;
}
if ((warn_count == 0) && (time_now >= warn_timeout)) {
warn_count = warn_max;
warn_timeout = time_now + warn_timeout_seconds;
if (GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
// UINT64_MAX means unused.
if (p_id.operator uint64_t() == UINT64_MAX) {
_err_print_error(p_function, p_file, p_line, "[Physics interpolation] " + String(p_warn_string) + " (possibly benign).", false, ERR_HANDLER_WARNING);
} else {
String node_name;
if (p_id.is_valid()) {
Node *node = Object::cast_to<Node>(ObjectDB::get_instance(p_id));
if (node && node->is_inside_tree()) {
node_name = "\"" + String(node->get_path()) + "\"";
} else {
node_name = "\"unknown\"";
}
}
_err_print_error(p_function, p_file, p_line, "[Physics interpolation] " + String(p_warn_string) + ": " + node_name + " (possibly benign).", false, ERR_HANDLER_WARNING);
}
}
}
#endif
}

View file

@ -31,6 +31,7 @@
#ifndef ERROR_MACROS_H
#define ERROR_MACROS_H
#include "core/object/object_id.h"
#include "core/typedefs.h"
#include <atomic> // We'd normally use safe_refcount.h, but that would cause circular includes.
@ -71,6 +72,8 @@ void _err_print_index_error(const char *p_function, const char *p_file, int p_li
void _err_print_index_error(const char *p_function, const char *p_file, int p_line, int64_t p_index, int64_t p_size, const char *p_index_str, const char *p_size_str, const String &p_message, bool p_editor_notify = false, bool fatal = false);
void _err_flush_stdout();
void _physics_interpolation_warning(const char *p_function, const char *p_file, int p_line, ObjectID p_id, const char *p_warn_string);
#ifdef __GNUC__
//#define FUNCTION_STR __PRETTY_FUNCTION__ - too annoying
#define FUNCTION_STR __FUNCTION__
@ -832,4 +835,14 @@ void _err_flush_stdout();
#define DEV_CHECK_ONCE(m_cond)
#endif
/**
* Physics Interpolation warnings.
* These are spam protection warnings.
*/
#define PHYSICS_INTERPOLATION_NODE_WARNING(m_object_id, m_string) \
_physics_interpolation_warning(FUNCTION_STR, __FILE__, __LINE__, m_object_id, m_string)
#define PHYSICS_INTERPOLATION_WARNING(m_string) \
_physics_interpolation_warning(FUNCTION_STR, __FILE__, __LINE__, UINT64_MAX, m_string)
#endif // ERROR_MACROS_H

View file

@ -31,6 +31,7 @@
#include "transform_interpolator.h"
#include "core/math/transform_2d.h"
#include "core/math/transform_3d.h"
void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction) {
// Special case for physics interpolation, if flipping, don't interpolate basis.
@ -44,3 +45,340 @@ void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev,
r_result = p_prev.interpolate_with(p_curr, p_fraction);
}
void TransformInterpolator::interpolate_transform_3d(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction);
}
void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
Method method = find_method(p_prev, p_curr);
interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method);
}
void TransformInterpolator::interpolate_transform_3d_via_method(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction, Method p_method) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method);
}
void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method) {
switch (p_method) {
default: {
interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction);
} break;
case INTERP_SLERP: {
r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
} break;
case INTERP_SCALED_SLERP: {
interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction);
} break;
}
}
Quaternion TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) {
Basis m = p_basis;
real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
real_t temp[4];
if (trace > 0.0) {
real_t s = Math::sqrt(trace + 1.0f);
temp[3] = (s * 0.5f);
s = 0.5f / s;
temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
} else {
int i = m.rows[0][0] < m.rows[1][1]
? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
: (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
temp[i] = s * 0.5f;
s = 0.5f / s;
temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
}
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
Quaternion TransformInterpolator::_quat_slerp_unchecked(const Quaternion &p_from, const Quaternion &p_to, real_t p_fraction) {
Quaternion to1;
real_t omega, cosom, sinom, scale0, scale1;
// Calculate cosine.
cosom = p_from.dot(p_to);
// Adjust signs (if necessary)
if (cosom < 0.0f) {
cosom = -cosom;
to1.x = -p_to.x;
to1.y = -p_to.y;
to1.z = -p_to.z;
to1.w = -p_to.w;
} else {
to1.x = p_to.x;
to1.y = p_to.y;
to1.z = p_to.z;
to1.w = p_to.w;
}
// Calculate coefficients.
// This check could possibly be removed as we dealt with this
// case in the find_method() function, but is left for safety, it probably
// isn't a bottleneck.
if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom;
scale1 = Math::sin(p_fraction * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0f - p_fraction;
scale1 = p_fraction;
}
// Calculate final values.
return Quaternion(
scale0 * p_from.x + scale1 * to1.x,
scale0 * p_from.y + scale1 * to1.y,
scale0 * p_from.z + scale1 * to1.z,
scale0 * p_from.w + scale1 * to1.w);
}
Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) {
Quaternion from = _basis_to_quat_unchecked(p_from);
Quaternion to = _basis_to_quat_unchecked(p_to);
Basis b(_quat_slerp_unchecked(from, to, p_fraction));
return b;
}
void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) {
// Normalize both and find lengths.
Vector3 lengths_prev = _basis_orthonormalize(p_prev);
Vector3 lengths_curr = _basis_orthonormalize(p_curr);
r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
// Now the result is unit length basis, we need to scale.
Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction);
// Keep a note that the column / row order of the basis is weird,
// so keep an eye for bugs with this.
r_result[0] *= lengths_lerped;
r_result[1] *= lengths_lerped;
r_result[2] *= lengths_lerped;
}
void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
// Interpolate basis.
r_result = p_prev.lerp(p_curr, p_fraction);
// It turns out we need to guard against zero scale basis.
// This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with
// zero scale, but until that time...
for (int n = 0; n < 3; n++) {
Vector3 &axis = r_result[n];
// Not ok, this could cause errors due to bugs elsewhere,
// so we will bodge set this to a small value.
const real_t smallest = 0.0001f;
const real_t smallest_squared = smallest * smallest;
if (axis.length_squared() < smallest_squared) {
// Setting a different component to the smallest
// helps prevent the situation where all the axes are pointing in the same direction,
// which could be a problem for e.g. cross products...
axis[n] = smallest;
}
}
}
// Returns length.
real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) {
real_t lengthsq = p_vec.length_squared();
if (lengthsq == 0.0f) {
p_vec.x = p_vec.y = p_vec.z = 0.0f;
return 0.0f;
}
real_t length = Math::sqrt(lengthsq);
p_vec.x /= length;
p_vec.y /= length;
p_vec.z /= length;
return length;
}
// Returns lengths.
Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) {
// Gram-Schmidt Process.
Vector3 x = r_basis.get_column(0);
Vector3 y = r_basis.get_column(1);
Vector3 z = r_basis.get_column(2);
Vector3 lengths;
lengths.x = _vec3_normalize(x);
y = (y - x * (x.dot(y)));
lengths.y = _vec3_normalize(y);
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
lengths.z = _vec3_normalize(z);
r_basis.set_column(0, x);
r_basis.set_column(1, y);
r_basis.set_column(2, z);
return lengths;
}
TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quaternion &r_quat) {
// Axis lengths.
Vector3 al = Vector3(p_basis.get_column(0).length_squared(),
p_basis.get_column(1).length_squared(),
p_basis.get_column(2).length_squared());
// Non unit scale?
if (r_needed_normalize || !_vec3_is_equal_approx(al, Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) {
// If the basis is not normalized (at least approximately), it will fail the checks needed for slerp.
// So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first,
// and lerping the scales separately.
// If any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error.
const real_t sl_epsilon = 0.00001f;
if ((al.x < sl_epsilon) ||
(al.y < sl_epsilon) ||
(al.z < sl_epsilon)) {
return INTERP_LERP;
}
// Normalize the basis.
Basis norm_basis = p_basis;
al.x = Math::sqrt(al.x);
al.y = Math::sqrt(al.y);
al.z = Math::sqrt(al.z);
norm_basis.set_column(0, norm_basis.get_column(0) / al.x);
norm_basis.set_column(1, norm_basis.get_column(1) / al.y);
norm_basis.set_column(2, norm_basis.get_column(2) / al.z);
// This doesn't appear necessary, as the later checks will catch it.
// if (!_basis_is_orthogonal_any_scale(norm_basis)) {
// return INTERP_LERP;
// }
p_basis = norm_basis;
// Orthonormalize not necessary as normal normalization(!) works if the
// axes are orthonormal.
// p_basis.orthonormalize();
// If we needed to normalize one of the two bases, we will need to normalize both,
// regardless of whether the 2nd needs it, just to make sure it takes the path to return
// INTERP_SCALED_LERP on the 2nd call of _test_basis.
r_needed_normalize = true;
}
// Apply less stringent tests than the built in slerp, the standard Godot slerp
// is too susceptible to float error to be useful.
real_t det = p_basis.determinant();
if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) {
return INTERP_LERP;
}
if (!_basis_is_orthogonal(p_basis)) {
return INTERP_LERP;
}
// TODO: This could possibly be less stringent too, check this.
r_quat = _basis_to_quat_unchecked(p_basis);
if (!r_quat.is_normalized()) {
return INTERP_LERP;
}
return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP;
}
// This check doesn't seem to be needed but is preserved in case of bugs.
bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) {
Vector3 cross = p_basis.get_column(0).cross(p_basis.get_column(1));
real_t l = _vec3_normalize(cross);
// Too small numbers, revert to lerp.
if (l < 0.001f) {
return false;
}
const real_t epsilon = 0.9995f;
real_t dot = cross.dot(p_basis.get_column(2));
if (dot < epsilon) {
return false;
}
cross = p_basis.get_column(1).cross(p_basis.get_column(2));
l = _vec3_normalize(cross);
// Too small numbers, revert to lerp.
if (l < 0.001f) {
return false;
}
dot = cross.dot(p_basis.get_column(0));
if (dot < epsilon) {
return false;
}
return true;
}
bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) {
Basis identity;
Basis m = p_basis * p_basis.transposed();
// Less stringent tests than the standard Godot slerp.
if (!_vec3_is_equal_approx(m[0], identity[0], p_epsilon) || !_vec3_is_equal_approx(m[1], identity[1], p_epsilon) || !_vec3_is_equal_approx(m[2], identity[2], p_epsilon)) {
return false;
}
return true;
}
real_t TransformInterpolator::checksum_transform_3d(const Transform3D &p_transform) {
// just a really basic checksum, this can probably be improved
real_t sum = _vec3_sum(p_transform.origin);
sum -= _vec3_sum(p_transform.basis.rows[0]);
sum += _vec3_sum(p_transform.basis.rows[1]);
sum -= _vec3_sum(p_transform.basis.rows[2]);
return sum;
}
TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) {
bool needed_normalize = false;
Quaternion q0;
Method method = _test_basis(p_a, needed_normalize, q0);
if (method == INTERP_LERP) {
return method;
}
Quaternion q1;
method = _test_basis(p_b, needed_normalize, q1);
if (method == INTERP_LERP) {
return method;
}
// Are they close together?
// Apply the same test that will revert to lerp as is present in the slerp routine.
// Calculate cosine.
real_t cosom = Math::abs(q0.dot(q1));
if ((1.0f - cosom) <= (real_t)CMP_EPSILON) {
return INTERP_LERP;
}
return method;
}

View file

@ -32,15 +32,64 @@
#define TRANSFORM_INTERPOLATOR_H
#include "core/math/math_defs.h"
#include "core/math/vector3.h"
// Keep all the functions for fixed timestep interpolation together.
// There are two stages involved:
// Finding a method, for determining the interpolation method between two
// keyframes (which are physics ticks).
// And applying that pre-determined method.
// Pre-determining the method makes sense because it is expensive and often
// several frames may occur between each physics tick, which will make it cheaper
// than performing every frame.
struct Transform2D;
struct Transform3D;
struct Basis;
struct Quaternion;
class TransformInterpolator {
public:
enum Method {
INTERP_LERP,
INTERP_SLERP,
INTERP_SCALED_SLERP,
};
private:
static bool _sign(real_t p_val) { return p_val >= 0; }
_FORCE_INLINE_ static bool _sign(real_t p_val) { return p_val >= 0; }
static real_t _vec3_sum(const Vector3 &p_pt) { return p_pt.x + p_pt.y + p_pt.z; }
static real_t _vec3_normalize(Vector3 &p_vec);
_FORCE_INLINE_ static bool _vec3_is_equal_approx(const Vector3 &p_a, const Vector3 &p_b, real_t p_tolerance) {
return Math::is_equal_approx(p_a.x, p_b.x, p_tolerance) && Math::is_equal_approx(p_a.y, p_b.y, p_tolerance) && Math::is_equal_approx(p_a.z, p_b.z, p_tolerance);
}
static Vector3 _basis_orthonormalize(Basis &r_basis);
static Method _test_basis(Basis p_basis, bool r_needed_normalize, Quaternion &r_quat);
static Basis _basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction);
static Quaternion _quat_slerp_unchecked(const Quaternion &p_from, const Quaternion &p_to, real_t p_fraction);
static Quaternion _basis_to_quat_unchecked(const Basis &p_basis);
static bool _basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon = 0.01f);
static bool _basis_is_orthogonal_any_scale(const Basis &p_basis);
static void interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction);
static void interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction);
public:
static void interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction);
// Generic functions, use when you don't know what method should be used, e.g. from GDScript.
// These will be slower.
static void interpolate_transform_3d(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction);
static void interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction);
// Optimized function when you know ahead of time the method.
static void interpolate_transform_3d_via_method(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction, Method p_method);
static void interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method);
static real_t checksum_transform_3d(const Transform3D &p_transform);
static Method find_method(const Basis &p_a, const Basis &p_b);
};
#endif // TRANSFORM_INTERPOLATOR_H

View file

@ -64,6 +64,7 @@ public:
virtual void initialize();
virtual void iteration_prepare() {}
virtual bool physics_process(double p_time);
virtual void iteration_end() {}
virtual bool process(double p_time);
virtual void finalize();

View file

@ -46,6 +46,14 @@
Returns all the gizmos attached to this [Node3D].
</description>
</method>
<method name="get_global_transform_interpolated">
<return type="Transform3D" />
<description>
When using physics interpolation, there will be circumstances in which you want to know the interpolated (displayed) transform of a node rather than the standard transform (which may only be accurate to the most recent physics tick).
This is particularly important for frame-based operations that take place in [method Node._process], rather than [method Node._physics_process]. Examples include [Camera3D]s focusing on a node, or finding where to fire lasers from on a frame rather than physics tick.
[b]Note:[/b] This function creates an interpolation pump on the [Node3D] the first time it is called, which can respond to physics interpolation resets. If you get problems with "streaking" when initially following a [Node3D], be sure to call [method get_global_transform_interpolated] at least once [i]before[/i] resetting the [Node3D] physics interpolation.
</description>
</method>
<method name="get_parent_node_3d" qualifiers="const">
<return type="Node3D" />
<description>

View file

@ -630,6 +630,10 @@
<member name="debug/settings/gdscript/max_call_stack" type="int" setter="" getter="" default="1024">
Maximum call stack allowed for debugging GDScript.
</member>
<member name="debug/settings/physics_interpolation/enable_warnings" type="bool" setter="" getter="" default="true">
If [code]true[/code], enables warnings which can help pinpoint where nodes are being incorrectly updated, which will result in incorrect interpolation and visual glitches.
When a node is being interpolated, it is essential that the transform is set during [method Node._physics_process] (during a physics tick) rather than [method Node._process] (during a frame).
</member>
<member name="debug/settings/profiler/max_functions" type="int" setter="" getter="" default="16384">
Maximum number of functions per frame allowed when profiling.
</member>
@ -2325,7 +2329,8 @@
</member>
<member name="physics/common/physics_jitter_fix" type="float" setter="" getter="" default="0.5">
Controls how much physics ticks are synchronized with real time. For 0 or less, the ticks are synchronized. Such values are recommended for network games, where clock synchronization matters. Higher values cause higher deviation of in-game clock and real clock, but allows smoothing out framerate jitters. The default value of 0.5 should be good enough for most; values above 2 could cause the game to react to dropped frames with a noticeable delay and are not recommended.
[b]Note:[/b] When using a physics interpolation solution (such as enabling [member physics/common/physics_interpolation] or using a custom solution), the physics jitter fix should be disabled by setting [member physics/common/physics_jitter_fix] to [code]0.0[/code].
[b]Note:[/b] Jitter fix is automatically disabled at runtime when [member physics/common/physics_interpolation] is enabled.
[b]Note:[/b] When using a custom physics interpolation solution, the physics jitter fix should be disabled by setting [member physics/common/physics_jitter_fix] to [code]0.0[/code].
[b]Note:[/b] This property is only read when the project starts. To change the physics jitter fix at runtime, set [member Engine.physics_jitter_fix] instead.
</member>
<member name="physics/common/physics_ticks_per_second" type="int" setter="" getter="" default="60">

View file

@ -1855,6 +1855,14 @@
Sets the visibility range values for the given geometry instance. Equivalent to [member GeometryInstance3D.visibility_range_begin] and related properties.
</description>
</method>
<method name="instance_reset_physics_interpolation">
<return type="void" />
<param index="0" name="instance" type="RID" />
<description>
Prevents physics interpolation for the current physics tick.
This is useful when moving an instance to a new location, to give an instantaneous change rather than interpolation from the previous location.
</description>
</method>
<method name="instance_set_base">
<return type="void" />
<param index="0" name="instance" type="RID" />
@ -1896,6 +1904,14 @@
If [code]true[/code], ignores both frustum and occlusion culling on the specified 3D geometry instance. This is not the same as [member GeometryInstance3D.ignore_occlusion_culling], which only ignores occlusion culling and leaves frustum culling intact.
</description>
</method>
<method name="instance_set_interpolated">
<return type="void" />
<param index="0" name="instance" type="RID" />
<param index="1" name="interpolated" type="bool" />
<description>
Turns on and off physics interpolation for the instance.
</description>
</method>
<method name="instance_set_layer_mask">
<return type="void" />
<param index="0" name="instance" type="RID" />

View file

@ -301,6 +301,7 @@
<member name="own_world_3d" type="bool" setter="set_use_own_world_3d" getter="is_using_own_world_3d" default="false">
If [code]true[/code], the viewport will use a unique copy of the [World3D] defined in [member world_3d].
</member>
<member name="physics_interpolation_mode" type="int" setter="set_physics_interpolation_mode" getter="get_physics_interpolation_mode" overrides="Node" enum="Node.PhysicsInterpolationMode" default="1" />
<member name="physics_object_picking" type="bool" setter="set_physics_object_picking" getter="get_physics_object_picking" default="false">
If [code]true[/code], the objects rendered by viewport become subjects of mouse picking process.
[b]Note:[/b] The number of simultaneously pickable objects is limited to 64 and they are selected in a non-deterministic order, which can be different in each picking process.

View file

@ -2380,6 +2380,7 @@ Error Main::setup(const char *execpath, int argc, char *argv[], bool p_second_ph
GLOBAL_DEF("debug/settings/stdout/print_fps", false);
GLOBAL_DEF("debug/settings/stdout/print_gpu_profile", false);
GLOBAL_DEF("debug/settings/stdout/verbose_stdout", false);
GLOBAL_DEF("debug/settings/physics_interpolation/enable_warnings", true);
if (!OS::get_singleton()->_verbose_stdout) { // Not manually overridden.
OS::get_singleton()->_verbose_stdout = GLOBAL_GET("debug/settings/stdout/verbose_stdout");
@ -4047,16 +4048,16 @@ bool Main::iteration() {
uint64_t physics_begin = OS::get_singleton()->get_ticks_usec();
#ifndef _3D_DISABLED
PhysicsServer3D::get_singleton()->sync();
PhysicsServer3D::get_singleton()->flush_queries();
#endif // _3D_DISABLED
// Prepare the fixed timestep interpolated nodes BEFORE they are updated
// by the physics server, otherwise the current and previous transforms
// may be the same, and no interpolation takes place.
OS::get_singleton()->get_main_loop()->iteration_prepare();
#ifndef _3D_DISABLED
PhysicsServer3D::get_singleton()->sync();
PhysicsServer3D::get_singleton()->flush_queries();
#endif // _3D_DISABLED
PhysicsServer2D::get_singleton()->sync();
PhysicsServer2D::get_singleton()->flush_queries();
@ -4066,6 +4067,7 @@ bool Main::iteration() {
#endif // _3D_DISABLED
PhysicsServer2D::get_singleton()->end_sync();
Engine::get_singleton()->_in_physics = false;
exit = true;
break;
}
@ -4089,6 +4091,8 @@ bool Main::iteration() {
message_queue->flush();
OS::get_singleton()->get_main_loop()->iteration_end();
physics_process_ticks = MAX(physics_process_ticks, OS::get_singleton()->get_ticks_usec() - physics_begin); // keep the largest one for reference
physics_process_max = MAX(OS::get_singleton()->get_ticks_usec() - physics_begin, physics_process_max);

View file

@ -299,17 +299,6 @@ int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) {
// before advance_core considers changing the physics_steps return from
// the typical values as defined by typical_physics_steps
double MainTimerSync::get_physics_jitter_fix() {
// Turn off jitter fix when using fixed timestep interpolation.
// Note this shouldn't be on UNTIL 3d interpolation is implemented,
// otherwise we will get people making 3d games with the physics_interpolation
// set to on getting jitter fix disabled unexpectedly.
#if 0
if (Engine::get_singleton()->is_physics_interpolation_enabled()) {
// Would be better to write a simple bypass for jitter fix but this will do to get started.
return 0.0;
}
#endif
return Engine::get_singleton()->get_physics_jitter_fix();
}

View file

@ -31,7 +31,9 @@
#include "camera_3d.h"
#include "core/math/projection.h"
#include "core/math/transform_interpolator.h"
#include "scene/main/viewport.h"
#include "servers/rendering/rendering_server_constants.h"
void Camera3D::_update_audio_listener_state() {
}
@ -88,7 +90,16 @@ void Camera3D::_update_camera() {
return;
}
RenderingServer::get_singleton()->camera_set_transform(camera, get_camera_transform());
if (!is_physics_interpolated_and_enabled()) {
RenderingServer::get_singleton()->camera_set_transform(camera, get_camera_transform());
} else {
// Ideally we shouldn't be moving a physics interpolated camera within a frame,
// because it will break smooth interpolation, but it may occur on e.g. level load.
if (!Engine::get_singleton()->is_in_physics_frame() && camera.is_valid()) {
_physics_interpolation_ensure_transform_calculated(true);
RenderingServer::get_singleton()->camera_set_transform(camera, _interpolation_data.camera_xform_interpolated);
}
}
if (is_part_of_edited_scene() || !is_current()) {
return;
@ -97,6 +108,64 @@ void Camera3D::_update_camera() {
get_viewport()->_camera_3d_transform_changed_notify();
}
void Camera3D::_physics_interpolated_changed() {
_update_process_mode();
}
void Camera3D::_physics_interpolation_ensure_data_flipped() {
// The curr -> previous update can either occur
// on the INTERNAL_PHYSICS_PROCESS OR
// on NOTIFICATION_TRANSFORM_CHANGED,
// if NOTIFICATION_TRANSFORM_CHANGED takes place
// earlier than INTERNAL_PHYSICS_PROCESS on a tick.
// This is to ensure that the data keeps flowing, but the new data
// doesn't overwrite before prev has been set.
// Keep the data flowing.
uint64_t tick = Engine::get_singleton()->get_physics_frames();
if (_interpolation_data.last_update_physics_tick != tick) {
_interpolation_data.xform_prev = _interpolation_data.xform_curr;
_interpolation_data.last_update_physics_tick = tick;
physics_interpolation_flip_data();
}
}
void Camera3D::_physics_interpolation_ensure_transform_calculated(bool p_force) const {
DEV_CHECK_ONCE(!Engine::get_singleton()->is_in_physics_frame());
InterpolationData &id = _interpolation_data;
uint64_t frame = Engine::get_singleton()->get_frames_drawn();
if (id.last_update_frame != frame || p_force) {
id.last_update_frame = frame;
TransformInterpolator::interpolate_transform_3d(id.xform_prev, id.xform_curr, id.xform_interpolated, Engine::get_singleton()->get_physics_interpolation_fraction());
Transform3D &tr = id.camera_xform_interpolated;
tr = _get_adjusted_camera_transform(id.xform_interpolated);
}
}
void Camera3D::set_desired_process_modes(bool p_process_internal, bool p_physics_process_internal) {
_desired_process_internal = p_process_internal;
_desired_physics_process_internal = p_physics_process_internal;
_update_process_mode();
}
void Camera3D::_update_process_mode() {
bool process = _desired_process_internal;
bool physics_process = _desired_physics_process_internal;
if (is_physics_interpolated_and_enabled()) {
if (is_current()) {
process = true;
physics_process = true;
}
}
set_process_internal(process);
set_physics_process_internal(physics_process);
}
void Camera3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_WORLD: {
@ -118,11 +187,58 @@ void Camera3D::_notification(int p_what) {
#endif
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
if (is_physics_interpolated_and_enabled() && camera.is_valid()) {
_physics_interpolation_ensure_transform_calculated();
#ifdef RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
print_line("\t\tinterpolated Camera3D: " + rtos(_interpolation_data.xform_interpolated.origin.x) + "\t( prev " + rtos(_interpolation_data.xform_prev.origin.x) + ", curr " + rtos(_interpolation_data.xform_curr.origin.x) + " ) on tick " + itos(Engine::get_singleton()->get_physics_frames()));
#endif
RenderingServer::get_singleton()->camera_set_transform(camera, _interpolation_data.camera_xform_interpolated);
}
} break;
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
if (is_physics_interpolated_and_enabled()) {
_physics_interpolation_ensure_data_flipped();
_interpolation_data.xform_curr = get_global_transform();
}
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
if (is_physics_interpolated_and_enabled()) {
_physics_interpolation_ensure_data_flipped();
_interpolation_data.xform_curr = get_global_transform();
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
PHYSICS_INTERPOLATION_NODE_WARNING(get_instance_id(), "Interpolated Camera3D triggered from outside physics process");
}
#endif
}
_request_camera_update();
if (doppler_tracking != DOPPLER_TRACKING_DISABLED) {
velocity_tracker->update_position(get_global_transform().origin);
}
// Allow auto-reset when first adding to the tree, as a convenience.
if (_is_physics_interpolation_reset_requested() && is_inside_tree()) {
_notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION);
_set_physics_interpolation_reset_requested(false);
}
} break;
case NOTIFICATION_RESET_PHYSICS_INTERPOLATION: {
if (is_inside_tree()) {
_interpolation_data.xform_curr = get_global_transform();
_interpolation_data.xform_prev = _interpolation_data.xform_curr;
}
} break;
case NOTIFICATION_PAUSED: {
if (is_physics_interpolated_and_enabled() && is_inside_tree() && is_visible_in_tree()) {
_physics_interpolation_ensure_transform_calculated(true);
RenderingServer::get_singleton()->camera_set_transform(camera, _interpolation_data.camera_xform_interpolated);
}
} break;
case NOTIFICATION_EXIT_WORLD: {
@ -151,23 +267,34 @@ void Camera3D::_notification(int p_what) {
if (viewport) {
viewport->find_world_3d()->_register_camera(this);
}
_update_process_mode();
} break;
case NOTIFICATION_LOST_CURRENT: {
if (viewport) {
viewport->find_world_3d()->_remove_camera(this);
}
_update_process_mode();
} break;
}
}
Transform3D Camera3D::get_camera_transform() const {
Transform3D tr = get_global_transform().orthonormalized();
Transform3D Camera3D::_get_adjusted_camera_transform(const Transform3D &p_xform) const {
Transform3D tr = p_xform.orthonormalized();
tr.origin += tr.basis.get_column(1) * v_offset;
tr.origin += tr.basis.get_column(0) * h_offset;
return tr;
}
Transform3D Camera3D::get_camera_transform() const {
if (is_physics_interpolated_and_enabled() && !Engine::get_singleton()->is_in_physics_frame()) {
_physics_interpolation_ensure_transform_calculated();
return _interpolation_data.camera_xform_interpolated;
}
return _get_adjusted_camera_transform(get_global_transform());
}
Projection Camera3D::_get_camera_projection(real_t p_near) const {
Size2 viewport_size = get_viewport()->get_visible_rect().size;
Projection cm;
@ -379,6 +506,11 @@ Point2 Camera3D::unproject_position(const Vector3 &p_pos) const {
Plane p(get_camera_transform().xform_inv(p_pos), 1.0);
p = cm.xform4(p);
// Prevent divide by zero.
// TODO: Investigate, this was causing NaNs.
ERR_FAIL_COND_V(p.d == 0, Point2());
p.normal /= p.d;
Point2 res;

View file

@ -98,7 +98,39 @@ private:
RID pyramid_shape;
Vector<Vector3> pyramid_shape_points;
///////////////////////////////////////////////////////
// INTERPOLATION FUNCTIONS
void _physics_interpolation_ensure_transform_calculated(bool p_force = false) const;
void _physics_interpolation_ensure_data_flipped();
// These can be set by derived Camera3Ds, if they wish to do processing
// (while still allowing physics interpolation to function).
bool _desired_process_internal = false;
bool _desired_physics_process_internal = false;
mutable struct InterpolationData {
Transform3D xform_curr;
Transform3D xform_prev;
Transform3D xform_interpolated;
Transform3D camera_xform_interpolated; // After modification according to camera type.
uint32_t last_update_physics_tick = 0;
uint32_t last_update_frame = UINT32_MAX;
} _interpolation_data;
void _update_process_mode();
protected:
// Use from derived classes to set process modes instead of setting directly.
// This is because physics interpolation may need to request process modes additionally.
void set_desired_process_modes(bool p_process_internal, bool p_physics_process_internal);
// Opportunity for derived classes to interpolate extra attributes.
virtual void physics_interpolation_flip_data() {}
virtual void _physics_interpolated_changed() override;
virtual Transform3D _get_adjusted_camera_transform(const Transform3D &p_xform) const;
///////////////////////////////////////////////////////
void _update_camera();
virtual void _request_camera_update();
void _update_camera_mode();

View file

@ -30,6 +30,7 @@
#include "node_3d.h"
#include "core/math/transform_interpolator.h"
#include "scene/3d/visual_instance_3d.h"
#include "scene/main/viewport.h"
#include "scene/property_utils.h"
@ -176,6 +177,7 @@ void Node3D::_notification(int p_what) {
data.parent = nullptr;
data.C = nullptr;
_update_visibility_parent(true);
_disable_client_physics_interpolation();
} break;
case NOTIFICATION_ENTER_WORLD: {
@ -226,6 +228,12 @@ void Node3D::_notification(int p_what) {
}
#endif
} break;
case NOTIFICATION_RESET_PHYSICS_INTERPOLATION: {
if (data.client_physics_interpolation_data) {
data.client_physics_interpolation_data->global_xform_prev = data.client_physics_interpolation_data->global_xform_curr;
}
} break;
}
}
@ -341,6 +349,119 @@ Transform3D Node3D::get_transform() const {
return data.local_transform;
}
// Return false to timeout and remove from the client interpolation list.
bool Node3D::update_client_physics_interpolation_data() {
if (!is_inside_tree() || !_is_physics_interpolated_client_side()) {
return false;
}
ERR_FAIL_NULL_V(data.client_physics_interpolation_data, false);
ClientPhysicsInterpolationData &pid = *data.client_physics_interpolation_data;
uint64_t tick = Engine::get_singleton()->get_physics_frames();
// Has this update been done already this tick?
// (For instance, get_global_transform_interpolated() could be called multiple times.)
if (pid.current_physics_tick != tick) {
// Timeout?
if (tick >= pid.timeout_physics_tick) {
return false;
}
if (pid.current_physics_tick == (tick - 1)) {
// Normal interpolation situation, there is a continuous flow of data
// from one tick to the next...
pid.global_xform_prev = pid.global_xform_curr;
} else {
// There has been a gap, we cannot sensibly offer interpolation over
// a multitick gap, so we will teleport.
pid.global_xform_prev = get_global_transform();
}
pid.current_physics_tick = tick;
}
pid.global_xform_curr = get_global_transform();
return true;
}
void Node3D::_disable_client_physics_interpolation() {
// Disable any current client side interpolation.
// (This can always restart as normal if you later re-attach the node to the SceneTree.)
if (data.client_physics_interpolation_data) {
memdelete(data.client_physics_interpolation_data);
data.client_physics_interpolation_data = nullptr;
SceneTree *tree = get_tree();
if (tree && _client_physics_interpolation_node_3d_list.in_list()) {
tree->client_physics_interpolation_remove_node_3d(&_client_physics_interpolation_node_3d_list);
}
}
_set_physics_interpolated_client_side(false);
}
Transform3D Node3D::_get_global_transform_interpolated(real_t p_interpolation_fraction) {
ERR_FAIL_COND_V(!is_inside_tree(), Transform3D());
// Set in motion the mechanisms for client side interpolation if not already active.
if (!_is_physics_interpolated_client_side()) {
_set_physics_interpolated_client_side(true);
ERR_FAIL_COND_V(data.client_physics_interpolation_data != nullptr, Transform3D());
data.client_physics_interpolation_data = memnew(ClientPhysicsInterpolationData);
data.client_physics_interpolation_data->global_xform_curr = get_global_transform();
data.client_physics_interpolation_data->global_xform_prev = data.client_physics_interpolation_data->global_xform_curr;
data.client_physics_interpolation_data->current_physics_tick = Engine::get_singleton()->get_physics_frames();
}
// Storing the last tick we requested client interpolation allows us to timeout
// and remove client interpolated nodes from the list to save processing.
// We use some arbitrary timeout here, but this could potentially be user defined.
// Note: This timeout has to be larger than the number of ticks in a frame, otherwise the interpolated
// data will stop flowing before the next frame is drawn. This should only be relevant at high tick rates.
// We could alternatively do this by frames rather than ticks and avoid this problem, but then the behavior
// would be machine dependent.
data.client_physics_interpolation_data->timeout_physics_tick = Engine::get_singleton()->get_physics_frames() + 256;
// Make sure data is up to date.
update_client_physics_interpolation_data();
// Interpolate the current data.
const Transform3D &xform_curr = data.client_physics_interpolation_data->global_xform_curr;
const Transform3D &xform_prev = data.client_physics_interpolation_data->global_xform_prev;
Transform3D res;
TransformInterpolator::interpolate_transform_3d(xform_prev, xform_curr, res, p_interpolation_fraction);
SceneTree *tree = get_tree();
// This should not happen, as is_inside_tree() is checked earlier.
ERR_FAIL_NULL_V(tree, res);
if (!_client_physics_interpolation_node_3d_list.in_list()) {
tree->client_physics_interpolation_add_node_3d(&_client_physics_interpolation_node_3d_list);
}
return res;
}
Transform3D Node3D::get_global_transform_interpolated() {
// Pass through if physics interpolation is switched off.
// This is a convenience, as it allows you to easy turn off interpolation
// without changing any code.
if (!is_physics_interpolated_and_enabled()) {
return get_global_transform();
}
// If we are in the physics frame, the interpolated global transform is meaningless.
// However, there is an exception, we may want to use this as a means of starting off the client
// interpolation pump if not already started (when _is_physics_interpolated_client_side() is false).
if (Engine::get_singleton()->is_in_physics_frame() && _is_physics_interpolated_client_side()) {
return get_global_transform();
}
return _get_global_transform_interpolated(Engine::get_singleton()->get_physics_interpolation_fraction());
}
Transform3D Node3D::get_global_transform() const {
ERR_FAIL_COND_V(!is_inside_tree(), Transform3D());
@ -1140,6 +1261,7 @@ void Node3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_global_transform", "global"), &Node3D::set_global_transform);
ClassDB::bind_method(D_METHOD("get_global_transform"), &Node3D::get_global_transform);
ClassDB::bind_method(D_METHOD("get_global_transform_interpolated"), &Node3D::get_global_transform_interpolated);
ClassDB::bind_method(D_METHOD("set_global_position", "position"), &Node3D::set_global_position);
ClassDB::bind_method(D_METHOD("get_global_position"), &Node3D::get_global_position);
ClassDB::bind_method(D_METHOD("set_global_basis", "basis"), &Node3D::set_global_basis);
@ -1236,4 +1358,27 @@ void Node3D::_bind_methods() {
}
Node3D::Node3D() :
xform_change(this) {}
xform_change(this), _client_physics_interpolation_node_3d_list(this) {
// Default member initializer for bitfield is a C++20 extension, so:
data.top_level = false;
data.inside_world = false;
data.ignore_notification = false;
data.notify_local_transform = false;
data.notify_transform = false;
data.visible = true;
data.disable_scale = false;
data.vi_visible = true;
#ifdef TOOLS_ENABLED
data.gizmos_disabled = false;
data.gizmos_dirty = false;
data.transform_gizmo_visible = true;
#endif
}
Node3D::~Node3D() {
_disable_client_physics_interpolation();
}

View file

@ -85,7 +85,15 @@ private:
DIRTY_GLOBAL_TRANSFORM = 4
};
struct ClientPhysicsInterpolationData {
Transform3D global_xform_curr;
Transform3D global_xform_prev;
uint64_t current_physics_tick = 0;
uint64_t timeout_physics_tick = 0;
};
mutable SelfList<Node> xform_change;
SelfList<Node3D> _client_physics_interpolation_node_3d_list;
// This Data struct is to avoid namespace pollution in derived classes.
@ -101,8 +109,19 @@ private:
Viewport *viewport = nullptr;
bool top_level = false;
bool inside_world = false;
bool top_level : 1;
bool inside_world : 1;
// This is cached, and only currently kept up to date in visual instances.
// This is set if a visual instance is (a) in the tree AND (b) visible via is_visible_in_tree() call.
bool vi_visible : 1;
bool ignore_notification : 1;
bool notify_local_transform : 1;
bool notify_transform : 1;
bool visible : 1;
bool disable_scale : 1;
RID visibility_parent;
@ -110,18 +129,13 @@ private:
List<Node3D *> children;
List<Node3D *>::Element *C = nullptr;
bool ignore_notification = false;
bool notify_local_transform = false;
bool notify_transform = false;
bool visible = true;
bool disable_scale = false;
ClientPhysicsInterpolationData *client_physics_interpolation_data = nullptr;
#ifdef TOOLS_ENABLED
Vector<Ref<Node3DGizmo>> gizmos;
bool gizmos_disabled = false;
bool gizmos_dirty = false;
bool transform_gizmo_visible = true;
bool gizmos_disabled : 1;
bool gizmos_dirty : 1;
bool transform_gizmo_visible : 1;
#endif
} data;
@ -150,6 +164,11 @@ protected:
_FORCE_INLINE_ void _update_local_transform() const;
_FORCE_INLINE_ void _update_rotation_and_scale() const;
void _set_vi_visible(bool p_visible) { data.vi_visible = p_visible; }
bool _is_vi_visible() const { return data.vi_visible; }
Transform3D _get_global_transform_interpolated(real_t p_interpolation_fraction);
void _disable_client_physics_interpolation();
void _notification(int p_what);
static void _bind_methods();
@ -208,6 +227,9 @@ public:
Quaternion get_quaternion() const;
Transform3D get_global_transform() const;
Transform3D get_global_transform_interpolated();
bool update_client_physics_interpolation_data();
#ifdef TOOLS_ENABLED
virtual Transform3D get_global_gizmo_transform() const;
virtual Transform3D get_local_gizmo_transform() const;
@ -279,6 +301,7 @@ public:
NodePath get_visibility_parent() const;
Node3D();
~Node3D();
};
VARIANT_ENUM_CAST(Node3D::RotationEditMode)

View file

@ -503,7 +503,11 @@ Transform3D SkeletonIK3D::_get_target_transform() {
Node3D *target_node_override = cast_to<Node3D>(target_node_override_ref.get_validated_object());
if (target_node_override && target_node_override->is_inside_tree()) {
return target_node_override->get_global_transform();
// Make sure to use the interpolated transform as target.
// When physics interpolation is off this will pass through to get_global_transform().
// When using interpolation, ensure that the target matches the interpolated visual position
// of the target when updating the IK each frame.
return target_node_override->get_global_transform_interpolated();
} else {
return target;
}

View file

@ -30,6 +30,8 @@
#include "visual_instance_3d.h"
#include "core/config/project_settings.h"
AABB VisualInstance3D::get_aabb() const {
AABB ret;
GDVIRTUAL_CALL(_get_aabb, ret);
@ -41,7 +43,38 @@ void VisualInstance3D::_update_visibility() {
return;
}
RS::get_singleton()->instance_set_visible(get_instance(), is_visible_in_tree());
bool already_visible = _is_vi_visible();
bool visible = is_visible_in_tree();
_set_vi_visible(visible);
// If making visible, make sure the rendering server is up to date with the transform.
if (visible && !already_visible) {
if (!_is_using_identity_transform()) {
Transform3D gt = get_global_transform();
RS::get_singleton()->instance_set_transform(instance, gt);
}
}
RS::get_singleton()->instance_set_visible(instance, visible);
}
void VisualInstance3D::_physics_interpolated_changed() {
RenderingServer::get_singleton()->instance_set_interpolated(instance, is_physics_interpolated());
}
void VisualInstance3D::set_instance_use_identity_transform(bool p_enable) {
// Prevent sending instance transforms when using global coordinates.
_set_use_identity_transform(p_enable);
if (is_inside_tree()) {
if (p_enable) {
// Want to make sure instance is using identity transform.
RS::get_singleton()->instance_set_transform(instance, Transform3D());
} else {
// Want to make sure instance is up to date.
RS::get_singleton()->instance_set_transform(instance, get_global_transform());
}
}
}
void VisualInstance3D::_notification(int p_what) {
@ -53,13 +86,52 @@ void VisualInstance3D::_notification(int p_what) {
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
Transform3D gt = get_global_transform();
RenderingServer::get_singleton()->instance_set_transform(instance, gt);
if (_is_vi_visible() || is_physics_interpolated_and_enabled()) {
if (!_is_using_identity_transform()) {
RenderingServer::get_singleton()->instance_set_transform(instance, get_global_transform());
// For instance when first adding to the tree, when the previous transform is
// unset, to prevent streaking from the origin.
if (_is_physics_interpolation_reset_requested() && is_physics_interpolated_and_enabled() && is_inside_tree()) {
if (_is_vi_visible()) {
_notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION);
}
_set_physics_interpolation_reset_requested(false);
}
}
}
} break;
case NOTIFICATION_RESET_PHYSICS_INTERPOLATION: {
if (_is_vi_visible() && is_physics_interpolated() && is_inside_tree()) {
// We must ensure the RenderingServer transform is up to date before resetting.
// This is because NOTIFICATION_TRANSFORM_CHANGED is deferred,
// and cannot be relied to be called in order before NOTIFICATION_RESET_PHYSICS_INTERPOLATION.
if (!_is_using_identity_transform()) {
RenderingServer::get_singleton()->instance_set_transform(instance, get_global_transform());
}
RenderingServer::get_singleton()->instance_reset_physics_interpolation(instance);
}
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
else if (GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
String node_name = is_inside_tree() ? String(get_path()) : String(get_name());
if (!_is_vi_visible()) {
WARN_PRINT("[Physics interpolation] NOTIFICATION_RESET_PHYSICS_INTERPOLATION only works with unhidden nodes: \"" + node_name + "\".");
}
if (!is_physics_interpolated()) {
WARN_PRINT("[Physics interpolation] NOTIFICATION_RESET_PHYSICS_INTERPOLATION only works with interpolated nodes: \"" + node_name + "\".");
}
}
#endif
} break;
case NOTIFICATION_EXIT_WORLD: {
RenderingServer::get_singleton()->instance_set_scenario(instance, RID());
RenderingServer::get_singleton()->instance_attach_skeleton(instance, RID());
_set_vi_visible(false);
} break;
case NOTIFICATION_VISIBILITY_CHANGED: {

View file

@ -45,6 +45,9 @@ class VisualInstance3D : public Node3D {
protected:
void _update_visibility();
virtual void _physics_interpolated_changed() override;
void set_instance_use_identity_transform(bool p_enable);
void _notification(int p_what);
static void _bind_methods();
void _validate_property(PropertyInfo &p_property) const;

View file

@ -138,6 +138,12 @@ void Node::_notification(int p_notification) {
get_tree()->nodes_in_tree_count++;
orphan_node_count--;
// Allow physics interpolated nodes to automatically reset when added to the tree
// (this is to save the user from doing this manually each time).
if (get_tree()->is_physics_interpolation_enabled()) {
_set_physics_interpolation_reset_requested(true);
}
} break;
case NOTIFICATION_EXIT_TREE: {
@ -437,6 +443,18 @@ void Node::_propagate_physics_interpolated(bool p_interpolated) {
data.blocked--;
}
void Node::_propagate_physics_interpolation_reset_requested(bool p_requested) {
if (is_physics_interpolated()) {
data.physics_interpolation_reset_requested = p_requested;
}
data.blocked++;
for (KeyValue<StringName, Node *> &K : data.children) {
K.value->_propagate_physics_interpolation_reset_requested(p_requested);
}
data.blocked--;
}
void Node::move_child(Node *p_child, int p_index) {
ERR_FAIL_COND_MSG(data.inside_tree && !Thread::is_main_thread(), "Moving child node positions inside the SceneTree is only allowed from the main thread. Use call_deferred(\"move_child\",child,index).");
ERR_FAIL_NULL(p_child);
@ -890,15 +908,23 @@ void Node::set_physics_interpolation_mode(PhysicsInterpolationMode p_mode) {
}
// If swapping from interpolated to non-interpolated, use this as an extra means to cause a reset.
if (is_physics_interpolated() && !interpolate) {
reset_physics_interpolation();
if (is_physics_interpolated() && !interpolate && is_inside_tree()) {
propagate_notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION);
}
_propagate_physics_interpolated(interpolate);
}
void Node::reset_physics_interpolation() {
propagate_notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION);
if (is_inside_tree()) {
propagate_notification(NOTIFICATION_RESET_PHYSICS_INTERPOLATION);
// If `reset_physics_interpolation()` is called explicitly by the user
// (e.g. from scripts) then we prevent deferred auto-resets taking place.
// The user is trusted to call reset in the right order, and auto-reset
// will interfere with their control of prev / curr, so should be turned off.
_propagate_physics_interpolation_reset_requested(false);
}
}
bool Node::_is_enabled() const {
@ -3825,6 +3851,9 @@ Node::Node() {
data.unhandled_key_input = false;
data.physics_interpolated = true;
data.physics_interpolation_reset_requested = false;
data.physics_interpolated_client_side = false;
data.use_identity_transform = false;
data.parent_owned = false;
data.in_constructor = true;

View file

@ -225,6 +225,21 @@ private:
// is switched on.
bool physics_interpolated : 1;
// We can auto-reset physics interpolation when e.g. adding a node for the first time.
bool physics_interpolation_reset_requested : 1;
// Most nodes need not be interpolated in the scene tree, physics interpolation
// is normally only needed in the RenderingServer. However if we need to read the
// interpolated transform of a node in the SceneTree, it is necessary to duplicate
// the interpolation logic client side, in order to prevent stalling the RenderingServer
// by reading back.
bool physics_interpolated_client_side : 1;
// For certain nodes (e.g. CPU particles in global mode)
// it can be useful to not send the instance transform to the
// RenderingServer, and specify the mesh in world space.
bool use_identity_transform : 1;
bool parent_owned : 1;
bool in_constructor : 1;
bool use_placeholder : 1;
@ -263,6 +278,7 @@ private:
void _propagate_exit_tree();
void _propagate_after_exit_tree();
void _propagate_physics_interpolated(bool p_interpolated);
void _propagate_physics_interpolation_reset_requested(bool p_requested);
void _propagate_process_owner(Node *p_owner, int p_pause_notification, int p_enabled_notification);
void _propagate_groups_dirty();
Array _get_node_and_resource(const NodePath &p_path);
@ -334,6 +350,15 @@ protected:
void _set_owner_nocheck(Node *p_owner);
void _set_name_nocheck(const StringName &p_name);
void _set_physics_interpolated_client_side(bool p_enable) { data.physics_interpolated_client_side = p_enable; }
bool _is_physics_interpolated_client_side() const { return data.physics_interpolated_client_side; }
void _set_physics_interpolation_reset_requested(bool p_enable) { data.physics_interpolation_reset_requested = p_enable; }
bool _is_physics_interpolation_reset_requested() const { return data.physics_interpolation_reset_requested; }
void _set_use_identity_transform(bool p_enable) { data.use_identity_transform = p_enable; }
bool _is_using_identity_transform() const { return data.use_identity_transform; }
//call from SceneTree
void _call_input(const Ref<InputEvent> &p_event);
void _call_shortcut_input(const Ref<InputEvent> &p_event);

View file

@ -59,6 +59,7 @@
#include "servers/navigation_server_3d.h"
#include "servers/physics_server_2d.h"
#ifndef _3D_DISABLED
#include "scene/3d/node_3d.h"
#include "scene/resources/3d/world_3d.h"
#include "servers/physics_server_3d.h"
#endif // _3D_DISABLED
@ -118,6 +119,29 @@ void SceneTreeTimer::release_connections() {
SceneTreeTimer::SceneTreeTimer() {}
#ifndef _3D_DISABLED
// This should be called once per physics tick, to make sure the transform previous and current
// is kept up to date on the few Node3Ds that are using client side physics interpolation.
void SceneTree::ClientPhysicsInterpolation::physics_process() {
for (SelfList<Node3D> *E = _node_3d_list.first(); E;) {
Node3D *node_3d = E->self();
SelfList<Node3D> *current = E;
// Get the next element here BEFORE we potentially delete one.
E = E->next();
// This will return false if the Node3D has timed out ..
// i.e. if get_global_transform_interpolated() has not been called
// for a few seconds, we can delete from the list to keep processing
// to a minimum.
if (!node_3d->update_client_physics_interpolation_data()) {
_node_3d_list.remove(current);
}
}
}
#endif
void SceneTree::tree_changed() {
emit_signal(tree_changed_name);
}
@ -466,9 +490,31 @@ bool SceneTree::is_physics_interpolation_enabled() const {
return _physics_interpolation_enabled;
}
#ifndef _3D_DISABLED
void SceneTree::client_physics_interpolation_add_node_3d(SelfList<Node3D> *p_elem) {
// This ensures that _update_physics_interpolation_data() will be called at least once every
// physics tick, to ensure the previous and current transforms are kept up to date.
_client_physics_interpolation._node_3d_list.add(p_elem);
}
void SceneTree::client_physics_interpolation_remove_node_3d(SelfList<Node3D> *p_elem) {
_client_physics_interpolation._node_3d_list.remove(p_elem);
}
#endif
void SceneTree::iteration_prepare() {
if (_physics_interpolation_enabled) {
// Make sure any pending transforms from the last tick / frame
// are flushed before pumping the interpolation prev and currents.
flush_transform_notifications();
RenderingServer::get_singleton()->tick();
#ifndef _3D_DISABLED
// Any objects performing client physics interpolation
// should be given an opportunity to keep their previous transforms
// up to date before each new physics tick.
_client_physics_interpolation.physics_process();
#endif
}
}
@ -503,6 +549,14 @@ bool SceneTree::physics_process(double p_time) {
return _quit;
}
void SceneTree::iteration_end() {
// When physics interpolation is active, we want all pending transforms
// to be flushed to the RenderingServer before finishing a physics tick.
if (_physics_interpolation_enabled) {
flush_transform_notifications();
}
}
bool SceneTree::process(double p_time) {
if (MainLoop::process(p_time)) {
_quit = true;
@ -570,6 +624,10 @@ bool SceneTree::process(double p_time) {
#endif // _3D_DISABLED
#endif // TOOLS_ENABLED
if (_physics_interpolation_enabled) {
RenderingServer::get_singleton()->pre_draw(true);
}
return _quit;
}
@ -1761,6 +1819,13 @@ SceneTree::SceneTree() {
set_physics_interpolation_enabled(GLOBAL_DEF("physics/common/physics_interpolation", false));
// Always disable jitter fix if physics interpolation is enabled -
// Jitter fix will interfere with interpolation, and is not necessary
// when interpolation is active.
if (is_physics_interpolation_enabled()) {
Engine::get_singleton()->set_physics_jitter_fix(0);
}
// Initialize network state.
set_multiplayer(MultiplayerAPI::create_default_interface());

View file

@ -41,6 +41,9 @@
class PackedScene;
class Node;
#ifndef _3D_DISABLED
class Node3D;
#endif
class Window;
class Material;
class Mesh;
@ -120,6 +123,13 @@ private:
bool changed = false;
};
#ifndef _3D_DISABLED
struct ClientPhysicsInterpolation {
SelfList<Node3D>::List _node_3d_list;
void physics_process();
} _client_physics_interpolation;
#endif
Window *root = nullptr;
double physics_process_time = 0.0;
@ -315,6 +325,7 @@ public:
virtual void iteration_prepare() override;
virtual bool physics_process(double p_time) override;
virtual void iteration_end() override;
virtual bool process(double p_time) override;
virtual void finalize() override;
@ -423,6 +434,11 @@ public:
void set_physics_interpolation_enabled(bool p_enabled);
bool is_physics_interpolation_enabled() const;
#ifndef _3D_DISABLED
void client_physics_interpolation_add_node_3d(SelfList<Node3D> *p_elem);
void client_physics_interpolation_remove_node_3d(SelfList<Node3D> *p_elem);
#endif
SceneTree();
~SceneTree();
};

View file

@ -5024,6 +5024,13 @@ Viewport::Viewport() {
#endif // _3D_DISABLED
set_sdf_oversize(sdf_oversize); // Set to server.
// Physics interpolation mode for viewports is a special case.
// Typically viewports will be housed within Controls,
// and Controls default to PHYSICS_INTERPOLATION_MODE_OFF.
// Viewports can thus inherit physics interpolation OFF, which is unexpected.
// Setting to ON allows each viewport to have a fresh interpolation state.
set_physics_interpolation_mode(Node::PHYSICS_INTERPOLATION_MODE_ON);
}
Viewport::~Viewport() {

View file

@ -34,10 +34,16 @@
#include "core/object/worker_thread_pool.h"
#include "core/os/os.h"
#include "rendering_light_culler.h"
#include "rendering_server_constants.h"
#include "rendering_server_default.h"
#include <new>
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
// This is used only to obtain node paths for user-friendly physics interpolation warnings.
#include "scene/main/node.h"
#endif
/* HALTON SEQUENCE */
#ifndef _3D_DISABLED
@ -53,6 +59,20 @@ static float get_halton_value(int p_index, int p_base) {
}
#endif // _3D_DISABLED
/* EVENT QUEUING */
void RendererSceneCull::tick() {
if (_interpolation_data.interpolation_enabled) {
update_interpolation_tick(true);
}
}
void RendererSceneCull::pre_draw(bool p_will_draw) {
if (_interpolation_data.interpolation_enabled) {
update_interpolation_frame(p_will_draw);
}
}
/* CAMERA API */
RID RendererSceneCull::camera_allocate() {
@ -93,6 +113,7 @@ void RendererSceneCull::camera_set_frustum(RID p_camera, float p_size, Vector2 p
void RendererSceneCull::camera_set_transform(RID p_camera, const Transform3D &p_transform) {
Camera *camera = camera_owner.get_or_null(p_camera);
ERR_FAIL_NULL(camera);
camera->transform = p_transform.orthonormalized();
}
@ -924,8 +945,45 @@ void RendererSceneCull::instance_set_transform(RID p_instance, const Transform3D
Instance *instance = instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL(instance);
if (instance->transform == p_transform) {
return; //must be checked to avoid worst evil
#ifdef RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
print_line("instance_set_transform " + rtos(p_transform.origin.x) + " .. tick " + itos(Engine::get_singleton()->get_physics_frames()));
#endif
if (!_interpolation_data.interpolation_enabled || !instance->interpolated || !instance->scenario) {
if (instance->transform == p_transform) {
return; // Must be checked to avoid worst evil.
}
#ifdef DEBUG_ENABLED
for (int i = 0; i < 4; i++) {
const Vector3 &v = i < 3 ? p_transform.basis.rows[i] : p_transform.origin;
ERR_FAIL_COND(!v.is_finite());
}
#endif
instance->transform = p_transform;
_instance_queue_update(instance, true);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (_interpolation_data.interpolation_enabled && !instance->interpolated && Engine::get_singleton()->is_in_physics_frame()) {
PHYSICS_INTERPOLATION_NODE_WARNING(instance->object_id, "Non-interpolated instance triggered from physics process");
}
#endif
return;
}
float new_checksum = TransformInterpolator::checksum_transform_3d(p_transform);
bool checksums_match = (instance->transform_checksum_curr == new_checksum) && (instance->transform_checksum_prev == new_checksum);
// We can't entirely reject no changes because we need the interpolation
// system to keep on stewing.
// Optimized check. First checks the checksums. If they pass it does the slow check at the end.
// Alternatively we can do this non-optimized and ignore the checksum... if no change.
if (checksums_match && (instance->transform_curr == p_transform) && (instance->transform_prev == p_transform)) {
return;
}
#ifdef DEBUG_ENABLED
@ -936,8 +994,69 @@ void RendererSceneCull::instance_set_transform(RID p_instance, const Transform3D
}
#endif
instance->transform = p_transform;
instance->transform_curr = p_transform;
#ifdef RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
print_line("\tprev " + rtos(instance->transform_prev.origin.x) + ", curr " + rtos(instance->transform_curr.origin.x));
#endif
// Keep checksums up to date.
instance->transform_checksum_curr = new_checksum;
if (!instance->on_interpolate_transform_list) {
_interpolation_data.instance_transform_update_list_curr->push_back(p_instance);
instance->on_interpolate_transform_list = true;
} else {
DEV_ASSERT(_interpolation_data.instance_transform_update_list_curr->size());
}
// If the instance is invisible, then we are simply updating the data flow, there is no need to calculate the interpolated
// transform or anything else.
// Ideally we would not even call the VisualServer::set_transform() when invisible but that would entail having logic
// to keep track of the previous transform on the SceneTree side. The "early out" below is less efficient but a lot cleaner codewise.
if (!instance->visible) {
return;
}
// Decide on the interpolation method... slerp if possible.
instance->interpolation_method = TransformInterpolator::find_method(instance->transform_prev.basis, instance->transform_curr.basis);
if (!instance->on_interpolate_list) {
_interpolation_data.instance_interpolate_update_list.push_back(p_instance);
instance->on_interpolate_list = true;
} else {
DEV_ASSERT(_interpolation_data.instance_interpolate_update_list.size());
}
_instance_queue_update(instance, true);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
PHYSICS_INTERPOLATION_NODE_WARNING(instance->object_id, "Interpolated instance triggered from outside physics process");
}
#endif
}
void RendererSceneCull::instance_set_interpolated(RID p_instance, bool p_interpolated) {
Instance *instance = instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL(instance);
instance->interpolated = p_interpolated;
}
void RendererSceneCull::instance_reset_physics_interpolation(RID p_instance) {
Instance *instance = instance_owner.get_or_null(p_instance);
ERR_FAIL_NULL(instance);
if (_interpolation_data.interpolation_enabled && instance->interpolated) {
instance->transform_prev = instance->transform_curr;
instance->transform_checksum_prev = instance->transform_checksum_curr;
#ifdef RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
print_line("instance_reset_physics_interpolation .. tick " + itos(Engine::get_singleton()->get_physics_frames()));
print_line("\tprev " + rtos(instance->transform_prev.origin.x) + ", curr " + rtos(instance->transform_curr.origin.x));
#endif
}
}
void RendererSceneCull::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
@ -990,6 +1109,23 @@ void RendererSceneCull::instance_set_visible(RID p_instance, bool p_visible) {
if (p_visible) {
if (instance->scenario != nullptr) {
// Special case for physics interpolation, we want to ensure the interpolated data is up to date
if (_interpolation_data.interpolation_enabled && instance->interpolated && !instance->on_interpolate_list) {
// Do all the extra work we normally do on instance_set_transform(), because this is optimized out for hidden instances.
// This prevents a glitch of stale interpolation transform data when unhiding before the next physics tick.
instance->interpolation_method = TransformInterpolator::find_method(instance->transform_prev.basis, instance->transform_curr.basis);
_interpolation_data.instance_interpolate_update_list.push_back(p_instance);
instance->on_interpolate_list = true;
// We must also place on the transform update list for a tick, so the system
// can auto-detect if the instance is no longer moving, and remove from the interpolate lists again.
// If this step is ignored, an unmoving instance could remain on the interpolate lists indefinitely
// (or rather until the object is deleted) and cause unnecessary updates and drawcalls.
if (!instance->on_interpolate_transform_list) {
_interpolation_data.instance_transform_update_list_curr->push_back(p_instance);
instance->on_interpolate_transform_list = true;
}
}
_instance_queue_update(instance, true, false);
}
} else if (instance->indexer_id.is_valid()) {
@ -1574,11 +1710,22 @@ void RendererSceneCull::instance_geometry_get_shader_parameter_list(RID p_instan
void RendererSceneCull::_update_instance(Instance *p_instance) {
p_instance->version++;
// When not using interpolation the transform is used straight.
const Transform3D *instance_xform = &p_instance->transform;
// Can possibly use the most up to date current transform here when using physics interpolation ...
// uncomment the next line for this..
//if (_interpolation_data.interpolation_enabled && p_instance->interpolated) {
// instance_xform = &p_instance->transform_curr;
//}
// However it does seem that using the interpolated transform (transform) works for keeping AABBs
// up to date to avoid culling errors.
if (p_instance->base_type == RS::INSTANCE_LIGHT) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
RSG::light_storage->light_instance_set_transform(light->instance, p_instance->transform);
RSG::light_storage->light_instance_set_aabb(light->instance, p_instance->transform.xform(p_instance->aabb));
RSG::light_storage->light_instance_set_transform(light->instance, *instance_xform);
RSG::light_storage->light_instance_set_aabb(light->instance, instance_xform->xform(p_instance->aabb));
light->make_shadow_dirty();
RS::LightBakeMode bake_mode = RSG::light_storage->light_get_bake_mode(p_instance->base);
@ -1601,7 +1748,7 @@ void RendererSceneCull::_update_instance(Instance *p_instance) {
} else if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
RSG::light_storage->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
RSG::light_storage->reflection_probe_instance_set_transform(reflection_probe->instance, *instance_xform);
if (p_instance->scenario && p_instance->array_index >= 0) {
InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
@ -1610,17 +1757,17 @@ void RendererSceneCull::_update_instance(Instance *p_instance) {
} else if (p_instance->base_type == RS::INSTANCE_DECAL) {
InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data);
RSG::texture_storage->decal_instance_set_transform(decal->instance, p_instance->transform);
RSG::texture_storage->decal_instance_set_transform(decal->instance, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
InstanceLightmapData *lightmap = static_cast<InstanceLightmapData *>(p_instance->base_data);
RSG::light_storage->lightmap_instance_set_transform(lightmap->instance, p_instance->transform);
RSG::light_storage->lightmap_instance_set_transform(lightmap->instance, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_VOXEL_GI) {
InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(p_instance->base_data);
scene_render->voxel_gi_instance_set_transform_to_data(voxel_gi->probe_instance, p_instance->transform);
scene_render->voxel_gi_instance_set_transform_to_data(voxel_gi->probe_instance, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
RSG::particles_storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
RSG::particles_storage->particles_set_emission_transform(p_instance->base, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(p_instance->base_data);
@ -1628,13 +1775,13 @@ void RendererSceneCull::_update_instance(Instance *p_instance) {
if (RSG::particles_storage->particles_collision_is_heightfield(p_instance->base)) {
heightfield_particle_colliders_update_list.insert(p_instance);
}
RSG::particles_storage->particles_collision_instance_set_transform(collision->instance, p_instance->transform);
RSG::particles_storage->particles_collision_instance_set_transform(collision->instance, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_FOG_VOLUME) {
InstanceFogVolumeData *volume = static_cast<InstanceFogVolumeData *>(p_instance->base_data);
scene_render->fog_volume_instance_set_transform(volume->instance, p_instance->transform);
scene_render->fog_volume_instance_set_transform(volume->instance, *instance_xform);
} else if (p_instance->base_type == RS::INSTANCE_OCCLUDER) {
if (p_instance->scenario) {
RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(p_instance->scenario->self, p_instance->self, p_instance->base, p_instance->transform, p_instance->visible);
RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(p_instance->scenario->self, p_instance->self, p_instance->base, *instance_xform, p_instance->visible);
}
}
@ -1654,7 +1801,7 @@ void RendererSceneCull::_update_instance(Instance *p_instance) {
}
AABB new_aabb;
new_aabb = p_instance->transform.xform(p_instance->aabb);
new_aabb = instance_xform->xform(p_instance->aabb);
p_instance->transformed_aabb = new_aabb;
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
@ -1681,11 +1828,11 @@ void RendererSceneCull::_update_instance(Instance *p_instance) {
}
ERR_FAIL_NULL(geom->geometry_instance);
geom->geometry_instance->set_transform(p_instance->transform, p_instance->aabb, p_instance->transformed_aabb);
geom->geometry_instance->set_transform(*instance_xform, p_instance->aabb, p_instance->transformed_aabb);
}
// note: we had to remove is equal approx check here, it meant that det == 0.000004 won't work, which is the case for some of our scenes.
if (p_instance->scenario == nullptr || !p_instance->visible || p_instance->transform.basis.determinant() == 0) {
if (p_instance->scenario == nullptr || !p_instance->visible || instance_xform->basis.determinant() == 0) {
p_instance->prev_transformed_aabb = p_instance->transformed_aabb;
return;
}
@ -4180,6 +4327,8 @@ bool RendererSceneCull::free(RID p_rid) {
Instance *instance = instance_owner.get_or_null(p_rid);
_interpolation_data.notify_free_instance(p_rid, *instance);
instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0);
instance_set_scenario(p_rid, RID());
instance_set_base(p_rid, RID());
@ -4240,6 +4389,106 @@ void RendererSceneCull::set_scene_render(RendererSceneRender *p_scene_render) {
geometry_instance_pair_mask = scene_render->geometry_instance_get_pair_mask();
}
/* INTERPOLATION API */
void RendererSceneCull::update_interpolation_tick(bool p_process) {
// TODO (MultiMesh): Update interpolation in storage.
// INSTANCES
// Detect any that were on the previous transform list that are no longer active;
// we should remove them from the interpolate list.
for (const RID &rid : *_interpolation_data.instance_transform_update_list_prev) {
Instance *instance = instance_owner.get_or_null(rid);
bool active = true;
// No longer active? (Either the instance deleted or no longer being transformed.)
if (instance && !instance->on_interpolate_transform_list) {
active = false;
instance->on_interpolate_list = false;
// Make sure the most recent transform is set...
instance->transform = instance->transform_curr;
// ... and that both prev and current are the same, just in case of any interpolations.
instance->transform_prev = instance->transform_curr;
// Make sure instances are updated one more time to ensure the AABBs are correct.
_instance_queue_update(instance, true);
}
if (!instance) {
active = false;
}
if (!active) {
_interpolation_data.instance_interpolate_update_list.erase(rid);
}
}
// Now for any in the transform list (being actively interpolated), keep the previous transform
// value up to date, ready for the next tick.
if (p_process) {
for (const RID &rid : *_interpolation_data.instance_transform_update_list_curr) {
Instance *instance = instance_owner.get_or_null(rid);
if (instance) {
instance->transform_prev = instance->transform_curr;
instance->transform_checksum_prev = instance->transform_checksum_curr;
instance->on_interpolate_transform_list = false;
}
}
}
// We maintain a mirror list for the transform updates, so we can detect when an instance
// is no longer being transformed, and remove it from the interpolate list.
SWAP(_interpolation_data.instance_transform_update_list_curr, _interpolation_data.instance_transform_update_list_prev);
// Prepare for the next iteration.
_interpolation_data.instance_transform_update_list_curr->clear();
}
void RendererSceneCull::update_interpolation_frame(bool p_process) {
// TODO (MultiMesh): Update interpolation in storage.
if (p_process) {
real_t f = Engine::get_singleton()->get_physics_interpolation_fraction();
for (const RID &rid : _interpolation_data.instance_interpolate_update_list) {
Instance *instance = instance_owner.get_or_null(rid);
if (instance) {
TransformInterpolator::interpolate_transform_3d_via_method(instance->transform_prev, instance->transform_curr, instance->transform, f, instance->interpolation_method);
#ifdef RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
print_line("\t\tinterpolated: " + rtos(instance->transform.origin.x) + "\t( prev " + rtos(instance->transform_prev.origin.x) + ", curr " + rtos(instance->transform_curr.origin.x) + " ) on tick " + itos(Engine::get_singleton()->get_physics_frames()));
#endif
// Make sure AABBs are constantly up to date through the interpolation.
_instance_queue_update(instance, true);
}
}
}
}
void RendererSceneCull::set_physics_interpolation_enabled(bool p_enabled) {
_interpolation_data.interpolation_enabled = p_enabled;
}
void RendererSceneCull::InterpolationData::notify_free_instance(RID p_rid, Instance &r_instance) {
r_instance.on_interpolate_list = false;
r_instance.on_interpolate_transform_list = false;
if (!interpolation_enabled) {
return;
}
// If the instance was on any of the lists, remove.
instance_interpolate_update_list.erase_multiple_unordered(p_rid);
instance_transform_update_list_curr->erase_multiple_unordered(p_rid);
instance_transform_update_list_prev->erase_multiple_unordered(p_rid);
}
RendererSceneCull::RendererSceneCull() {
render_pass = 1;
singleton = this;

View file

@ -32,6 +32,7 @@
#define RENDERER_SCENE_CULL_H
#include "core/math/dynamic_bvh.h"
#include "core/math/transform_interpolator.h"
#include "core/templates/bin_sorted_array.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
@ -66,6 +67,11 @@ public:
static RendererSceneCull *singleton;
/* EVENT QUEUING */
void tick();
void pre_draw(bool p_will_draw);
/* CAMERA API */
struct Camera {
@ -406,8 +412,16 @@ public:
RID mesh_instance; //only used for meshes and when skeleton/blendshapes exist
// This is the main transform to be drawn with ...
// This will either be the interpolated transform (when using fixed timestep interpolation)
// or the ONLY transform (when not using FTI).
Transform3D transform;
// For interpolation we store the current transform (this physics tick)
// and the transform in the previous tick.
Transform3D transform_curr;
Transform3D transform_prev;
float lod_bias;
bool ignore_occlusion_culling;
@ -418,13 +432,23 @@ public:
RS::ShadowCastingSetting cast_shadows;
uint32_t layer_mask;
//fit in 32 bits
bool mirror : 8;
bool receive_shadows : 8;
bool visible : 8;
bool baked_light : 2; //this flag is only to know if it actually did use baked light
bool dynamic_gi : 2; //same above for dynamic objects
bool redraw_if_visible : 4;
// Fit in 32 bits.
bool mirror : 1;
bool receive_shadows : 1;
bool visible : 1;
bool baked_light : 1; // This flag is only to know if it actually did use baked light.
bool dynamic_gi : 1; // Same as above for dynamic objects.
bool redraw_if_visible : 1;
bool on_interpolate_list : 1;
bool on_interpolate_transform_list : 1;
bool interpolated : 1;
TransformInterpolator::Method interpolation_method : 3;
// For fixed timestep interpolation.
// Note 32 bits is plenty for checksum, no need for real_t
float transform_checksum_curr;
float transform_checksum_prev;
Instance *lightmap = nullptr;
Rect2 lightmap_uv_scale;
@ -574,6 +598,14 @@ public:
baked_light = true;
dynamic_gi = false;
redraw_if_visible = false;
on_interpolate_list = false;
on_interpolate_transform_list = false;
interpolated = true;
interpolation_method = TransformInterpolator::INTERP_LERP;
transform_checksum_curr = 0.0;
transform_checksum_prev = 0.0;
lightmap_slice_index = 0;
lightmap = nullptr;
lightmap_cull_index = 0;
@ -1027,6 +1059,8 @@ public:
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center);
virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform);
virtual void instance_set_interpolated(RID p_instance, bool p_interpolated);
virtual void instance_reset_physics_interpolation(RID p_instance);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material);
@ -1393,6 +1427,22 @@ public:
virtual void update_visibility_notifiers();
/* INTERPOLATION */
void update_interpolation_tick(bool p_process = true);
void update_interpolation_frame(bool p_process = true);
virtual void set_physics_interpolation_enabled(bool p_enabled);
struct InterpolationData {
void notify_free_instance(RID p_rid, Instance &r_instance);
LocalVector<RID> instance_interpolate_update_list;
LocalVector<RID> instance_transform_update_lists[2];
LocalVector<RID> *instance_transform_update_list_curr = &instance_transform_update_lists[0];
LocalVector<RID> *instance_transform_update_list_prev = &instance_transform_update_lists[1];
bool interpolation_enabled = false;
} _interpolation_data;
RendererSceneCull();
virtual ~RendererSceneCull();
};

View file

@ -83,6 +83,8 @@ public:
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask) = 0;
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center) = 0;
virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform) = 0;
virtual void instance_set_interpolated(RID p_instance, bool p_interpolated) = 0;
virtual void instance_reset_physics_interpolation(RID p_instance) = 0;
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id) = 0;
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) = 0;
virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material) = 0;
@ -350,6 +352,16 @@ public:
virtual bool free(RID p_rid) = 0;
/* Physics interpolation */
virtual void update_interpolation_tick(bool p_process = true) = 0;
virtual void set_physics_interpolation_enabled(bool p_enabled) = 0;
/* Event queueing */
virtual void tick() = 0;
virtual void pre_draw(bool p_will_draw) = 0;
RenderingMethod();
virtual ~RenderingMethod();
};

View file

@ -0,0 +1,48 @@
/**************************************************************************/
/* rendering_server_constants.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERING_SERVER_CONSTANTS_H
#define RENDERING_SERVER_CONSTANTS_H
// Use for constants etc. that need not be included as often as rendering_server.h
// to reduce dependencies and prevent slow compilation.
// This is a "cheap" include, and can be used from scene side code as well as servers.
// N.B. ONLY allow these defined in DEV_ENABLED builds, they will slow
// performance, and are only necessary to use for debugging.
#ifdef DEV_ENABLED
// Uncomment this define to produce debugging output for physics interpolation.
//#define RENDERING_SERVER_DEBUG_PHYSICS_INTERPOLATION
#endif // DEV_ENABLED
#endif // RENDERING_SERVER_CONSTANTS_H

View file

@ -381,12 +381,9 @@ void RenderingServerDefault::_thread_loop() {
/* INTERPOLATION */
void RenderingServerDefault::tick() {
RSG::canvas->tick();
}
void RenderingServerDefault::set_physics_interpolation_enabled(bool p_enabled) {
RSG::canvas->set_physics_interpolation_enabled(p_enabled);
RSG::scene->set_physics_interpolation_enabled(p_enabled);
}
/* EVENT QUEUING */
@ -411,6 +408,15 @@ void RenderingServerDefault::draw(bool p_swap_buffers, double frame_step) {
}
}
void RenderingServerDefault::tick() {
RSG::canvas->tick();
RSG::scene->tick();
}
void RenderingServerDefault::pre_draw(bool p_will_draw) {
RSG::scene->pre_draw(p_will_draw);
}
void RenderingServerDefault::_call_on_render_thread(const Callable &p_callable) {
p_callable.call();
}

View file

@ -802,6 +802,8 @@ public:
FUNC2(instance_set_layer_mask, RID, uint32_t)
FUNC3(instance_set_pivot_data, RID, float, bool)
FUNC2(instance_set_transform, RID, const Transform3D &)
FUNC2(instance_set_interpolated, RID, bool)
FUNC1(instance_reset_physics_interpolation, RID)
FUNC2(instance_attach_object_instance_id, RID, ObjectID)
FUNC3(instance_set_blend_shape_weight, RID, int, float)
FUNC3(instance_set_surface_override_material, RID, int, RID)
@ -1048,7 +1050,6 @@ public:
/* INTERPOLATION */
virtual void tick() override;
virtual void set_physics_interpolation_enabled(bool p_enabled) override;
/* EVENT QUEUING */
@ -1060,6 +1061,8 @@ public:
virtual bool has_changed() const override;
virtual void init() override;
virtual void finish() override;
virtual void tick() override;
virtual void pre_draw(bool p_will_draw) override;
virtual bool is_on_render_thread() override {
return Thread::get_caller_id() == server_thread;

View file

@ -3116,6 +3116,8 @@ void RenderingServer::_bind_methods() {
ClassDB::bind_method(D_METHOD("instance_set_layer_mask", "instance", "mask"), &RenderingServer::instance_set_layer_mask);
ClassDB::bind_method(D_METHOD("instance_set_pivot_data", "instance", "sorting_offset", "use_aabb_center"), &RenderingServer::instance_set_pivot_data);
ClassDB::bind_method(D_METHOD("instance_set_transform", "instance", "transform"), &RenderingServer::instance_set_transform);
ClassDB::bind_method(D_METHOD("instance_set_interpolated", "instance", "interpolated"), &RenderingServer::instance_set_interpolated);
ClassDB::bind_method(D_METHOD("instance_reset_physics_interpolation", "instance"), &RenderingServer::instance_reset_physics_interpolation);
ClassDB::bind_method(D_METHOD("instance_attach_object_instance_id", "instance", "id"), &RenderingServer::instance_attach_object_instance_id);
ClassDB::bind_method(D_METHOD("instance_set_blend_shape_weight", "instance", "shape", "weight"), &RenderingServer::instance_set_blend_shape_weight);
ClassDB::bind_method(D_METHOD("instance_set_surface_override_material", "instance", "surface", "material"), &RenderingServer::instance_set_surface_override_material);

View file

@ -1344,6 +1344,8 @@ public:
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask) = 0;
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center) = 0;
virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform) = 0;
virtual void instance_set_interpolated(RID p_instance, bool p_interpolated) = 0;
virtual void instance_reset_physics_interpolation(RID p_instance) = 0;
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id) = 0;
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) = 0;
virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material) = 0;
@ -1657,7 +1659,6 @@ public:
/* INTERPOLATION */
virtual void tick() = 0;
virtual void set_physics_interpolation_enabled(bool p_enabled) = 0;
/* EVENT QUEUING */
@ -1669,6 +1670,8 @@ public:
virtual bool has_changed() const = 0;
virtual void init();
virtual void finish() = 0;
virtual void tick() = 0;
virtual void pre_draw(bool p_will_draw) = 0;
/* STATUS INFORMATION */