Merge pull request #44162 from aaronfranke/arg
Improve some argument names for core types
This commit is contained in:
commit
44a88244de
19 changed files with 173 additions and 171 deletions
|
@ -1017,15 +1017,15 @@ void Basis::set_diagonal(const Vector3 &p_diag) {
|
|||
elements[2][2] = p_diag.z;
|
||||
}
|
||||
|
||||
Basis Basis::slerp(const Basis &target, const real_t &t) const {
|
||||
Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
|
||||
//consider scale
|
||||
Quat from(*this);
|
||||
Quat to(target);
|
||||
Quat to(p_to);
|
||||
|
||||
Basis b(from.slerp(to, t));
|
||||
b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t);
|
||||
b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t);
|
||||
b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t);
|
||||
Basis b(from.slerp(to, p_weight));
|
||||
b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
|
||||
b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight);
|
||||
b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight);
|
||||
|
||||
return b;
|
||||
}
|
||||
|
|
|
@ -170,7 +170,7 @@ public:
|
|||
bool is_diagonal() const;
|
||||
bool is_rotation() const;
|
||||
|
||||
Basis slerp(const Basis &target, const real_t &t) const;
|
||||
Basis slerp(const Basis &p_to, const real_t &p_weight) const;
|
||||
void rotate_sh(real_t *p_values);
|
||||
|
||||
operator String() const;
|
||||
|
|
|
@ -92,13 +92,13 @@ struct Color {
|
|||
void invert();
|
||||
Color inverted() const;
|
||||
|
||||
_FORCE_INLINE_ Color lerp(const Color &p_b, float p_t) const {
|
||||
_FORCE_INLINE_ Color lerp(const Color &p_to, float p_weight) const {
|
||||
Color res = *this;
|
||||
|
||||
res.r += (p_t * (p_b.r - r));
|
||||
res.g += (p_t * (p_b.g - g));
|
||||
res.b += (p_t * (p_b.b - b));
|
||||
res.a += (p_t * (p_b.a - a));
|
||||
res.r += (p_weight * (p_to.r - r));
|
||||
res.g += (p_weight * (p_to.g - g));
|
||||
res.b += (p_weight * (p_to.b - b));
|
||||
res.a += (p_weight * (p_to.a - a));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
|
|
@ -106,16 +106,16 @@ Vector3 Quat::get_euler_yxz() const {
|
|||
return m.get_euler_yxz();
|
||||
}
|
||||
|
||||
void Quat::operator*=(const Quat &q) {
|
||||
set(w * q.x + x * q.w + y * q.z - z * q.y,
|
||||
w * q.y + y * q.w + z * q.x - x * q.z,
|
||||
w * q.z + z * q.w + x * q.y - y * q.x,
|
||||
w * q.w - x * q.x - y * q.y - z * q.z);
|
||||
void Quat::operator*=(const Quat &p_q) {
|
||||
set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y,
|
||||
w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z,
|
||||
w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x,
|
||||
w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z);
|
||||
}
|
||||
|
||||
Quat Quat::operator*(const Quat &q) const {
|
||||
Quat Quat::operator*(const Quat &p_q) const {
|
||||
Quat r = *this;
|
||||
r *= q;
|
||||
r *= p_q;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -146,29 +146,29 @@ Quat Quat::inverse() const {
|
|||
return Quat(-x, -y, -z, w);
|
||||
}
|
||||
|
||||
Quat Quat::slerp(const Quat &q, const real_t &t) const {
|
||||
Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
#endif
|
||||
Quat to1;
|
||||
real_t omega, cosom, sinom, scale0, scale1;
|
||||
|
||||
// calc cosine
|
||||
cosom = dot(q);
|
||||
cosom = dot(p_to);
|
||||
|
||||
// adjust signs (if necessary)
|
||||
if (cosom < 0.0) {
|
||||
cosom = -cosom;
|
||||
to1.x = -q.x;
|
||||
to1.y = -q.y;
|
||||
to1.z = -q.z;
|
||||
to1.w = -q.w;
|
||||
to1.x = -p_to.x;
|
||||
to1.y = -p_to.y;
|
||||
to1.z = -p_to.z;
|
||||
to1.w = -p_to.w;
|
||||
} else {
|
||||
to1.x = q.x;
|
||||
to1.y = q.y;
|
||||
to1.z = q.z;
|
||||
to1.w = q.w;
|
||||
to1.x = p_to.x;
|
||||
to1.y = p_to.y;
|
||||
to1.z = p_to.z;
|
||||
to1.w = p_to.w;
|
||||
}
|
||||
|
||||
// calculate coefficients
|
||||
|
@ -177,13 +177,13 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const {
|
|||
// standard case (slerp)
|
||||
omega = Math::acos(cosom);
|
||||
sinom = Math::sin(omega);
|
||||
scale0 = Math::sin((1.0 - t) * omega) / sinom;
|
||||
scale1 = Math::sin(t * omega) / sinom;
|
||||
scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
|
||||
scale1 = Math::sin(p_weight * omega) / sinom;
|
||||
} else {
|
||||
// "from" and "to" quaternions are very close
|
||||
// ... so we can do a linear interpolation
|
||||
scale0 = 1.0 - t;
|
||||
scale1 = t;
|
||||
scale0 = 1.0 - p_weight;
|
||||
scale1 = p_weight;
|
||||
}
|
||||
// calculate final values
|
||||
return Quat(
|
||||
|
@ -193,14 +193,14 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const {
|
|||
scale0 * w + scale1 * to1.w);
|
||||
}
|
||||
|
||||
Quat Quat::slerpni(const Quat &q, const real_t &t) const {
|
||||
Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
#endif
|
||||
const Quat &from = *this;
|
||||
|
||||
real_t dot = from.dot(q);
|
||||
real_t dot = from.dot(p_to);
|
||||
|
||||
if (Math::absf(dot) > 0.9999) {
|
||||
return from;
|
||||
|
@ -208,24 +208,24 @@ Quat Quat::slerpni(const Quat &q, const real_t &t) const {
|
|||
|
||||
real_t theta = Math::acos(dot),
|
||||
sinT = 1.0 / Math::sin(theta),
|
||||
newFactor = Math::sin(t * theta) * sinT,
|
||||
invFactor = Math::sin((1.0 - t) * theta) * sinT;
|
||||
newFactor = Math::sin(p_weight * theta) * sinT,
|
||||
invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
|
||||
|
||||
return Quat(invFactor * from.x + newFactor * q.x,
|
||||
invFactor * from.y + newFactor * q.y,
|
||||
invFactor * from.z + newFactor * q.z,
|
||||
invFactor * from.w + newFactor * q.w);
|
||||
return Quat(invFactor * from.x + newFactor * p_to.x,
|
||||
invFactor * from.y + newFactor * p_to.y,
|
||||
invFactor * from.z + newFactor * p_to.z,
|
||||
invFactor * from.w + newFactor * p_to.w);
|
||||
}
|
||||
|
||||
Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const {
|
||||
Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!q.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
||||
#endif
|
||||
//the only way to do slerp :|
|
||||
real_t t2 = (1.0 - t) * t * 2;
|
||||
Quat sp = this->slerp(q, t);
|
||||
Quat sq = prep.slerpni(postq, t);
|
||||
real_t t2 = (1.0 - p_weight) * p_weight * 2;
|
||||
Quat sp = this->slerp(p_b, p_weight);
|
||||
Quat sq = p_pre_a.slerpni(p_post_b, p_weight);
|
||||
return sp.slerpni(sq, t2);
|
||||
}
|
||||
|
||||
|
|
|
@ -63,7 +63,7 @@ public:
|
|||
Quat normalized() const;
|
||||
bool is_normalized() const;
|
||||
Quat inverse() const;
|
||||
_FORCE_INLINE_ real_t dot(const Quat &q) const;
|
||||
_FORCE_INLINE_ real_t dot(const Quat &p_q) const;
|
||||
|
||||
void set_euler_xyz(const Vector3 &p_euler);
|
||||
Vector3 get_euler_xyz() const;
|
||||
|
@ -73,9 +73,9 @@ public:
|
|||
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
|
||||
Vector3 get_euler() const { return get_euler_yxz(); };
|
||||
|
||||
Quat slerp(const Quat &q, const real_t &t) const;
|
||||
Quat slerpni(const Quat &q, const real_t &t) const;
|
||||
Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const;
|
||||
Quat slerp(const Quat &p_to, const real_t &p_weight) const;
|
||||
Quat slerpni(const Quat &p_to, const real_t &p_weight) const;
|
||||
Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const;
|
||||
|
||||
void set_axis_angle(const Vector3 &axis, const real_t &angle);
|
||||
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
|
@ -86,8 +86,8 @@ public:
|
|||
r_axis.z = z * r;
|
||||
}
|
||||
|
||||
void operator*=(const Quat &q);
|
||||
Quat operator*(const Quat &q) const;
|
||||
void operator*=(const Quat &p_q);
|
||||
Quat operator*(const Quat &p_q) const;
|
||||
|
||||
Quat operator*(const Vector3 &v) const {
|
||||
return Quat(w * v.x + y * v.z - z * v.y,
|
||||
|
@ -109,8 +109,8 @@ public:
|
|||
return inverse().xform(v);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void operator+=(const Quat &q);
|
||||
_FORCE_INLINE_ void operator-=(const Quat &q);
|
||||
_FORCE_INLINE_ void operator+=(const Quat &p_q);
|
||||
_FORCE_INLINE_ void operator-=(const Quat &p_q);
|
||||
_FORCE_INLINE_ void operator*=(const real_t &s);
|
||||
_FORCE_INLINE_ void operator/=(const real_t &s);
|
||||
_FORCE_INLINE_ Quat operator+(const Quat &q2) const;
|
||||
|
@ -141,18 +141,18 @@ public:
|
|||
Quat(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); }
|
||||
|
||||
Quat(const Vector3 &euler) { set_euler(euler); }
|
||||
Quat(const Quat &q) :
|
||||
x(q.x),
|
||||
y(q.y),
|
||||
z(q.z),
|
||||
w(q.w) {
|
||||
Quat(const Quat &p_q) :
|
||||
x(p_q.x),
|
||||
y(p_q.y),
|
||||
z(p_q.z),
|
||||
w(p_q.w) {
|
||||
}
|
||||
|
||||
Quat &operator=(const Quat &q) {
|
||||
x = q.x;
|
||||
y = q.y;
|
||||
z = q.z;
|
||||
w = q.w;
|
||||
Quat &operator=(const Quat &p_q) {
|
||||
x = p_q.x;
|
||||
y = p_q.y;
|
||||
z = p_q.z;
|
||||
w = p_q.w;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -178,26 +178,26 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
real_t Quat::dot(const Quat &q) const {
|
||||
return x * q.x + y * q.y + z * q.z + w * q.w;
|
||||
real_t Quat::dot(const Quat &p_q) const {
|
||||
return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
|
||||
}
|
||||
|
||||
real_t Quat::length_squared() const {
|
||||
return dot(*this);
|
||||
}
|
||||
|
||||
void Quat::operator+=(const Quat &q) {
|
||||
x += q.x;
|
||||
y += q.y;
|
||||
z += q.z;
|
||||
w += q.w;
|
||||
void Quat::operator+=(const Quat &p_q) {
|
||||
x += p_q.x;
|
||||
y += p_q.y;
|
||||
z += p_q.z;
|
||||
w += p_q.w;
|
||||
}
|
||||
|
||||
void Quat::operator-=(const Quat &q) {
|
||||
x -= q.x;
|
||||
y -= q.y;
|
||||
z -= q.z;
|
||||
w -= q.w;
|
||||
void Quat::operator-=(const Quat &p_q) {
|
||||
x -= p_q.x;
|
||||
y -= p_q.y;
|
||||
z -= p_q.z;
|
||||
w -= p_q.w;
|
||||
}
|
||||
|
||||
void Quat::operator*=(const real_t &s) {
|
||||
|
|
|
@ -118,8 +118,8 @@ Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
|
|||
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
|
||||
}
|
||||
|
||||
Vector2 Vector2::project(const Vector2 &p_b) const {
|
||||
return p_b * (dot(p_b) / p_b.length_squared());
|
||||
Vector2 Vector2::project(const Vector2 &p_to) const {
|
||||
return p_to * (dot(p_to) / p_to.length_squared());
|
||||
}
|
||||
|
||||
Vector2 Vector2::snapped(const Vector2 &p_by) const {
|
||||
|
@ -139,13 +139,13 @@ Vector2 Vector2::clamped(real_t p_len) const {
|
|||
return v;
|
||||
}
|
||||
|
||||
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
|
||||
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const {
|
||||
Vector2 p0 = p_pre_a;
|
||||
Vector2 p1 = *this;
|
||||
Vector2 p2 = p_b;
|
||||
Vector2 p3 = p_post_b;
|
||||
|
||||
real_t t = p_t;
|
||||
real_t t = p_weight;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
|
|
|
@ -77,21 +77,21 @@ struct Vector2 {
|
|||
real_t distance_squared_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to(const Vector2 &p_vector2) const;
|
||||
real_t angle_to_point(const Vector2 &p_vector2) const;
|
||||
_FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_b) const;
|
||||
_FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
|
||||
|
||||
real_t dot(const Vector2 &p_other) const;
|
||||
real_t cross(const Vector2 &p_other) const;
|
||||
Vector2 posmod(const real_t p_mod) const;
|
||||
Vector2 posmodv(const Vector2 &p_modv) const;
|
||||
Vector2 project(const Vector2 &p_b) const;
|
||||
Vector2 project(const Vector2 &p_to) const;
|
||||
|
||||
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
|
||||
|
||||
Vector2 clamped(real_t p_len) const;
|
||||
|
||||
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_b, real_t p_t) const;
|
||||
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
|
||||
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
|
||||
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
|
||||
|
||||
Vector2 slide(const Vector2 &p_normal) const;
|
||||
|
@ -230,25 +230,25 @@ _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
|||
return x != p_vec2.x || y != p_vec2.y;
|
||||
}
|
||||
|
||||
Vector2 Vector2::lerp(const Vector2 &p_b, real_t p_t) const {
|
||||
Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
|
||||
Vector2 res = *this;
|
||||
|
||||
res.x += (p_t * (p_b.x - x));
|
||||
res.y += (p_t * (p_b.y - y));
|
||||
res.x += (p_weight * (p_to.x - x));
|
||||
res.y += (p_weight * (p_to.y - y));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
Vector2 Vector2::slerp(const Vector2 &p_b, real_t p_t) const {
|
||||
Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector2(), "The start Vector2 must be normalized.");
|
||||
#endif
|
||||
real_t theta = angle_to(p_b);
|
||||
return rotated(theta * p_t);
|
||||
real_t theta = angle_to(p_to);
|
||||
return rotated(theta * p_weight);
|
||||
}
|
||||
|
||||
Vector2 Vector2::direction_to(const Vector2 &p_b) const {
|
||||
Vector2 ret(p_b.x - x, p_b.y - y);
|
||||
Vector2 Vector2::direction_to(const Vector2 &p_to) const {
|
||||
Vector2 ret(p_to.x - x, p_to.y - y);
|
||||
ret.normalize();
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -72,7 +72,7 @@ Vector3 Vector3::snapped(Vector3 p_val) const {
|
|||
return v;
|
||||
}
|
||||
|
||||
Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const {
|
||||
Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const {
|
||||
Vector3 p0 = p_pre_a;
|
||||
Vector3 p1 = *this;
|
||||
Vector3 p2 = p_b;
|
||||
|
@ -93,7 +93,7 @@ Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a,
|
|||
}
|
||||
}
|
||||
|
||||
real_t t = p_t;
|
||||
real_t t = p_weight;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
|
@ -105,13 +105,13 @@ Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a,
|
|||
return out;
|
||||
}
|
||||
|
||||
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const {
|
||||
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const {
|
||||
Vector3 p0 = p_pre_a;
|
||||
Vector3 p1 = *this;
|
||||
Vector3 p2 = p_b;
|
||||
Vector3 p3 = p_post_b;
|
||||
|
||||
real_t t = p_t;
|
||||
real_t t = p_weight;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
|
|
|
@ -86,10 +86,10 @@ struct Vector3 {
|
|||
|
||||
/* Static Methods between 2 vector3s */
|
||||
|
||||
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const;
|
||||
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
|
||||
Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
|
||||
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
|
||||
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
|
||||
Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
|
||||
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
|
||||
|
||||
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
|
||||
|
@ -103,15 +103,15 @@ struct Vector3 {
|
|||
_FORCE_INLINE_ Vector3 ceil() const;
|
||||
_FORCE_INLINE_ Vector3 round() const;
|
||||
|
||||
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const;
|
||||
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const;
|
||||
_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
|
||||
_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
|
||||
|
||||
_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
|
||||
_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
|
||||
_FORCE_INLINE_ Vector3 project(const Vector3 &p_b) const;
|
||||
_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
|
||||
|
||||
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const;
|
||||
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_b) const;
|
||||
_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
|
||||
_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
|
||||
|
||||
_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
|
||||
_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
|
||||
|
@ -195,24 +195,24 @@ Vector3 Vector3::round() const {
|
|||
return Vector3(Math::round(x), Math::round(y), Math::round(z));
|
||||
}
|
||||
|
||||
Vector3 Vector3::lerp(const Vector3 &p_b, real_t p_t) const {
|
||||
Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const {
|
||||
return Vector3(
|
||||
x + (p_t * (p_b.x - x)),
|
||||
y + (p_t * (p_b.y - y)),
|
||||
z + (p_t * (p_b.z - z)));
|
||||
x + (p_weight * (p_to.x - x)),
|
||||
y + (p_weight * (p_to.y - y)),
|
||||
z + (p_weight * (p_to.z - z)));
|
||||
}
|
||||
|
||||
Vector3 Vector3::slerp(const Vector3 &p_b, real_t p_t) const {
|
||||
real_t theta = angle_to(p_b);
|
||||
return rotated(cross(p_b).normalized(), theta * p_t);
|
||||
Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const {
|
||||
real_t theta = angle_to(p_to);
|
||||
return rotated(cross(p_to).normalized(), theta * p_weight);
|
||||
}
|
||||
|
||||
real_t Vector3::distance_to(const Vector3 &p_b) const {
|
||||
return (p_b - *this).length();
|
||||
real_t Vector3::distance_to(const Vector3 &p_to) const {
|
||||
return (p_to - *this).length();
|
||||
}
|
||||
|
||||
real_t Vector3::distance_squared_to(const Vector3 &p_b) const {
|
||||
return (p_b - *this).length_squared();
|
||||
real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
|
||||
return (p_to - *this).length_squared();
|
||||
}
|
||||
|
||||
Vector3 Vector3::posmod(const real_t p_mod) const {
|
||||
|
@ -223,16 +223,16 @@ Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
|
|||
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
|
||||
}
|
||||
|
||||
Vector3 Vector3::project(const Vector3 &p_b) const {
|
||||
return p_b * (dot(p_b) / p_b.length_squared());
|
||||
Vector3 Vector3::project(const Vector3 &p_to) const {
|
||||
return p_to * (dot(p_to) / p_to.length_squared());
|
||||
}
|
||||
|
||||
real_t Vector3::angle_to(const Vector3 &p_b) const {
|
||||
return Math::atan2(cross(p_b).length(), dot(p_b));
|
||||
real_t Vector3::angle_to(const Vector3 &p_to) const {
|
||||
return Math::atan2(cross(p_to).length(), dot(p_to));
|
||||
}
|
||||
|
||||
Vector3 Vector3::direction_to(const Vector3 &p_b) const {
|
||||
Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z);
|
||||
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
|
||||
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
|
||||
ret.normalize();
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -987,9 +987,9 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Vector2, posmod, sarray("mod"), varray());
|
||||
bind_method(Vector2, posmodv, sarray("modv"), varray());
|
||||
bind_method(Vector2, project, sarray("b"), varray());
|
||||
bind_method(Vector2, lerp, sarray("with", "t"), varray());
|
||||
bind_method(Vector2, slerp, sarray("with", "t"), varray());
|
||||
bind_method(Vector2, cubic_interpolate, sarray("b", "pre_a", "post_b", "t"), varray());
|
||||
bind_method(Vector2, lerp, sarray("to", "weight"), varray());
|
||||
bind_method(Vector2, slerp, sarray("to", "weight"), varray());
|
||||
bind_method(Vector2, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray());
|
||||
bind_method(Vector2, move_toward, sarray("to", "delta"), varray());
|
||||
bind_method(Vector2, rotated, sarray("phi"), varray());
|
||||
bind_method(Vector2, tangent, sarray(), varray());
|
||||
|
@ -1060,9 +1060,9 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Vector3, inverse, sarray(), varray());
|
||||
bind_method(Vector3, snapped, sarray("by"), varray());
|
||||
bind_method(Vector3, rotated, sarray("by_axis", "phi"), varray());
|
||||
bind_method(Vector3, lerp, sarray("b", "t"), varray());
|
||||
bind_method(Vector3, slerp, sarray("b", "t"), varray());
|
||||
bind_method(Vector3, cubic_interpolate, sarray("b", "pre_a", "post_b", "t"), varray());
|
||||
bind_method(Vector3, lerp, sarray("to", "weight"), varray());
|
||||
bind_method(Vector3, slerp, sarray("to", "weight"), varray());
|
||||
bind_method(Vector3, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray());
|
||||
bind_method(Vector3, move_toward, sarray("to", "delta"), varray());
|
||||
bind_method(Vector3, dot, sarray("with"), varray());
|
||||
bind_method(Vector3, cross, sarray("with"), varray());
|
||||
|
@ -1109,9 +1109,9 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Quat, is_equal_approx, sarray("to"), varray());
|
||||
bind_method(Quat, inverse, sarray(), varray());
|
||||
bind_method(Quat, dot, sarray("with"), varray());
|
||||
bind_method(Quat, slerp, sarray("b", "t"), varray());
|
||||
bind_method(Quat, slerpni, sarray("b", "t"), varray());
|
||||
bind_method(Quat, cubic_slerp, sarray("b", "pre_a", "post_b", "t"), varray());
|
||||
bind_method(Quat, slerp, sarray("to", "weight"), varray());
|
||||
bind_method(Quat, slerpni, sarray("to", "weight"), varray());
|
||||
bind_method(Quat, cubic_slerp, sarray("b", "pre_a", "post_b", "weight"), varray());
|
||||
bind_method(Quat, get_euler, sarray(), varray());
|
||||
|
||||
// FIXME: Quat is atomic, this should be done via construcror
|
||||
|
@ -1128,7 +1128,7 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Color, to_rgba64, sarray(), varray());
|
||||
|
||||
bind_method(Color, inverted, sarray(), varray());
|
||||
bind_method(Color, lerp, sarray("b", "t"), varray());
|
||||
bind_method(Color, lerp, sarray("to", "weight"), varray());
|
||||
bind_method(Color, lightened, sarray("amount"), varray());
|
||||
bind_method(Color, darkened, sarray("amount"), varray());
|
||||
bind_method(Color, to_html, sarray("with_alpha"), varray(true));
|
||||
|
@ -1195,7 +1195,7 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Transform2D, translated, sarray("offset"), varray());
|
||||
bind_method(Transform2D, basis_xform, sarray("v"), varray());
|
||||
bind_method(Transform2D, basis_xform_inv, sarray("v"), varray());
|
||||
bind_method(Transform2D, interpolate_with, sarray("xform", "t"), varray());
|
||||
bind_method(Transform2D, interpolate_with, sarray("xform", "weight"), varray());
|
||||
bind_method(Transform2D, is_equal_approx, sarray("xform"), varray());
|
||||
|
||||
/* Basis */
|
||||
|
@ -1212,7 +1212,7 @@ static void _register_variant_builtin_methods() {
|
|||
bind_method(Basis, tdoty, sarray("with"), varray());
|
||||
bind_method(Basis, tdotz, sarray("with"), varray());
|
||||
bind_method(Basis, get_orthogonal_index, sarray(), varray());
|
||||
bind_method(Basis, slerp, sarray("b", "t"), varray());
|
||||
bind_method(Basis, slerp, sarray("to", "weight"), varray());
|
||||
bind_method(Basis, is_equal_approx, sarray("b"), varray());
|
||||
bind_method(Basis, get_rotation_quat, sarray(), varray());
|
||||
|
||||
|
|
|
@ -201,9 +201,9 @@
|
|||
<method name="slerp">
|
||||
<return type="Basis">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Basis">
|
||||
<argument index="0" name="to" type="Basis">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
|
||||
|
|
|
@ -164,9 +164,9 @@
|
|||
<method name="lerp">
|
||||
<return type="Color">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Color">
|
||||
<argument index="0" name="to" type="Color">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the linear interpolation with another color. The interpolation factor [code]t[/code] is between 0 and 1.
|
||||
|
|
|
@ -92,10 +92,10 @@
|
|||
</argument>
|
||||
<argument index="2" name="post_b" type="Quat">
|
||||
</argument>
|
||||
<argument index="3" name="t" type="float">
|
||||
<argument index="3" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Performs a cubic spherical interpolation between quaternions [code]preA[/code], this vector, [code]b[/code], and [code]postB[/code], by the given amount [code]t[/code].
|
||||
Performs a cubic spherical interpolation between quaternions [code]pre_a[/code], this vector, [code]b[/code], and [code]post_b[/code], by the given amount [code]weight[/code].
|
||||
</description>
|
||||
</method>
|
||||
<method name="dot">
|
||||
|
@ -261,9 +261,9 @@
|
|||
<method name="slerp">
|
||||
<return type="Quat">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Quat">
|
||||
<argument index="0" name="to" type="Quat">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code].
|
||||
|
@ -273,9 +273,9 @@
|
|||
<method name="slerpni">
|
||||
<return type="Quat">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Quat">
|
||||
<argument index="0" name="to" type="Quat">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of the spherical linear interpolation between this quaternion and [code]to[/code] by amount [code]weight[/code], but without checking if the rotation path is not bigger than 90 degrees.
|
||||
|
|
|
@ -107,10 +107,10 @@
|
|||
</return>
|
||||
<argument index="0" name="xform" type="Transform2D">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns a transform interpolated between this transform and another by a given weight (on the range of 0.0 to 1.0).
|
||||
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
|
||||
</description>
|
||||
</method>
|
||||
<method name="inverse">
|
||||
|
|
|
@ -137,10 +137,10 @@
|
|||
</argument>
|
||||
<argument index="2" name="post_b" type="Vector2">
|
||||
</argument>
|
||||
<argument index="3" name="t" type="float">
|
||||
<argument index="3" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
</description>
|
||||
</method>
|
||||
<method name="direction_to">
|
||||
|
@ -224,9 +224,9 @@
|
|||
<method name="lerp">
|
||||
<return type="Vector2">
|
||||
</return>
|
||||
<argument index="0" name="with" type="Vector2">
|
||||
<argument index="0" name="to" type="Vector2">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
|
@ -452,9 +452,9 @@
|
|||
<method name="slerp">
|
||||
<return type="Vector2">
|
||||
</return>
|
||||
<argument index="0" name="with" type="Vector2">
|
||||
<argument index="0" name="to" type="Vector2">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
|
|
|
@ -105,10 +105,10 @@
|
|||
</argument>
|
||||
<argument index="2" name="post_b" type="Vector3">
|
||||
</argument>
|
||||
<argument index="3" name="t" type="float">
|
||||
<argument index="3" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
</description>
|
||||
</method>
|
||||
<method name="direction_to">
|
||||
|
@ -199,12 +199,12 @@
|
|||
<method name="lerp">
|
||||
<return type="Vector3">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Vector3">
|
||||
<argument index="0" name="to" type="Vector3">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
</description>
|
||||
</method>
|
||||
<method name="max_axis">
|
||||
|
@ -468,9 +468,9 @@
|
|||
<method name="slerp">
|
||||
<return type="Vector3">
|
||||
</return>
|
||||
<argument index="0" name="b" type="Vector3">
|
||||
<argument index="0" name="to" type="Vector3">
|
||||
</argument>
|
||||
<argument index="1" name="t" type="float">
|
||||
<argument index="1" name="weight" type="float">
|
||||
</argument>
|
||||
<description>
|
||||
Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
|
||||
|
|
|
@ -120,13 +120,13 @@ namespace Godot
|
|||
/// <param name="b">The destination quaternion.</param>
|
||||
/// <param name="preA">A quaternion before this quaternion.</param>
|
||||
/// <param name="postB">A quaternion after `b`.</param>
|
||||
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <returns>The interpolated quaternion.</returns>
|
||||
public Quat CubicSlerp(Quat b, Quat preA, Quat postB, real_t t)
|
||||
public Quat CubicSlerp(Quat b, Quat preA, Quat postB, real_t weight)
|
||||
{
|
||||
real_t t2 = (1.0f - t) * t * 2f;
|
||||
Quat sp = Slerp(b, t);
|
||||
Quat sq = preA.Slerpni(postB, t);
|
||||
real_t t2 = (1.0f - weight) * weight * 2f;
|
||||
Quat sp = Slerp(b, weight);
|
||||
Quat sq = preA.Slerpni(postB, weight);
|
||||
return sp.Slerpni(sq, t2);
|
||||
}
|
||||
|
||||
|
|
|
@ -194,15 +194,16 @@ namespace Godot
|
|||
/// <param name="b">The destination vector.</param>
|
||||
/// <param name="preA">A vector before this vector.</param>
|
||||
/// <param name="postB">A vector after `b`.</param>
|
||||
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <returns>The interpolated vector.</returns>
|
||||
public Vector2 CubicInterpolate(Vector2 b, Vector2 preA, Vector2 postB, real_t t)
|
||||
public Vector2 CubicInterpolate(Vector2 b, Vector2 preA, Vector2 postB, real_t weight)
|
||||
{
|
||||
Vector2 p0 = preA;
|
||||
Vector2 p1 = this;
|
||||
Vector2 p2 = b;
|
||||
Vector2 p3 = postB;
|
||||
|
||||
real_t t = weight;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
|
|
|
@ -161,15 +161,16 @@ namespace Godot
|
|||
/// <param name="b">The destination vector.</param>
|
||||
/// <param name="preA">A vector before this vector.</param>
|
||||
/// <param name="postB">A vector after `b`.</param>
|
||||
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
|
||||
/// <returns>The interpolated vector.</returns>
|
||||
public Vector3 CubicInterpolate(Vector3 b, Vector3 preA, Vector3 postB, real_t t)
|
||||
public Vector3 CubicInterpolate(Vector3 b, Vector3 preA, Vector3 postB, real_t weight)
|
||||
{
|
||||
Vector3 p0 = preA;
|
||||
Vector3 p1 = this;
|
||||
Vector3 p2 = b;
|
||||
Vector3 p3 = postB;
|
||||
|
||||
real_t t = weight;
|
||||
real_t t2 = t * t;
|
||||
real_t t3 = t2 * t;
|
||||
|
||||
|
|
Loading…
Reference in a new issue