Merge pull request #55675 from raulsntos/csharp-basis-quaternion
Rename C# `Quaternion()` -> `GetQuaternion()`
This commit is contained in:
commit
37302b5c24
2 changed files with 83 additions and 83 deletions
|
@ -209,27 +209,6 @@ namespace Godot
|
|||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the <see cref="Basis"/>'s rotation in the form of a
|
||||
/// <see cref="Quaternion"/>. See <see cref="GetEuler"/> if you
|
||||
/// need Euler angles, but keep in mind quaternions should generally
|
||||
/// be preferred to Euler angles.
|
||||
/// </summary>
|
||||
/// <returns>The basis rotation.</returns>
|
||||
public Quaternion GetRotationQuaternion()
|
||||
{
|
||||
Basis orthonormalizedBasis = Orthonormalized();
|
||||
real_t det = orthonormalizedBasis.Determinant();
|
||||
if (det < 0)
|
||||
{
|
||||
// Ensure that the determinant is 1, such that result is a proper
|
||||
// rotation matrix which can be represented by Euler angles.
|
||||
orthonormalizedBasis = orthonormalizedBasis.Scaled(-Vector3.One);
|
||||
}
|
||||
|
||||
return orthonormalizedBasis.Quaternion();
|
||||
}
|
||||
|
||||
internal void SetQuaternionScale(Quaternion quaternion, Vector3 scale)
|
||||
{
|
||||
SetDiagonal(scale);
|
||||
|
@ -272,8 +251,8 @@ namespace Godot
|
|||
/// The returned vector contains the rotation angles in
|
||||
/// the format (X angle, Y angle, Z angle).
|
||||
///
|
||||
/// Consider using the <see cref="Quaternion()"/> method instead, which
|
||||
/// returns a <see cref="Godot.Quaternion"/> quaternion instead of Euler angles.
|
||||
/// Consider using the <see cref="GetRotationQuaternion"/> method instead, which
|
||||
/// returns a <see cref="Quaternion"/> quaternion instead of Euler angles.
|
||||
/// </summary>
|
||||
/// <returns>A <see cref="Vector3"/> representing the basis rotation in Euler angles.</returns>
|
||||
public Vector3 GetEuler()
|
||||
|
@ -308,6 +287,85 @@ namespace Godot
|
|||
return euler;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the basis's rotation in the form of a quaternion.
|
||||
/// See <see cref="GetEuler()"/> if you need Euler angles, but keep in
|
||||
/// mind that quaternions should generally be preferred to Euler angles.
|
||||
/// </summary>
|
||||
/// <returns>A <see cref="Quaternion"/> representing the basis's rotation.</returns>
|
||||
internal Quaternion GetQuaternion()
|
||||
{
|
||||
real_t trace = Row0[0] + Row1[1] + Row2[2];
|
||||
|
||||
if (trace > 0.0f)
|
||||
{
|
||||
real_t s = Mathf.Sqrt(trace + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row2[1] - Row1[2]) * inv_s,
|
||||
(Row0[2] - Row2[0]) * inv_s,
|
||||
(Row1[0] - Row0[1]) * inv_s,
|
||||
s * 0.25f
|
||||
);
|
||||
}
|
||||
|
||||
if (Row0[0] > Row1[1] && Row0[0] > Row2[2])
|
||||
{
|
||||
real_t s = Mathf.Sqrt(Row0[0] - Row1[1] - Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
s * 0.25f,
|
||||
(Row0[1] + Row1[0]) * inv_s,
|
||||
(Row0[2] + Row2[0]) * inv_s,
|
||||
(Row2[1] - Row1[2]) * inv_s
|
||||
);
|
||||
}
|
||||
|
||||
if (Row1[1] > Row2[2])
|
||||
{
|
||||
real_t s = Mathf.Sqrt(-Row0[0] + Row1[1] - Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row0[1] + Row1[0]) * inv_s,
|
||||
s * 0.25f,
|
||||
(Row1[2] + Row2[1]) * inv_s,
|
||||
(Row0[2] - Row2[0]) * inv_s
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
real_t s = Mathf.Sqrt(-Row0[0] - Row1[1] + Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row0[2] + Row2[0]) * inv_s,
|
||||
(Row1[2] + Row2[1]) * inv_s,
|
||||
s * 0.25f,
|
||||
(Row1[0] - Row0[1]) * inv_s
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the <see cref="Basis"/>'s rotation in the form of a
|
||||
/// <see cref="Quaternion"/>. See <see cref="GetEuler"/> if you
|
||||
/// need Euler angles, but keep in mind quaternions should generally
|
||||
/// be preferred to Euler angles.
|
||||
/// </summary>
|
||||
/// <returns>The basis rotation.</returns>
|
||||
public Quaternion GetRotationQuaternion()
|
||||
{
|
||||
Basis orthonormalizedBasis = Orthonormalized();
|
||||
real_t det = orthonormalizedBasis.Determinant();
|
||||
if (det < 0)
|
||||
{
|
||||
// Ensure that the determinant is 1, such that result is a proper
|
||||
// rotation matrix which can be represented by Euler angles.
|
||||
orthonormalizedBasis = orthonormalizedBasis.Scaled(-Vector3.One);
|
||||
}
|
||||
|
||||
return orthonormalizedBasis.GetQuaternion();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Get rows by index. Rows are not very useful for user code,
|
||||
/// but are more efficient for some internal calculations.
|
||||
|
@ -600,64 +658,6 @@ namespace Godot
|
|||
);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the basis's rotation in the form of a quaternion.
|
||||
/// See <see cref="GetEuler()"/> if you need Euler angles, but keep in
|
||||
/// mind that quaternions should generally be preferred to Euler angles.
|
||||
/// </summary>
|
||||
/// <returns>A <see cref="Godot.Quaternion"/> representing the basis's rotation.</returns>
|
||||
public Quaternion Quaternion()
|
||||
{
|
||||
real_t trace = Row0[0] + Row1[1] + Row2[2];
|
||||
|
||||
if (trace > 0.0f)
|
||||
{
|
||||
real_t s = Mathf.Sqrt(trace + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row2[1] - Row1[2]) * inv_s,
|
||||
(Row0[2] - Row2[0]) * inv_s,
|
||||
(Row1[0] - Row0[1]) * inv_s,
|
||||
s * 0.25f
|
||||
);
|
||||
}
|
||||
|
||||
if (Row0[0] > Row1[1] && Row0[0] > Row2[2])
|
||||
{
|
||||
real_t s = Mathf.Sqrt(Row0[0] - Row1[1] - Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
s * 0.25f,
|
||||
(Row0[1] + Row1[0]) * inv_s,
|
||||
(Row0[2] + Row2[0]) * inv_s,
|
||||
(Row2[1] - Row1[2]) * inv_s
|
||||
);
|
||||
}
|
||||
|
||||
if (Row1[1] > Row2[2])
|
||||
{
|
||||
real_t s = Mathf.Sqrt(-Row0[0] + Row1[1] - Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row0[1] + Row1[0]) * inv_s,
|
||||
s * 0.25f,
|
||||
(Row1[2] + Row2[1]) * inv_s,
|
||||
(Row0[2] - Row2[0]) * inv_s
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
real_t s = Mathf.Sqrt(-Row0[0] - Row1[1] + Row2[2] + 1.0f) * 2f;
|
||||
real_t inv_s = 1f / s;
|
||||
return new Quaternion(
|
||||
(Row0[2] + Row2[0]) * inv_s,
|
||||
(Row1[2] + Row2[1]) * inv_s,
|
||||
s * 0.25f,
|
||||
(Row1[0] - Row0[1]) * inv_s
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
private static readonly Basis[] _orthoBases = {
|
||||
new Basis(1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f),
|
||||
new Basis(0f, -1f, 0f, 1f, 0f, 0f, 0f, 0f, 1f),
|
||||
|
@ -745,7 +745,7 @@ namespace Godot
|
|||
/// given in the vector format as (X angle, Y angle, Z angle).
|
||||
///
|
||||
/// Consider using the <see cref="Basis(Quaternion)"/> constructor instead, which
|
||||
/// uses a <see cref="Godot.Quaternion"/> quaternion instead of Euler angles.
|
||||
/// uses a <see cref="Quaternion"/> quaternion instead of Euler angles.
|
||||
/// </summary>
|
||||
/// <param name="eulerYXZ">The Euler angles to create the basis from.</param>
|
||||
public Basis(Vector3 eulerYXZ)
|
||||
|
|
|
@ -377,7 +377,7 @@ namespace Godot
|
|||
/// <param name="basis">The <see cref="Basis"/> to construct from.</param>
|
||||
public Quaternion(Basis basis)
|
||||
{
|
||||
this = basis.Quaternion();
|
||||
this = basis.GetQuaternion();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
|
|
Loading…
Reference in a new issue