Explicitly documented that Transform.basis is not necessarily an orthogonal matrix.

Also added a check that in axis-angle rotations, axis is a normalized vector, and modified the docs accordingly.

Fixes #8113.
This commit is contained in:
Ferenc Arn 2017-03-23 12:27:00 -05:00
parent c37fad650f
commit 6bb9b58b09
3 changed files with 13 additions and 6 deletions

View file

@ -575,6 +575,8 @@ Basis::Basis(const Quat &p_quat) {
Basis::Basis(const Vector3 &p_axis, real_t p_phi) { Basis::Basis(const Vector3 &p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
ERR_FAIL_COND(p_axis.is_normalized() == false);
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
real_t cosine = Math::cos(p_phi); real_t cosine = Math::cos(p_phi);

View file

@ -75,6 +75,7 @@ struct Vector3 {
_FORCE_INLINE_ void normalize(); _FORCE_INLINE_ void normalize();
_FORCE_INLINE_ Vector3 normalized() const; _FORCE_INLINE_ Vector3 normalized() const;
_FORCE_INLINE_ bool is_normalized() const;
_FORCE_INLINE_ Vector3 inverse() const; _FORCE_INLINE_ Vector3 inverse() const;
_FORCE_INLINE_ void zero(); _FORCE_INLINE_ void zero();
@ -385,6 +386,10 @@ Vector3 Vector3::normalized() const {
return v; return v;
} }
bool Vector3::is_normalized() const {
return Math::isequal_approx(length(), (real_t)1.0);
}
Vector3 Vector3::inverse() const { Vector3 Vector3::inverse() const {
return Vector3(1.0 / x, 1.0 / y, 1.0 / z); return Vector3(1.0 / x, 1.0 / y, 1.0 / z);

View file

@ -20704,7 +20704,7 @@
3x3 matrix datatype. 3x3 matrix datatype.
</brief_description> </brief_description>
<description> <description>
3x3 matrix used for 3D rotation and scale. Contains 3 vector fields x,y and z as its columns, which can be interpreted as the local basis vectors of a transformation. Can also be accessed as array of 3D vectors. Almost always used as orthogonal basis for a [Transform]. 3x3 matrix used for 3D rotation and scale. Contains 3 vector fields x,y and z as its columns, which can be interpreted as the local basis vectors of a transformation. Can also be accessed as array of 3D vectors. These vectors are orthogonal to each other, but are not necessarily normalized. Almost always used as orthogonal basis for a [Transform].
For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S). For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
</description> </description>
<methods> <methods>
@ -20725,7 +20725,7 @@
<argument index="1" name="phi" type="float"> <argument index="1" name="phi" type="float">
</argument> </argument>
<description> <description>
Create a rotation matrix which rotates around the given axis by the specified angle. Create a rotation matrix which rotates around the given axis by the specified angle. The axis must be a normalized vector.
</description> </description>
</method> </method>
<method name="Matrix3"> <method name="Matrix3">
@ -20792,7 +20792,7 @@
<argument index="1" name="phi" type="float"> <argument index="1" name="phi" type="float">
</argument> </argument>
<description> <description>
Introduce an additional rotation around the given axis by phi. Only relevant when the matrix is being used as a part of [Transform]. Introduce an additional rotation around the given axis by phi. Only relevant when the matrix is being used as a part of [Transform]. The axis must be a normalized vector.
</description> </description>
</method> </method>
<method name="scaled"> <method name="scaled">
@ -31548,7 +31548,7 @@
<argument index="1" name="angle" type="float"> <argument index="1" name="angle" type="float">
</argument> </argument>
<description> <description>
Returns a quaternion that will rotate around the given axis by the specified angle. Returns a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector.
</description> </description>
</method> </method>
<method name="Quat"> <method name="Quat">
@ -43200,7 +43200,7 @@
<argument index="1" name="phi" type="float"> <argument index="1" name="phi" type="float">
</argument> </argument>
<description> <description>
Rotate the transform around given axis by phi. Rotate the transform around given axis by phi. The axis must be a normalized vector.
</description> </description>
</method> </method>
<method name="scaled"> <method name="scaled">
@ -45402,7 +45402,7 @@ do_property].
<argument index="1" name="phi" type="float"> <argument index="1" name="phi" type="float">
</argument> </argument>
<description> <description>
Rotates the vector around some axis by phi radians. Rotates the vector around some axis by phi radians. The axis must be a normalized vector.
</description> </description>
</method> </method>
<method name="slide"> <method name="slide">