Use best fit normals for storing screen space normals

This commit is contained in:
clayjohn 2023-12-18 15:35:26 -07:00
parent bf8dd73e9d
commit 43cf21cb71
19 changed files with 207 additions and 41 deletions

View file

@ -328,6 +328,7 @@ private:
}; };
enum { enum {
INSTANCE_DATA_FLAGS_DYNAMIC = 1 << 3,
INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4, INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4,
INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5, INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5,
INSTANCE_DATA_FLAG_USE_LIGHTMAP_CAPTURE = 1 << 7, INSTANCE_DATA_FLAG_USE_LIGHTMAP_CAPTURE = 1 << 7,

View file

@ -533,7 +533,7 @@ void CopyEffects::copy_to_atlas_fb(RID p_source_rd_texture, RID p_dest_framebuff
RD::get_singleton()->draw_list_draw(draw_list, true); RD::get_singleton()->draw_list_draw(draw_list, true);
} }
void CopyEffects::copy_to_fb_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y, bool p_force_luminance, bool p_alpha_to_zero, bool p_srgb, RID p_secondary, bool p_multiview, bool p_alpha_to_one, bool p_linear) { void CopyEffects::copy_to_fb_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y, bool p_force_luminance, bool p_alpha_to_zero, bool p_srgb, RID p_secondary, bool p_multiview, bool p_alpha_to_one, bool p_linear, bool p_normal) {
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache); ERR_FAIL_NULL(uniform_set_cache);
MaterialStorage *material_storage = MaterialStorage::get_singleton(); MaterialStorage *material_storage = MaterialStorage::get_singleton();
@ -564,6 +564,10 @@ void CopyEffects::copy_to_fb_rect(RID p_source_rd_texture, RID p_dest_framebuffe
copy_to_fb.push_constant.luminance_multiplier = prefer_raster_effects ? 2.0 : 1.0; copy_to_fb.push_constant.luminance_multiplier = prefer_raster_effects ? 2.0 : 1.0;
} }
if (p_normal) {
copy_to_fb.push_constant.flags |= COPY_TO_FB_FLAG_NORMAL;
}
// setup our uniforms // setup our uniforms
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);

View file

@ -190,6 +190,7 @@ private:
COPY_TO_FB_FLAG_SRGB = (1 << 4), COPY_TO_FB_FLAG_SRGB = (1 << 4),
COPY_TO_FB_FLAG_ALPHA_TO_ONE = (1 << 5), COPY_TO_FB_FLAG_ALPHA_TO_ONE = (1 << 5),
COPY_TO_FB_FLAG_LINEAR = (1 << 6), COPY_TO_FB_FLAG_LINEAR = (1 << 6),
COPY_TO_FB_FLAG_NORMAL = (1 << 7),
}; };
struct CopyToFbPushConstant { struct CopyToFbPushConstant {
@ -328,7 +329,7 @@ public:
void copy_cubemap_to_panorama(RID p_source_cube, RID p_dest_panorama, const Size2i &p_panorama_size, float p_lod, bool p_is_array); void copy_cubemap_to_panorama(RID p_source_cube, RID p_dest_panorama, const Size2i &p_panorama_size, float p_lod, bool p_is_array);
void copy_depth_to_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y = false); void copy_depth_to_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y = false);
void copy_depth_to_rect_and_linearize(RID p_source_rd_texture, RID p_dest_texture, const Rect2i &p_rect, bool p_flip_y, float p_z_near, float p_z_far); void copy_depth_to_rect_and_linearize(RID p_source_rd_texture, RID p_dest_texture, const Rect2i &p_rect, bool p_flip_y, float p_z_near, float p_z_far);
void copy_to_fb_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y = false, bool p_force_luminance = false, bool p_alpha_to_zero = false, bool p_srgb = false, RID p_secondary = RID(), bool p_multiview = false, bool alpha_to_one = false, bool p_linear = false); void copy_to_fb_rect(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2i &p_rect, bool p_flip_y = false, bool p_force_luminance = false, bool p_alpha_to_zero = false, bool p_srgb = false, RID p_secondary = RID(), bool p_multiview = false, bool alpha_to_one = false, bool p_linear = false, bool p_normal = false);
void copy_to_atlas_fb(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2 &p_uv_rect, RD::DrawListID p_draw_list, bool p_flip_y = false, bool p_panorama = false); void copy_to_atlas_fb(RID p_source_rd_texture, RID p_dest_framebuffer, const Rect2 &p_uv_rect, RD::DrawListID p_draw_list, bool p_flip_y = false, bool p_panorama = false);
void copy_to_drawlist(RD::DrawListID p_draw_list, RD::FramebufferFormatID p_fb_format, RID p_source_rd_texture, bool p_linear = false); void copy_to_drawlist(RD::DrawListID p_draw_list, RD::FramebufferFormatID p_fb_format, RID p_source_rd_texture, bool p_linear = false);
void copy_raster(RID p_source_texture, RID p_dest_framebuffer); void copy_raster(RID p_source_texture, RID p_dest_framebuffer);

View file

@ -961,13 +961,17 @@ void RenderForwardClustered::_fill_render_list(RenderListType p_render_list, con
inst->gi_offset_cache = 0xFFFFFFFF; inst->gi_offset_cache = 0xFFFFFFFF;
} }
} }
if (p_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS || p_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS_VOXEL_GI || p_pass_mode == PASS_MODE_COLOR) {
if (p_pass_mode == PASS_MODE_COLOR && p_using_motion_pass) {
bool transform_changed = inst->prev_transform_change_frame == frame; bool transform_changed = inst->prev_transform_change_frame == frame;
bool has_mesh_instance = inst->mesh_instance.is_valid(); bool has_mesh_instance = inst->mesh_instance.is_valid();
bool uses_particles = inst->base_flags & INSTANCE_DATA_FLAG_PARTICLES; bool uses_particles = inst->base_flags & INSTANCE_DATA_FLAG_PARTICLES;
bool is_multimesh_with_motion = !uses_particles && (inst->base_flags & INSTANCE_DATA_FLAG_MULTIMESH) && mesh_storage->_multimesh_uses_motion_vectors_offsets(inst->data->base); bool is_multimesh_with_motion = !uses_particles && (inst->base_flags & INSTANCE_DATA_FLAG_MULTIMESH) && mesh_storage->_multimesh_uses_motion_vectors_offsets(inst->data->base);
uses_motion = transform_changed || has_mesh_instance || uses_particles || is_multimesh_with_motion; bool is_dynamic = transform_changed || has_mesh_instance || uses_particles || is_multimesh_with_motion;
if (p_pass_mode == PASS_MODE_COLOR && p_using_motion_pass) {
uses_motion = is_dynamic;
} else if (is_dynamic) {
flags |= INSTANCE_DATA_FLAGS_DYNAMIC;
}
} }
} }
inst->flags_cache = flags; inst->flags_cache = flags;
@ -1779,11 +1783,11 @@ void RenderForwardClustered::_render_scene(RenderDataRD *p_render_data, const Co
} break; } break;
case PASS_MODE_DEPTH_NORMAL_ROUGHNESS: { case PASS_MODE_DEPTH_NORMAL_ROUGHNESS: {
depth_framebuffer = rb_data->get_depth_fb(RenderBufferDataForwardClustered::DEPTH_FB_ROUGHNESS); depth_framebuffer = rb_data->get_depth_fb(RenderBufferDataForwardClustered::DEPTH_FB_ROUGHNESS);
depth_pass_clear.push_back(Color(0.5, 0.5, 0.5, 0)); depth_pass_clear.push_back(Color(0, 0, 0, 0));
} break; } break;
case PASS_MODE_DEPTH_NORMAL_ROUGHNESS_VOXEL_GI: { case PASS_MODE_DEPTH_NORMAL_ROUGHNESS_VOXEL_GI: {
depth_framebuffer = rb_data->get_depth_fb(RenderBufferDataForwardClustered::DEPTH_FB_ROUGHNESS_VOXELGI); depth_framebuffer = rb_data->get_depth_fb(RenderBufferDataForwardClustered::DEPTH_FB_ROUGHNESS_VOXELGI);
depth_pass_clear.push_back(Color(0.5, 0.5, 0.5, 0)); depth_pass_clear.push_back(Color(0, 0, 0, 0));
depth_pass_clear.push_back(Color(0, 0, 0, 0)); depth_pass_clear.push_back(Color(0, 0, 0, 0));
} break; } break;
default: { default: {
@ -2980,6 +2984,14 @@ void RenderForwardClustered::_update_render_base_uniform_set() {
uniforms.push_back(u); uniforms.push_back(u);
} }
{
RD::Uniform u;
u.binding = 15;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(best_fit_normal.texture);
uniforms.push_back(u);
}
render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_shader.default_shader_rd, SCENE_UNIFORM_SET); render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_shader.default_shader_rd, SCENE_UNIFORM_SET);
} }
} }
@ -4230,6 +4242,44 @@ RenderForwardClustered::RenderForwardClustered() {
shadow_sampler = RD::get_singleton()->sampler_create(sampler); shadow_sampler = RD::get_singleton()->sampler_create(sampler);
} }
{
Vector<String> modes;
modes.push_back("\n");
best_fit_normal.shader.initialize(modes);
best_fit_normal.shader_version = best_fit_normal.shader.version_create();
best_fit_normal.pipeline = RD::get_singleton()->compute_pipeline_create(best_fit_normal.shader.version_get_shader(best_fit_normal.shader_version, 0));
RD::TextureFormat tformat;
tformat.format = RD::DATA_FORMAT_R8_UNORM;
tformat.width = 1024;
tformat.height = 1024;
tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
tformat.texture_type = RD::TEXTURE_TYPE_2D;
best_fit_normal.texture = RD::get_singleton()->texture_create(tformat, RD::TextureView());
RID shader = best_fit_normal.shader.version_get_shader(best_fit_normal.shader_version, 0);
ERR_FAIL_COND(shader.is_null());
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 0;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.append_id(best_fit_normal.texture);
uniforms.push_back(u);
}
RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader, 0);
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, best_fit_normal.pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, tformat.width, tformat.height, 1);
RD::get_singleton()->compute_list_end();
best_fit_normal.shader.version_free(best_fit_normal.shader_version);
}
render_list_thread_threshold = GLOBAL_GET("rendering/limits/forward_renderer/threaded_render_minimum_instances"); render_list_thread_threshold = GLOBAL_GET("rendering/limits/forward_renderer/threaded_render_minimum_instances");
_update_shader_quality_settings(); _update_shader_quality_settings();
@ -4263,6 +4313,7 @@ RenderForwardClustered::~RenderForwardClustered() {
RD::get_singleton()->free(shadow_sampler); RD::get_singleton()->free(shadow_sampler);
RSG::light_storage->directional_shadow_atlas_set_size(0); RSG::light_storage->directional_shadow_atlas_set_size(0);
RD::get_singleton()->free(best_fit_normal.texture);
{ {
for (const RID &rid : scene_state.uniform_buffers) { for (const RID &rid : scene_state.uniform_buffers) {

View file

@ -40,6 +40,7 @@
#include "servers/rendering/renderer_rd/forward_clustered/scene_shader_forward_clustered.h" #include "servers/rendering/renderer_rd/forward_clustered/scene_shader_forward_clustered.h"
#include "servers/rendering/renderer_rd/pipeline_cache_rd.h" #include "servers/rendering/renderer_rd/pipeline_cache_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_render_rd.h" #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
#include "servers/rendering/renderer_rd/shaders/forward_clustered/best_fit_normal.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/forward_clustered/scene_forward_clustered.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/forward_clustered/scene_forward_clustered.glsl.gen.h"
#include "servers/rendering/renderer_rd/storage_rd/utilities.h" #include "servers/rendering/renderer_rd/storage_rd/utilities.h"
@ -164,6 +165,13 @@ class RenderForwardClustered : public RendererSceneRenderRD {
RID _setup_sdfgi_render_pass_uniform_set(RID p_albedo_texture, RID p_emission_texture, RID p_emission_aniso_texture, RID p_geom_facing_texture, const RendererRD::MaterialStorage::Samplers &p_samplers); RID _setup_sdfgi_render_pass_uniform_set(RID p_albedo_texture, RID p_emission_texture, RID p_emission_aniso_texture, RID p_geom_facing_texture, const RendererRD::MaterialStorage::Samplers &p_samplers);
RID _setup_render_pass_uniform_set(RenderListType p_render_list, const RenderDataRD *p_render_data, RID p_radiance_texture, const RendererRD::MaterialStorage::Samplers &p_samplers, bool p_use_directional_shadow_atlas = false, int p_index = 0); RID _setup_render_pass_uniform_set(RenderListType p_render_list, const RenderDataRD *p_render_data, RID p_radiance_texture, const RendererRD::MaterialStorage::Samplers &p_samplers, bool p_use_directional_shadow_atlas = false, int p_index = 0);
struct BestFitNormal {
BestFitNormalShaderRD shader;
RID shader_version;
RID pipeline;
RID texture;
} best_fit_normal;
enum PassMode { enum PassMode {
PASS_MODE_COLOR, PASS_MODE_COLOR,
PASS_MODE_SHADOW, PASS_MODE_SHADOW,
@ -236,6 +244,7 @@ class RenderForwardClustered : public RendererSceneRenderRD {
// When changing any of these enums, remember to change the corresponding enums in the shader files as well. // When changing any of these enums, remember to change the corresponding enums in the shader files as well.
enum { enum {
INSTANCE_DATA_FLAGS_DYNAMIC = 1 << 3,
INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4, INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4,
INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5, INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5,
INSTANCE_DATA_FLAG_USE_SDFGI = 1 << 6, INSTANCE_DATA_FLAG_USE_SDFGI = 1 << 6,

View file

@ -386,6 +386,7 @@ protected:
// When changing any of these enums, remember to change the corresponding enums in the shader files as well. // When changing any of these enums, remember to change the corresponding enums in the shader files as well.
enum { enum {
INSTANCE_DATA_FLAGS_DYNAMIC = 1 << 3,
INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4, INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE = 1 << 4,
INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5, INSTANCE_DATA_FLAG_USE_GI_BUFFERS = 1 << 5,
INSTANCE_DATA_FLAG_USE_SDFGI = 1 << 6, INSTANCE_DATA_FLAG_USE_SDFGI = 1 << 6,

View file

@ -773,7 +773,7 @@ void RendererSceneRenderRD::_render_buffers_debug_draw(const RenderDataRD *p_ren
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(rb).is_valid()) { if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(rb).is_valid()) {
Size2 rtsize = texture_storage->render_target_get_size(render_target); Size2 rtsize = texture_storage->render_target_get_size(render_target);
copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(rb), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false); copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(rb), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, false, RID(), false, false, false, true);
} }
if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) { if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {

View file

@ -20,6 +20,7 @@
#define FLAG_SRGB (1 << 4) #define FLAG_SRGB (1 << 4)
#define FLAG_ALPHA_TO_ONE (1 << 5) #define FLAG_ALPHA_TO_ONE (1 << 5)
#define FLAG_LINEAR (1 << 6) #define FLAG_LINEAR (1 << 6)
#define FLAG_NORMAL (1 << 7)
#ifdef MULTIVIEW #ifdef MULTIVIEW
layout(location = 0) out vec3 uv_interp; layout(location = 0) out vec3 uv_interp;
@ -77,6 +78,7 @@ void main() {
#define FLAG_SRGB (1 << 4) #define FLAG_SRGB (1 << 4)
#define FLAG_ALPHA_TO_ONE (1 << 5) #define FLAG_ALPHA_TO_ONE (1 << 5)
#define FLAG_LINEAR (1 << 6) #define FLAG_LINEAR (1 << 6)
#define FLAG_NORMAL (1 << 7)
layout(push_constant, std430) uniform Params { layout(push_constant, std430) uniform Params {
vec4 section; vec4 section;
@ -192,6 +194,9 @@ void main() {
if (bool(params.flags & FLAG_LINEAR)) { if (bool(params.flags & FLAG_LINEAR)) {
color.rgb = srgb_to_linear(color.rgb); color.rgb = srgb_to_linear(color.rgb);
} }
if (bool(params.flags & FLAG_NORMAL)) {
color.rgb = normalize(color.rgb * 2.0 - 1.0) * 0.5 + 0.5;
}
frag_color = color / params.luminance_multiplier; frag_color = color / params.luminance_multiplier;
#endif // MODE_SET_COLOR #endif // MODE_SET_COLOR

View file

@ -65,8 +65,12 @@ void main() {
vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth); vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth);
vec4 normal_roughness = imageLoad(source_normal_roughness, ssC); vec4 normal_roughness = imageLoad(source_normal_roughness, ssC);
vec3 normal = normal_roughness.xyz * 2.0 - 1.0; vec3 normal = normalize(normal_roughness.xyz * 2.0 - 1.0);
float roughness = normal_roughness.w; float roughness = normal_roughness.w;
if (roughness > 0.5) {
roughness = 1.0 - roughness;
}
roughness /= (127.0 / 255.0);
// The roughness cutoff of 0.6 is chosen to match the roughness fadeout from GH-69828. // The roughness cutoff of 0.6 is chosen to match the roughness fadeout from GH-69828.
if (roughness > 0.6) { if (roughness > 0.6) {

View file

@ -59,8 +59,13 @@ void main() {
color += texelFetch(source_ssr, ofs, 0); color += texelFetch(source_ssr, ofs, 0);
float d = texelFetch(source_depth, ofs, 0).r; float d = texelFetch(source_depth, ofs, 0).r;
vec4 nr = texelFetch(source_normal, ofs, 0); vec4 nr = texelFetch(source_normal, ofs, 0);
normal.xyz += nr.xyz * 2.0 - 1.0; normal.xyz += normalize(nr.xyz * 2.0 - 1.0);
normal.w += nr.w; float roughness = normal.w;
if (roughness > 0.5) {
roughness = 1.0 - roughness;
}
roughness /= (127.0 / 255.0);
normal.w += roughness;
if (sc_multiview) { if (sc_multiview) {
// we're doing a full unproject so we need the value as is. // we're doing a full unproject so we need the value as is.
@ -81,6 +86,7 @@ void main() {
depth /= 4.0; depth /= 4.0;
normal.xyz = normalize(normal.xyz / 4.0) * 0.5 + 0.5; normal.xyz = normalize(normal.xyz / 4.0) * 0.5 + 0.5;
normal.w /= 4.0; normal.w /= 4.0;
normal.w = normal.w * (127.0 / 255.0);
} else { } else {
ivec2 ofs = ssC << 1; ivec2 ofs = ssC << 1;

View file

@ -158,21 +158,16 @@ vec4 calculate_edges(const float p_center_z, const float p_left_z, const float p
return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0); return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0);
} }
vec3 decode_normal(vec3 p_encoded_normal) {
vec3 normal = p_encoded_normal * 2.0 - 1.0;
return normal;
}
vec3 load_normal(ivec2 p_pos) { vec3 load_normal(ivec2 p_pos) {
vec3 encoded_normal = imageLoad(source_normal, p_pos).xyz; vec3 encoded_normal = normalize(imageLoad(source_normal, p_pos).xyz * 2.0 - 1.0);
encoded_normal.z = 1.0 - encoded_normal.z; encoded_normal.z = -encoded_normal.z;
return decode_normal(encoded_normal); return encoded_normal;
} }
vec3 load_normal(ivec2 p_pos, ivec2 p_offset) { vec3 load_normal(ivec2 p_pos, ivec2 p_offset) {
vec3 encoded_normal = imageLoad(source_normal, p_pos + p_offset).xyz; vec3 encoded_normal = normalize(imageLoad(source_normal, p_pos + p_offset).xyz * 2.0 - 1.0);
encoded_normal.z = 1.0 - encoded_normal.z; encoded_normal.z = -encoded_normal.z;
return decode_normal(encoded_normal); return encoded_normal;
} }
// all vectors in viewspace // all vectors in viewspace

View file

@ -159,21 +159,16 @@ vec4 calculate_edges(const float p_center_z, const float p_left_z, const float p
return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0); return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0);
} }
vec3 decode_normal(vec3 p_encoded_normal) {
vec3 normal = p_encoded_normal * 2.0 - 1.0;
return normal;
}
vec3 load_normal(ivec2 p_pos) { vec3 load_normal(ivec2 p_pos) {
vec3 encoded_normal = imageLoad(source_normal, p_pos).xyz; vec3 encoded_normal = normalize(imageLoad(source_normal, p_pos).xyz * 2.0 - 1.0);
encoded_normal.z = 1.0 - encoded_normal.z; encoded_normal.z = -encoded_normal.z;
return decode_normal(encoded_normal); return encoded_normal;
} }
vec3 load_normal(ivec2 p_pos, ivec2 p_offset) { vec3 load_normal(ivec2 p_pos, ivec2 p_offset) {
vec3 encoded_normal = imageLoad(source_normal, p_pos + p_offset).xyz; vec3 encoded_normal = normalize(imageLoad(source_normal, p_pos + p_offset).xyz * 2.0 - 1.0);
encoded_normal.z = 1.0 - encoded_normal.z; encoded_normal.z = -encoded_normal.z;
return decode_normal(encoded_normal); return encoded_normal;
} }
// all vectors in viewspace // all vectors in viewspace

View file

@ -618,6 +618,11 @@ void process_gi(ivec2 pos, vec3 vertex, inout vec4 ambient_light, inout vec4 ref
if (normal.length() > 0.5) { if (normal.length() > 0.5) {
//valid normal, can do GI //valid normal, can do GI
float roughness = normal_roughness.w; float roughness = normal_roughness.w;
bool dynamic_object = roughness > 0.5;
if (dynamic_object) {
roughness = 1.0 - roughness;
}
roughness /= (127.0 / 255.0);
vec3 view = -normalize(mat3(scene_data.cam_transform) * (vertex - scene_data.eye_offset[gl_GlobalInvocationID.z].xyz)); vec3 view = -normalize(mat3(scene_data.cam_transform) * (vertex - scene_data.eye_offset[gl_GlobalInvocationID.z].xyz));
vertex = mat3(scene_data.cam_transform) * vertex; vertex = mat3(scene_data.cam_transform) * vertex;
normal = normalize(mat3(scene_data.cam_transform) * normal); normal = normalize(mat3(scene_data.cam_transform) * normal);

View file

@ -492,7 +492,7 @@ void main() {
ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z); ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);
vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0; vec3 normal = normalize(imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0);
normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z; normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z;
vec4 albedo = imageLoad(source_albedo, uv_xy); vec4 albedo = imageLoad(source_albedo, uv_xy);

View file

@ -0,0 +1,43 @@
#[compute]
#version 450
#VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(r8, set = 0, binding = 0) uniform restrict writeonly image2D current_image;
// This shader is used to generate a "best fit normal texture" as described by:
// https://advances.realtimerendering.com/s2010/Kaplanyan-CryEngine3(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
// This texture tells you what length of normal can be used to store a unit vector
// with the lest amount of error.
vec3 quantize(vec3 c) {
return round(clamp(c * 0.5 + 0.5, 0.0, 1.0) * 255.0) * (1.0 / 255.0) * 2.0 - 1.0;
}
float find_minimum_error(vec3 normal) {
float min_error = 100000.0;
float t_best = 0.0;
for (float nstep = 1.5; nstep < 127.5; ++nstep) {
float t = nstep / 127.5;
vec3 vp = normal * t;
vec3 quantizedp = quantize(vp);
vec3 vdiff = (quantizedp - vp) / t;
float error = max(abs(vdiff.x), max(abs(vdiff.y), abs(vdiff.z)));
if (error < min_error) {
min_error = error;
t_best = t;
}
}
return t_best;
}
void main() {
vec2 uv = vec2(gl_GlobalInvocationID.xy) * vec2(1.0 / 1024.0) + vec2(0.5 / 1024.0);
uv.y *= uv.x;
vec3 dir = vec3(uv.x, uv.y, 1.0);
imageStore(current_image, ivec2(gl_GlobalInvocationID.xy), vec4(find_minimum_error(dir), 1.0, 1.0, 1.0));
}

View file

@ -868,6 +868,28 @@ uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
#endif //!MODE_RENDER DEPTH #endif //!MODE_RENDER DEPTH
#if defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_MATERIAL)
// https://advances.realtimerendering.com/s2010/Kaplanyan-CryEngine3(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
vec3 encode24(vec3 v) {
// Unsigned normal (handles most symmetry)
vec3 vNormalUns = abs(v);
// Get the major axis for our collapsed cubemap lookup
float maxNAbs = max(vNormalUns.z, max(vNormalUns.x, vNormalUns.y));
// Get the collapsed cubemap texture coordinates
vec2 vTexCoord = vNormalUns.z < maxNAbs ? (vNormalUns.y < maxNAbs ? vNormalUns.yz : vNormalUns.xz) : vNormalUns.xy;
vTexCoord /= maxNAbs;
vTexCoord = vTexCoord.x < vTexCoord.y ? vTexCoord.yx : vTexCoord.xy;
// Stretch:
vTexCoord.y /= vTexCoord.x;
float fFittingScale = texture(sampler2D(best_fit_normal_texture, SAMPLER_NEAREST_CLAMP), vTexCoord).r;
// Make vector touch unit cube
vec3 result = v / maxNAbs;
// scale the normal to get the best fit
result *= fFittingScale;
return result;
}
#endif // MODE_RENDER_NORMAL_ROUGHNESS
void fragment_shader(in SceneData scene_data) { void fragment_shader(in SceneData scene_data) {
uint instance_index = instance_index_interp; uint instance_index = instance_index_interp;
@ -1519,18 +1541,18 @@ void fragment_shader(in SceneData scene_data) {
vec2 base_coord = screen_uv; vec2 base_coord = screen_uv;
vec2 closest_coord = base_coord; vec2 closest_coord = base_coord;
#ifdef USE_MULTIVIEW #ifdef USE_MULTIVIEW
float closest_ang = dot(normal, textureLod(sampler2DArray(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), vec3(base_coord, ViewIndex), 0.0).xyz * 2.0 - 1.0); float closest_ang = dot(normal, normalize(textureLod(sampler2DArray(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), vec3(base_coord, ViewIndex), 0.0).xyz * 2.0 - 1.0));
#else // USE_MULTIVIEW #else // USE_MULTIVIEW
float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), base_coord, 0.0).xyz * 2.0 - 1.0); float closest_ang = dot(normal, normalize(textureLod(sampler2D(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), base_coord, 0.0).xyz * 2.0 - 1.0));
#endif // USE_MULTIVIEW #endif // USE_MULTIVIEW
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
const vec2 neighbors[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1)); const vec2 neighbors[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1));
vec2 neighbour_coord = base_coord + neighbors[i] * scene_data.screen_pixel_size; vec2 neighbour_coord = base_coord + neighbors[i] * scene_data.screen_pixel_size;
#ifdef USE_MULTIVIEW #ifdef USE_MULTIVIEW
float neighbour_ang = dot(normal, textureLod(sampler2DArray(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), vec3(neighbour_coord, ViewIndex), 0.0).xyz * 2.0 - 1.0); float neighbour_ang = dot(normal, normalize(textureLod(sampler2DArray(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), vec3(neighbour_coord, ViewIndex), 0.0).xyz * 2.0 - 1.0));
#else // USE_MULTIVIEW #else // USE_MULTIVIEW
float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), neighbour_coord, 0.0).xyz * 2.0 - 1.0); float neighbour_ang = dot(normal, normalize(textureLod(sampler2D(normal_roughness_buffer, SAMPLER_LINEAR_CLAMP), neighbour_coord, 0.0).xyz * 2.0 - 1.0));
#endif // USE_MULTIVIEW #endif // USE_MULTIVIEW
if (neighbour_ang > closest_ang) { if (neighbour_ang > closest_ang) {
closest_ang = neighbour_ang; closest_ang = neighbour_ang;
@ -2302,7 +2324,7 @@ void fragment_shader(in SceneData scene_data) {
albedo_output_buffer.rgb = albedo; albedo_output_buffer.rgb = albedo;
albedo_output_buffer.a = alpha; albedo_output_buffer.a = alpha;
normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.rgb = encode24(normal) * 0.5 + 0.5;
normal_output_buffer.a = 0.0; normal_output_buffer.a = 0.0;
depth_output_buffer.r = -vertex.z; depth_output_buffer.r = -vertex.z;
@ -2316,7 +2338,15 @@ void fragment_shader(in SceneData scene_data) {
#endif #endif
#ifdef MODE_RENDER_NORMAL_ROUGHNESS #ifdef MODE_RENDER_NORMAL_ROUGHNESS
normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness); normal_roughness_output_buffer = vec4(encode24(normal) * 0.5 + 0.5, roughness);
// We encode the dynamic static into roughness.
// Values over 0.5 are dynamic, under 0.5 are static.
normal_roughness_output_buffer.w = normal_roughness_output_buffer.w * (127.0 / 255.0);
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_DYNAMIC)) {
normal_roughness_output_buffer.w = 1.0 - normal_roughness_output_buffer.w;
}
normal_roughness_output_buffer.w = normal_roughness_output_buffer.w;
#ifdef MODE_RENDER_VOXEL_GI #ifdef MODE_RENDER_VOXEL_GI
if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_VOXEL_GI)) { // process voxel_gi_instances

View file

@ -48,6 +48,7 @@ draw_call;
layout(set = 0, binding = 2) uniform sampler shadow_sampler; layout(set = 0, binding = 2) uniform sampler shadow_sampler;
#define INSTANCE_FLAGS_DYNAMIC (1 << 3)
#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 4) #define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 4)
#define INSTANCE_FLAGS_USE_GI_BUFFERS (1 << 5) #define INSTANCE_FLAGS_USE_GI_BUFFERS (1 << 5)
#define INSTANCE_FLAGS_USE_SDFGI (1 << 6) #define INSTANCE_FLAGS_USE_SDFGI (1 << 6)
@ -163,6 +164,8 @@ sdfgi;
layout(set = 0, binding = 14) uniform sampler DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP; layout(set = 0, binding = 14) uniform sampler DEFAULT_SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP;
layout(set = 0, binding = 15) uniform texture2D best_fit_normal_texture;
/* Set 1: Render Pass (changes per render pass) */ /* Set 1: Render Pass (changes per render pass) */
layout(set = 1, binding = 0, std140) uniform SceneDataBlock { layout(set = 1, binding = 0, std140) uniform SceneDataBlock {
@ -328,6 +331,15 @@ layout(set = 1, binding = 34) uniform texture2D ssil_buffer;
#endif #endif
vec4 normal_roughness_compatibility(vec4 p_normal_roughness) {
float roughness = p_normal_roughness.w;
if (roughness > 0.5) {
roughness = 1.0 - roughness;
}
roughness /= (127.0 / 255.0);
return vec4(normalize(p_normal_roughness.xyz * 2.0 - 1.0) * 0.5 + 0.5, roughness);
}
/* Set 2 Skeleton & Instancing (can change per item) */ /* Set 2 Skeleton & Instancing (can change per item) */
layout(set = 2, binding = 0, std430) restrict readonly buffer Transforms { layout(set = 2, binding = 0, std430) restrict readonly buffer Transforms {

View file

@ -29,6 +29,7 @@ draw_call;
layout(set = 0, binding = 2) uniform sampler shadow_sampler; layout(set = 0, binding = 2) uniform sampler shadow_sampler;
#define INSTANCE_FLAGS_DYNAMIC (1 << 3)
#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 4) #define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 4)
#define INSTANCE_FLAGS_USE_GI_BUFFERS (1 << 5) #define INSTANCE_FLAGS_USE_GI_BUFFERS (1 << 5)
#define INSTANCE_FLAGS_USE_SDFGI (1 << 6) #define INSTANCE_FLAGS_USE_SDFGI (1 << 6)

View file

@ -1191,6 +1191,7 @@ String ShaderCompiler::_dump_node_code(const SL::Node *p_node, int p_level, Gene
// we will add logic to automatically switch between // we will add logic to automatically switch between
// sampler2D and sampler2D array and vec2 UV and vec3 UV. // sampler2D and sampler2D array and vec2 UV and vec3 UV.
bool multiview_uv_needed = false; bool multiview_uv_needed = false;
bool is_normal_roughness_texture = false;
for (int i = 1; i < onode->arguments.size(); i++) { for (int i = 1; i < onode->arguments.size(); i++) {
if (i > 1) { if (i > 1) {
@ -1259,7 +1260,6 @@ String ShaderCompiler::_dump_node_code(const SL::Node *p_node, int p_level, Gene
// Need to map from texture to sampler in order to sample when using Vulkan GLSL. // Need to map from texture to sampler in order to sample when using Vulkan GLSL.
String sampler_name; String sampler_name;
bool is_depth_texture = false; bool is_depth_texture = false;
bool is_normal_roughness_texture = false;
if (actions.custom_samplers.has(texture_uniform)) { if (actions.custom_samplers.has(texture_uniform)) {
sampler_name = actions.custom_samplers[texture_uniform]; sampler_name = actions.custom_samplers[texture_uniform];
@ -1340,6 +1340,9 @@ String ShaderCompiler::_dump_node_code(const SL::Node *p_node, int p_level, Gene
if (is_screen_texture && !texture_func_returns_data && actions.apply_luminance_multiplier) { if (is_screen_texture && !texture_func_returns_data && actions.apply_luminance_multiplier) {
code = "(" + code + " * vec4(vec3(sc_luminance_multiplier), 1.0))"; code = "(" + code + " * vec4(vec3(sc_luminance_multiplier), 1.0))";
} }
if (is_normal_roughness_texture) {
code = "normal_roughness_compatibility(" + code + ")";
}
} break; } break;
case SL::OP_INDEX: { case SL::OP_INDEX: {
code += _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning);