From 53c23b02226968d27e6caadcb801343697ac4fe9 Mon Sep 17 00:00:00 2001 From: Ferenc Arn Date: Tue, 8 Aug 2017 22:55:52 -0400 Subject: [PATCH] Use YXZ convention for Euler angles. As discussed in issues #1479 and #9782, choosing the up axis (which is Y in Godot) as the axis of the last (or first) rotation is helpful in practical use cases. This also aligns Godot's convention with Unity, helping with a smoother transition for people who are used to working with Unity (issue #9905). Internally, both XYZ and YXZ functions are kept, for potential future applications. --- core/math/matrix3.cpp | 86 ++++++++++++++++++++++++++++++++++++++++--- core/math/matrix3.h | 9 ++++- core/math/quat.cpp | 55 ++++++++++++++++++++++----- core/math/quat.h | 11 +++++- doc/base/classes.xml | 4 +- 5 files changed, 145 insertions(+), 20 deletions(-) diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index b64f34d9779..f2f6ff93cf5 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -338,7 +338,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) { rotate(p_axis, p_angle); } -// get_euler returns a vector containing the Euler angles in the format +// get_euler_xyz returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). // @@ -348,7 +348,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) { // And thus, assuming the matrix is a rotation matrix, this function returns // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. -Vector3 Basis::get_euler() const { +Vector3 Basis::get_euler_xyz() const { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix @@ -366,6 +366,9 @@ Vector3 Basis::get_euler() const { if (euler.y > -Math_PI * 0.5) { //if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case. if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[0][0] < 0.0) { + euler.x = 0; + euler.z = 0; + if (euler.y > 0.0) euler.y = Math_PI - euler.y; else @@ -389,10 +392,11 @@ Vector3 Basis::get_euler() const { return euler; } -// set_euler expects a vector containing the Euler angles in the format -// (c,b,a), where a is the angle of the first rotation, and c is the last. +// set_euler_xyz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler(const Vector3 &p_euler) { +void Basis::set_euler_xyz(const Vector3 &p_euler) { real_t c, s; @@ -412,6 +416,78 @@ void Basis::set_euler(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } +// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, +// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned +// as the x, y, and z components of a Vector3 respectively. +Vector3 Basis::get_euler_yxz() const { + + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; +#ifdef MATH_CHECKS + ERR_FAIL_COND_V(is_rotation() == false, euler); +#endif + real_t m12 = elements[1][2]; + + if (m12 < 1) { + if (m12 > -1) { + if (elements[1][0] == 0 && elements[0][1] == 0 && elements[2][2] < 0) { // use pure x rotation + real_t x = asin(-m12); + euler.y = 0; + euler.z = 0; + + if (x > 0.0) + euler.x = Math_PI - x; + else + euler.x = -(Math_PI + x); + } else { + euler.x = asin(-m12); + euler.y = atan2(elements[0][2], elements[2][2]); + euler.z = atan2(elements[1][0], elements[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5; + euler.y = -atan2(-elements[0][1], elements[0][0]); + euler.z = 0; + } + + return euler; +} + +// set_euler_yxz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// The current implementation uses YXZ convention (Z is the first rotation). +void Basis::set_euler_yxz(const Vector3 &p_euler) { + + real_t c, s; + + c = Math::cos(p_euler.x); + s = Math::sin(p_euler.x); + Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + + c = Math::cos(p_euler.y); + s = Math::sin(p_euler.y); + Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + + c = Math::cos(p_euler.z); + s = Math::sin(p_euler.z); + Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + + //optimizer will optimize away all this anyway + *this = ymat * xmat * zmat; +} + bool Basis::is_equal_approx(const Basis &a, const Basis &b) const { for (int i = 0; i < 3; i++) { diff --git a/core/math/matrix3.h b/core/math/matrix3.h index 8897c692f7c..74e65645780 100644 --- a/core/math/matrix3.h +++ b/core/math/matrix3.h @@ -84,8 +84,13 @@ public: void set_rotation_euler(const Vector3 &p_euler); void set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle); - Vector3 get_euler() const; - void set_euler(const Vector3 &p_euler); + Vector3 get_euler_xyz() const; + void set_euler_xyz(const Vector3 &p_euler); + Vector3 get_euler_yxz() const; + void set_euler_yxz(const Vector3 &p_euler); + + Vector3 get_euler() const { return get_euler_yxz(); }; + void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }; void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; void set_axis_angle(const Vector3 &p_axis, real_t p_phi); diff --git a/core/math/quat.cpp b/core/math/quat.cpp index 0bea97c2e89..5984cdf6577 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -31,10 +31,11 @@ #include "matrix3.h" #include "print_string.h" -// set_euler expects a vector containing the Euler angles in the format -// (c,b,a), where a is the angle of the first rotation, and c is the last. -// The current implementation uses XYZ convention (Z is the first rotation). -void Quat::set_euler(const Vector3 &p_euler) { +// set_euler_xyz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses XYZ convention (Z is the first rotation). +void Quat::set_euler_xyz(const Vector3 &p_euler) { real_t half_a1 = p_euler.x * 0.5; real_t half_a2 = p_euler.y * 0.5; real_t half_a3 = p_euler.z * 0.5; @@ -56,12 +57,48 @@ void Quat::set_euler(const Vector3 &p_euler) { -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } -// get_euler returns a vector containing the Euler angles in the format -// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last. -// The current implementation uses XYZ convention (Z is the first rotation). -Vector3 Quat::get_euler() const { +// get_euler_xyz returns a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses XYZ convention (Z is the first rotation). +Vector3 Quat::get_euler_xyz() const { Basis m(*this); - return m.get_euler(); + return m.get_euler_xyz(); +} + +// set_euler_yxz expects a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +void Quat::set_euler_yxz(const Vector3 &p_euler) { + real_t half_a1 = p_euler.y * 0.5; + real_t half_a2 = p_euler.x * 0.5; + real_t half_a3 = p_euler.z * 0.5; + + // R = Y(a1).X(a2).Z(a3) convention for Euler angles. + // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) + // a3 is the angle of the first rotation, following the notation in this reference. + + real_t cos_a1 = Math::cos(half_a1); + real_t sin_a1 = Math::sin(half_a1); + real_t cos_a2 = Math::cos(half_a2); + real_t sin_a2 = Math::sin(half_a2); + real_t cos_a3 = Math::cos(half_a3); + real_t sin_a3 = Math::sin(half_a3); + + set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, + sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, + -sin_a1 * sin_a2 * cos_a3 + cos_a1 * sin_a2 * sin_a3, + sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); +} + +// get_euler_yxz returns a vector containing the Euler angles in the format +// (ax,ay,az), where ax is the angle of rotation around x axis, +// and similar for other axes. +// This implementation uses YXZ convention (Z is the first rotation). +Vector3 Quat::get_euler_yxz() const { + Basis m(*this); + return m.get_euler_yxz(); } void Quat::operator*=(const Quat &q) { diff --git a/core/math/quat.h b/core/math/quat.h index f22275b457f..0e378eb4e48 100644 --- a/core/math/quat.h +++ b/core/math/quat.h @@ -51,8 +51,15 @@ public: bool is_normalized() const; Quat inverse() const; _FORCE_INLINE_ real_t dot(const Quat &q) const; - void set_euler(const Vector3 &p_euler); - Vector3 get_euler() const; + + void set_euler_xyz(const Vector3 &p_euler); + Vector3 get_euler_xyz() const; + void set_euler_yxz(const Vector3 &p_euler); + Vector3 get_euler_yxz() const; + + void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }; + Vector3 get_euler() const { return get_euler_yxz(); }; + Quat slerp(const Quat &q, const real_t &t) const; Quat slerpni(const Quat &q, const real_t &t) const; Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const; diff --git a/doc/base/classes.xml b/doc/base/classes.xml index 7dd22d7cb06..db758d9197d 100644 --- a/doc/base/classes.xml +++ b/doc/base/classes.xml @@ -7652,7 +7652,7 @@ - Create a rotation matrix (in the XYZ convention: first Z, then Y, and X last) from the specified Euler angles, given in the vector format as (third, second, first). + Create a rotation matrix (in the YXZ convention: first Z, then X, and Y last) from the specified Euler angles, given in the vector format as (X-angle, Y-angle, Z-angle). @@ -7690,7 +7690,7 @@ - Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the XYZ convention: first Z, then Y, and X last). Returned vector contains the rotation angles in the format (third,second,first). + Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the YXZ convention: first Z, then X, and Y last). Returned vector contains the rotation angles in the format (X-angle, Y-angle, Z-angle).