Merge pull request #50165 from KoBeWi/take_it_easing
This commit is contained in:
commit
53306cb79a
6 changed files with 437 additions and 335 deletions
|
@ -80,6 +80,13 @@ Copyright: 2008-2016, The Android Open Source Project
|
|||
2002, Google, Inc.
|
||||
License: Apache-2.0
|
||||
|
||||
Files: ./scene/animation/easing_equations.h
|
||||
Comment: Robert Penner's Easing Functions
|
||||
Copyright: 2001, Robert Penner
|
||||
2007-2021 Juan Linietsky, Ariel Manzur.
|
||||
2014-2021 Godot Engine contributors.
|
||||
License: Expat
|
||||
|
||||
Files: ./servers/physics_3d/collision_solver_3d_sat.cpp
|
||||
Comment: Open Dynamics Engine
|
||||
Copyright: 2001-2003, Russell L. Smith, Alen Ladavac, Nguyen Binh
|
||||
|
@ -307,11 +314,6 @@ Comment: Fast Filtering of Reflection Probes
|
|||
Copyright: 2016, Activision Publishing, Inc.
|
||||
License: Expat
|
||||
|
||||
Files: ./thirdparty/misc/easing_equations.cpp
|
||||
Comment: Robert Penner's Easing Functions
|
||||
Copyright: 2001, Robert Penner
|
||||
License: BSD-3-clause
|
||||
|
||||
Files: ./thirdparty/misc/fastlz.c
|
||||
./thirdparty/misc/fastlz.h
|
||||
Comment: FastLZ
|
||||
|
|
|
@ -6,11 +6,8 @@ Import("env")
|
|||
|
||||
thirdparty_obj = []
|
||||
|
||||
thirdparty_sources = "#thirdparty/misc/easing_equations.cpp"
|
||||
|
||||
env_thirdparty = env.Clone()
|
||||
env_thirdparty.disable_warnings()
|
||||
env_thirdparty.add_source_files(thirdparty_obj, thirdparty_sources)
|
||||
env.scene_sources += thirdparty_obj
|
||||
|
||||
# Godot source files
|
||||
|
|
405
scene/animation/easing_equations.h
Normal file
405
scene/animation/easing_equations.h
Normal file
|
@ -0,0 +1,405 @@
|
|||
/*************************************************************************/
|
||||
/* easing_equations.h */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
/* https://godotengine.org */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
||||
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
/*
|
||||
* Derived from Robert Penner's easing equations: http://robertpenner.com/easing/
|
||||
*
|
||||
* Copyright (c) 2001 Robert Penner
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef EASING_EQUATIONS_H
|
||||
#define EASING_EQUATIONS_H
|
||||
|
||||
namespace linear {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * t / d + b;
|
||||
}
|
||||
}; // namespace linear
|
||||
|
||||
namespace sine {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c * cos(t / d * (Math_PI / 2)) + c + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * sin(t / d * (Math_PI / 2)) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c / 2 * (cos(Math_PI * t / d) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace sine
|
||||
|
||||
namespace quint {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 5) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * (pow(t / d - 1, 5) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
|
||||
if (t < 1) {
|
||||
return c / 2 * pow(t, 5) + b;
|
||||
}
|
||||
return c / 2 * (pow(t - 2, 5) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quint
|
||||
|
||||
namespace quart {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 4) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c * (pow(t / d - 1, 4) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
|
||||
if (t < 1) {
|
||||
return c / 2 * pow(t, 4) + b;
|
||||
}
|
||||
return -c / 2 * (pow(t - 2, 4) - 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quart
|
||||
|
||||
namespace quad {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 2) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
return -c * t * (t - 2) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
|
||||
if (t < 1) {
|
||||
return c / 2 * pow(t, 2) + b;
|
||||
}
|
||||
return -c / 2 * ((t - 1) * (t - 3) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quad
|
||||
|
||||
namespace expo {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) {
|
||||
return b;
|
||||
}
|
||||
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == d) {
|
||||
return b + c;
|
||||
}
|
||||
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) {
|
||||
return b;
|
||||
}
|
||||
|
||||
if (t == d) {
|
||||
return b + c;
|
||||
}
|
||||
|
||||
t = t / d * 2;
|
||||
|
||||
if (t < 1) {
|
||||
return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005;
|
||||
}
|
||||
return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace expo
|
||||
|
||||
namespace elastic {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) {
|
||||
return b;
|
||||
}
|
||||
|
||||
t /= d;
|
||||
if (t == 1) {
|
||||
return b + c;
|
||||
}
|
||||
|
||||
t -= 1;
|
||||
float p = d * 0.3f;
|
||||
float a = c * pow(2, 10 * t);
|
||||
float s = p / 4;
|
||||
|
||||
return -(a * sin((t * d - s) * (2 * Math_PI) / p)) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) {
|
||||
return b;
|
||||
}
|
||||
|
||||
t /= d;
|
||||
if (t == 1) {
|
||||
return b + c;
|
||||
}
|
||||
|
||||
float p = d * 0.3f;
|
||||
float s = p / 4;
|
||||
|
||||
return (c * pow(2, -10 * t) * sin((t * d - s) * (2 * Math_PI) / p) + c + b);
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) {
|
||||
return b;
|
||||
}
|
||||
|
||||
if ((t /= d / 2) == 2) {
|
||||
return b + c;
|
||||
}
|
||||
|
||||
float p = d * (0.3f * 1.5f);
|
||||
float a = c;
|
||||
float s = p / 4;
|
||||
|
||||
if (t < 1) {
|
||||
t -= 1;
|
||||
a *= pow(2, 10 * t);
|
||||
return -0.5f * (a * sin((t * d - s) * (2 * Math_PI) / p)) + b;
|
||||
}
|
||||
|
||||
t -= 1;
|
||||
a *= pow(2, -10 * t);
|
||||
return a * sin((t * d - s) * (2 * Math_PI) / p) * 0.5f + c + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace elastic
|
||||
|
||||
namespace cubic {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
return c * t * t * t + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d - 1;
|
||||
return c * (t * t * t + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d / 2;
|
||||
if (t < 1) {
|
||||
return c / 2 * t * t * t + b;
|
||||
}
|
||||
|
||||
t -= 2;
|
||||
return c / 2 * (t * t * t + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace cubic
|
||||
|
||||
namespace circ {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
return -c * (sqrt(1 - t * t) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d - 1;
|
||||
return c * sqrt(1 - t * t) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d / 2;
|
||||
if (t < 1) {
|
||||
return -c / 2 * (sqrt(1 - t * t) - 1) + b;
|
||||
}
|
||||
|
||||
t -= 2;
|
||||
return c / 2 * (sqrt(1 - t * t) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace circ
|
||||
|
||||
namespace bounce {
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
|
||||
if (t < (1 / 2.75f)) {
|
||||
return c * (7.5625f * t * t) + b;
|
||||
}
|
||||
|
||||
if (t < (2 / 2.75f)) {
|
||||
t -= 1.5f / 2.75f;
|
||||
return c * (7.5625f * t * t + 0.75f) + b;
|
||||
}
|
||||
|
||||
if (t < (2.5 / 2.75)) {
|
||||
t -= 2.25f / 2.75f;
|
||||
return c * (7.5625f * t * t + 0.9375f) + b;
|
||||
}
|
||||
|
||||
t -= 2.625f / 2.75f;
|
||||
return c * (7.5625f * t * t + 0.984375f) + b;
|
||||
}
|
||||
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c - out(d - t, 0, c, d) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return in(t * 2, b, c / 2, d);
|
||||
}
|
||||
return out(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace bounce
|
||||
|
||||
namespace back {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f;
|
||||
t /= d;
|
||||
|
||||
return c * t * t * ((s + 1) * t - s) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f;
|
||||
t = t / d - 1;
|
||||
|
||||
return c * (t * t * ((s + 1) * t + s) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f * 1.525f;
|
||||
t /= d / 2;
|
||||
|
||||
if (t < 1) {
|
||||
return c / 2 * (t * t * ((s + 1) * t - s)) + b;
|
||||
}
|
||||
|
||||
t -= 2;
|
||||
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t < d / 2) {
|
||||
return out(t * 2, b, c / 2, d);
|
||||
}
|
||||
return in(t * 2 - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace back
|
||||
|
||||
#endif
|
|
@ -30,8 +30,23 @@
|
|||
|
||||
#include "tween.h"
|
||||
|
||||
#include "scene/animation/easing_equations.h"
|
||||
#include "scene/main/node.h"
|
||||
|
||||
Tween::interpolater Tween::interpolaters[Tween::TRANS_MAX][Tween::EASE_MAX] = {
|
||||
{ &linear::in, &linear::in, &linear::in, &linear::in }, // Linear is the same for each easing.
|
||||
{ &sine::in, &sine::out, &sine::in_out, &sine::out_in },
|
||||
{ &quint::in, &quint::out, &quint::in_out, &quint::out_in },
|
||||
{ &quart::in, &quart::out, &quart::in_out, &quart::out_in },
|
||||
{ &quad::in, &quad::out, &quad::in_out, &quad::out_in },
|
||||
{ &expo::in, &expo::out, &expo::in_out, &expo::out_in },
|
||||
{ &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in },
|
||||
{ &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in },
|
||||
{ &circ::in, &circ::out, &circ::in_out, &circ::out_in },
|
||||
{ &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in },
|
||||
{ &back::in, &back::out, &back::in_out, &back::out_in },
|
||||
};
|
||||
|
||||
void Tweener::set_tween(Ref<Tween> p_tween) {
|
||||
tween = p_tween;
|
||||
}
|
||||
|
@ -317,6 +332,16 @@ bool Tween::should_pause() {
|
|||
return pause_mode != TWEEN_PAUSE_PROCESS;
|
||||
}
|
||||
|
||||
real_t Tween::run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t p_time, real_t p_initial, real_t p_delta, real_t p_duration) {
|
||||
if (p_duration == 0) {
|
||||
// Special case to avoid dividing by 0 in equations.
|
||||
return p_initial + p_delta;
|
||||
}
|
||||
|
||||
interpolater func = interpolaters[p_trans_type][p_ease_type];
|
||||
return func(p_time, p_initial, p_delta, p_duration);
|
||||
}
|
||||
|
||||
Variant Tween::interpolate_variant(Variant p_initial_val, Variant p_delta_val, float p_time, float p_duration, TransitionType p_trans, EaseType p_ease) {
|
||||
ERR_FAIL_INDEX_V(p_trans, TransitionType::TRANS_MAX, Variant());
|
||||
ERR_FAIL_INDEX_V(p_ease, EaseType::EASE_MAX, Variant());
|
||||
|
|
4
thirdparty/README.md
vendored
4
thirdparty/README.md
vendored
|
@ -422,10 +422,6 @@ Collection of single-file libraries used in Godot components.
|
|||
* Upstream: https://research.activision.com/publications/archives/fast-filtering-of-reflection-probes
|
||||
File coeffs_const_8.txt (retrieved April 2020)
|
||||
* License: MIT
|
||||
- `easing_equations.cpp`
|
||||
* Upstream: http://robertpenner.com/easing/ via https://github.com/jesusgollonet/ofpennereasing (modified to fit Godot types)
|
||||
* Version: git (af72c147c3a74e7e872aa28c7e2abfcced04fdce, 2008) + Godot types and style changes
|
||||
* License: BSD-3-Clause
|
||||
- `fastlz.{c,h}`
|
||||
* Upstream: https://github.com/ariya/FastLZ
|
||||
* Version: 0.5.0 (4f20f54d46f5a6dd4fae4def134933369b7602d2, 2020)
|
||||
|
|
323
thirdparty/misc/easing_equations.cpp
vendored
323
thirdparty/misc/easing_equations.cpp
vendored
|
@ -1,323 +0,0 @@
|
|||
/**
|
||||
* Adapted from Penner Easing equations' C++ port.
|
||||
* Source: https://github.com/jesusgollonet/ofpennereasing
|
||||
* License: BSD-3-clause
|
||||
*/
|
||||
|
||||
#include "scene/animation/tween.h"
|
||||
|
||||
const real_t pi = 3.1415926535898;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// linear
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace linear {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * t / d + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * t / d + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * t / d + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * t / d + b;
|
||||
}
|
||||
}; // namespace linear
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// sine
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace sine {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c * cos(t / d * (pi / 2)) + c + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * sin(t / d * (pi / 2)) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c / 2 * (cos(pi * t / d) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace sine
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// quint
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace quint {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 5) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * (pow(t / d - 1, 5) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
if (t < 1) return c / 2 * pow(t, 5) + b;
|
||||
return c / 2 * (pow(t - 2, 5) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quint
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// quart
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace quart {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 4) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return -c * (pow(t / d - 1, 4) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
if (t < 1) return c / 2 * pow(t, 4) + b;
|
||||
return -c / 2 * (pow(t - 2, 4) - 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quart
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// quad
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace quad {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c * pow(t / d, 2) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d;
|
||||
return -c * t * (t - 2) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d * 2;
|
||||
if (t < 1) return c / 2 * pow(t, 2) + b;
|
||||
return -c / 2 * ((t - 1) * (t - 3) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace quad
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// expo
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace expo {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) return b;
|
||||
return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == d) return b + c;
|
||||
return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) return b;
|
||||
if (t == d) return b + c;
|
||||
t = t / d * 2;
|
||||
if (t < 1) return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005;
|
||||
return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace expo
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// elastic
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace elastic {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) return b;
|
||||
if ((t /= d) == 1) return b + c;
|
||||
float p = d * 0.3f;
|
||||
float a = c;
|
||||
float s = p / 4;
|
||||
float postFix = a * pow(2, 10 * (t -= 1)); // this is a fix, again, with post-increment operators
|
||||
return -(postFix * sin((t * d - s) * (2 * pi) / p)) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) return b;
|
||||
if ((t /= d) == 1) return b + c;
|
||||
float p = d * 0.3f;
|
||||
float a = c;
|
||||
float s = p / 4;
|
||||
return (a * pow(2, -10 * t) * sin((t * d - s) * (2 * pi) / p) + c + b);
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if (t == 0) return b;
|
||||
if ((t /= d / 2) == 2) return b + c;
|
||||
float p = d * (0.3f * 1.5f);
|
||||
float a = c;
|
||||
float s = p / 4;
|
||||
|
||||
if (t < 1) {
|
||||
float postFix = a * pow(2, 10 * (t -= 1)); // postIncrement is evil
|
||||
return -0.5f * (postFix * sin((t * d - s) * (2 * pi) / p)) + b;
|
||||
}
|
||||
float postFix = a * pow(2, -10 * (t -= 1)); // postIncrement is evil
|
||||
return postFix * sin((t * d - s) * (2 * pi) / p) * 0.5f + c + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace elastic
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// cubic
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace cubic {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
return c * t * t * t + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d - 1;
|
||||
return c * (t * t * t + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d / 2;
|
||||
if (t < 1) return c / 2 * t * t * t + b;
|
||||
t -= 2;
|
||||
return c / 2 * (t * t * t + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace cubic
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// circ
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace circ {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d;
|
||||
return -c * (sqrt(1 - t * t) - 1) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t = t / d - 1;
|
||||
return c * sqrt(1 - t * t) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
t /= d / 2;
|
||||
if (t < 1) {
|
||||
return -c / 2 * (sqrt(1 - t * t) - 1) + b;
|
||||
}
|
||||
t -= 2;
|
||||
return c / 2 * (sqrt(1 - t * t) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace circ
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// bounce
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace bounce {
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d);
|
||||
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return c - out(d - t, 0, c, d) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
if ((t /= d) < (1 / 2.75f)) {
|
||||
return c * (7.5625f * t * t) + b;
|
||||
} else if (t < (2 / 2.75f)) {
|
||||
float postFix = t -= (1.5f / 2.75f);
|
||||
return c * (7.5625f * (postFix)*t + .75f) + b;
|
||||
} else if (t < (2.5 / 2.75)) {
|
||||
float postFix = t -= (2.25f / 2.75f);
|
||||
return c * (7.5625f * (postFix)*t + .9375f) + b;
|
||||
} else {
|
||||
float postFix = t -= (2.625f / 2.75f);
|
||||
return c * (7.5625f * (postFix)*t + .984375f) + b;
|
||||
}
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? in(t * 2, b, c / 2, d) : out((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace bounce
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// back
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
namespace back {
|
||||
static real_t in(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f;
|
||||
float postFix = t /= d;
|
||||
return c * (postFix)*t * ((s + 1) * t - s) + b;
|
||||
}
|
||||
|
||||
static real_t out(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f;
|
||||
t = t / d - 1;
|
||||
return c * (t * t * ((s + 1) * t + s) + 1) + b;
|
||||
}
|
||||
|
||||
static real_t in_out(real_t t, real_t b, real_t c, real_t d) {
|
||||
float s = 1.70158f * 1.525f;
|
||||
t /= d / 2;
|
||||
if (t < 1) return c / 2 * (t * t * ((s + 1) * t - s)) + b;
|
||||
t -= 2;
|
||||
return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b;
|
||||
}
|
||||
|
||||
static real_t out_in(real_t t, real_t b, real_t c, real_t d) {
|
||||
return (t < d / 2) ? out(t * 2, b, c / 2, d) : in((t * 2) - d, b + c / 2, c / 2, d);
|
||||
}
|
||||
}; // namespace back
|
||||
|
||||
Tween::interpolater Tween::interpolaters[Tween::TRANS_MAX][Tween::EASE_MAX] = {
|
||||
{ &linear::in, &linear::out, &linear::in_out, &linear::out_in },
|
||||
{ &sine::in, &sine::out, &sine::in_out, &sine::out_in },
|
||||
{ &quint::in, &quint::out, &quint::in_out, &quint::out_in },
|
||||
{ &quart::in, &quart::out, &quart::in_out, &quart::out_in },
|
||||
{ &quad::in, &quad::out, &quad::in_out, &quad::out_in },
|
||||
{ &expo::in, &expo::out, &expo::in_out, &expo::out_in },
|
||||
{ &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in },
|
||||
{ &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in },
|
||||
{ &circ::in, &circ::out, &circ::in_out, &circ::out_in },
|
||||
{ &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in },
|
||||
{ &back::in, &back::out, &back::in_out, &back::out_in },
|
||||
};
|
||||
|
||||
real_t Tween::run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d) {
|
||||
if (d == 0) {
|
||||
// Special case to avoid dividing by 0 in equations.
|
||||
return b + c;
|
||||
}
|
||||
|
||||
interpolater cb = interpolaters[p_trans_type][p_ease_type];
|
||||
ERR_FAIL_COND_V(cb == NULL, b);
|
||||
return cb(t, b, c, d);
|
||||
}
|
Loading…
Reference in a new issue