diff --git a/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp b/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp index a655edcfa79..3061511c6d5 100644 --- a/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp +++ b/servers/rendering/renderer_rd/renderer_scene_render_rd.cpp @@ -6062,22 +6062,17 @@ void RendererSceneRenderRD::_setup_reflections(const PagedArray &p_reflecti reflection_ubo.box_offset[2] = origin_offset.z; reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe); - float intensity = storage->reflection_probe_get_intensity(base_probe); - bool interior = storage->reflection_probe_is_interior(base_probe); - bool box_projection = storage->reflection_probe_is_box_projection(base_probe); + reflection_ubo.intensity = storage->reflection_probe_get_intensity(base_probe); + reflection_ubo.ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe); - reflection_ubo.params[0] = intensity; - reflection_ubo.params[1] = 0; - reflection_ubo.params[2] = interior ? 1.0 : 0.0; - reflection_ubo.params[3] = box_projection ? 1.0 : 0.0; + reflection_ubo.exterior = !storage->reflection_probe_is_interior(base_probe); + reflection_ubo.box_project = storage->reflection_probe_is_box_projection(base_probe); Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear(); float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe); - uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe); reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; - reflection_ubo.ambient_mode = ambient_mode; Transform transform = reflection_probe_instance_get_transform(rpi); Transform proj = (p_camera_inverse_transform * transform).inverse(); @@ -6300,13 +6295,14 @@ void RendererSceneRenderRD::_setup_lights(const PagedArray &p_lights, const float sign = storage->light_is_negative(base) ? -1 : 1; Color linear_col = storage->light_get_color(base).to_linear(); - light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION)); - light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI); + light_data.attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); - light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255); - light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255); - light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255); - light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255); + float energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI; + + light_data.color[0] = linear_col.r * energy; + light_data.color[1] = linear_col.g * energy; + light_data.color[2] = linear_col.b * energy; + light_data.specular_amount = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; @@ -6327,9 +6323,9 @@ void RendererSceneRenderRD::_setup_lights(const PagedArray &p_lights, const light_data.size = size; - light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION)); + light_data.cone_attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); - light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle))); + light_data.cone_angle = Math::cos(Math::deg2rad(spot_angle)); light_data.mask = storage->light_get_cull_mask(base); @@ -6364,12 +6360,7 @@ void RendererSceneRenderRD::_setup_lights(const PagedArray &p_lights, const if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) { // fill in the shadow information - Color shadow_color = storage->light_get_shadow_color(base); - - light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255); - light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255); - light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255); - light_data.shadow_color_enabled[3] = 255; + light_data.shadow_enabled = true; if (type == RS::LIGHT_SPOT) { light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0); @@ -6427,7 +6418,7 @@ void RendererSceneRenderRD::_setup_lights(const PagedArray &p_lights, const } } } else { - light_data.shadow_color_enabled[3] = 0; + light_data.shadow_enabled = false; } light_instance_set_index(li, light_count); @@ -6763,7 +6754,7 @@ void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_e cluster.lights_shadow_rect_cache_count = 0; for (int i = 0; i < p_positional_light_count; i++) { - if (cluster.lights[i].shadow_color_enabled[3] > 127) { + if (cluster.lights[i].shadow_enabled != 0) { RID li = cluster.lights_instances[i]; ERR_CONTINUE(!shadow_atlas->shadow_owners.has(li)); @@ -8499,7 +8490,6 @@ RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) { { //reflections uint32_t reflection_buffer_size; if (uniform_max_size < 65536) { - //Yes, you guessed right, ARM again reflection_buffer_size = uniform_max_size; } else { reflection_buffer_size = 65536; diff --git a/servers/rendering/renderer_rd/renderer_scene_render_rd.h b/servers/rendering/renderer_rd/renderer_scene_render_rd.h index 3f9c117602c..264434a3013 100644 --- a/servers/rendering/renderer_rd/renderer_scene_render_rd.h +++ b/servers/rendering/renderer_rd/renderer_scene_render_rd.h @@ -1297,14 +1297,23 @@ private: struct Cluster { /* Scene State UBO */ - struct ReflectionData { //should always be 128 bytes + enum { + REFLECTION_AMBIENT_DISABLED = 0, + REFLECTION_AMBIENT_ENVIRONMENT = 1, + REFLECTION_AMBIENT_COLOR = 2, + }; + + struct ReflectionData { float box_extents[3]; float index; float box_offset[3]; uint32_t mask; - float params[4]; // intensity, 0, interior , boxproject float ambient[3]; // ambient color, + float intensity; + bool exterior; + bool box_project; uint32_t ambient_mode; + uint32_t pad; float local_matrix[16]; // up to here for spot and omni, rest is for directional }; @@ -1313,10 +1322,15 @@ private: float inv_radius; float direction[3]; float size; - uint16_t attenuation_energy[2]; //16 bits attenuation, then energy - uint8_t color_specular[4]; //rgb color, a specular (8 bit unorm) - uint16_t cone_attenuation_angle[2]; // attenuation and angle, (16bit float) - uint8_t shadow_color_enabled[4]; //shadow rgb color, a>0.5 enabled (8bit unorm) + + float color[3]; + float attenuation; + + float cone_attenuation; + float cone_angle; + float specular_amount; + uint32_t shadow_enabled; + float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv float shadow_matrix[16]; float shadow_bias; diff --git a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl index e723468dd83..3a4bf4da07d 100644 --- a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl @@ -6,12 +6,18 @@ struct LightData { //this structure needs to be as packed as possible vec3 position; float inv_radius; + vec3 direction; float size; - uint attenuation_energy; //attenuation - uint color_specular; //rgb color, a specular (8 bit unorm) - uint cone_attenuation_angle; // attenuation and angle, (16bit float) - uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm) + + vec3 color; + float attenuation; + + float cone_attenuation; + float cone_angle; + float specular_amount; + bool shadow_enabled; + vec4 atlas_rect; // rect in the shadow atlas mat4 shadow_matrix; float shadow_bias; @@ -34,9 +40,13 @@ struct ReflectionData { float index; vec3 box_offset; uint mask; - vec4 params; // intensity, 0, interior , boxproject vec3 ambient; // ambient color + float intensity; + bool exterior; + bool box_project; uint ambient_mode; + uint pad; + //0-8 is intensity,8-9 is ambient, mode mat4 local_matrix; // up to here for spot and omni, rest is for directional // notes: for ambientblend, use distance to edge to blend between already existing global environment }; diff --git a/servers/rendering/renderer_rd/shaders/scene_forward.glsl b/servers/rendering/renderer_rd/shaders/scene_forward.glsl index 05189763226..7fa5f7b0fe8 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward.glsl @@ -541,7 +541,7 @@ vec3 F0(float metallic, float specular, vec3 albedo) { return mix(vec3(dielectric), albedo, vec3(metallic)); } -void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity, +void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif @@ -553,7 +553,7 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte float transmittance_z, #endif #ifdef LIGHT_RIM_USED - float rim, float rim_tint, + float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, @@ -561,6 +561,9 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T, float anisotropy, #endif +#ifdef USE_SOFT_SHADOWS + float A, +#endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif @@ -570,7 +573,6 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte // light is written by the light shader vec3 normal = N; - vec3 albedo = diffuse_color; vec3 light = L; vec3 view = V; @@ -581,7 +583,12 @@ LIGHT_SHADER_CODE /* clang-format on */ #else + +#ifdef USE_SOFT_SHADOWS float NdotL = min(A + dot(N, L), 1.0); +#else + float NdotL = dot(N, L); +#endif float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); @@ -591,14 +598,25 @@ LIGHT_SHADER_CODE #endif #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) +#ifdef USE_SOFT_SHADOWS float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); +#else + float cNdotH = clamp(dot(N, H), 0.0, 1.0); +#endif #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) +#ifdef USE_SOFT_SHADOWS float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); +#else + float cLdotH = clamp(dot(L, H), 0.0, 1.0); +#endif #endif + float metallic = unpackUnorm4x8(orms).z; if (metallic < 1.0) { + float roughness = unpackUnorm4x8(orms).y; + #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else @@ -608,23 +626,6 @@ LIGHT_SHADER_CODE #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); - -#elif defined(DIFFUSE_OREN_NAYAR) - - { - // see http://mimosa-pudica.net/improved-oren-nayar.html - float LdotV = dot(L, V); - - float s = LdotV - NdotL * NdotV; - float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); - - float sigma2 = roughness * roughness; // TODO: this needs checking - vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); - float B = 0.45 * sigma2 / (sigma2 + 0.09); - - diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); - } - #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); @@ -652,15 +653,15 @@ LIGHT_SHADER_CODE diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif - diffuse_light += light_color * diffuse_color * shadow_attenuation * diffuse_brdf_NL * attenuation; + diffuse_light += light_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_BACKLIGHT_USED) - diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; + diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; #endif #if defined(LIGHT_RIM_USED) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); - diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; + diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color; #endif #ifdef LIGHT_TRANSMITTANCE_USED @@ -678,7 +679,7 @@ LIGHT_SHADER_CODE vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); - diffuse_light += profile * transmittance_color.a * diffuse_color * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI) * attenuation; + diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); } #else @@ -688,7 +689,7 @@ LIGHT_SHADER_CODE fade = pow(max(0.0, 1.0 - fade), transmittance_curve); fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0); - diffuse_light += diffuse_color * transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade * attenuation; + diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade; } #endif //SSS_MODE_SKIN @@ -696,6 +697,7 @@ LIGHT_SHADER_CODE #endif //LIGHT_TRANSMITTANCE_USED } + float roughness = unpackUnorm4x8(orms).y; if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D @@ -708,7 +710,7 @@ LIGHT_SHADER_CODE blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = blinn; - specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; + specular_light += light_color * intensity * attenuation; #elif defined(SPECULAR_PHONG) @@ -719,7 +721,7 @@ LIGHT_SHADER_CODE phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); - specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; + specular_light += light_color * intensity * attenuation; #elif defined(SPECULAR_TOON) @@ -728,7 +730,7 @@ LIGHT_SHADER_CODE float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; - diffuse_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection + diffuse_light += light_color * intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. @@ -753,13 +755,12 @@ LIGHT_SHADER_CODE float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); #endif // F - vec3 f0 = F0(metallic, specular, diffuse_color); float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); vec3 specular_brdf_NL = cNdotL * D * F * G; - specular_light += specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation; + specular_light += specular_brdf_NL * light_color * attenuation; #endif #if defined(LIGHT_CLEARCOAT_USED) @@ -773,12 +774,12 @@ LIGHT_SHADER_CODE float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; - specular_light += clearcoat_specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation; + specular_light += clearcoat_specular_brdf_NL * light_color * attenuation; #endif } #ifdef USE_SHADOW_TO_OPACITY - alpha = min(alpha, clamp(1.0 - length(shadow_attenuation * attenuation), 0.0, 1.0)); + alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0)); #endif #endif //defined(USE_LIGHT_SHADER_CODE) @@ -900,53 +901,14 @@ float get_omni_attenuation(float distance, float inv_range, float decay) { return nd * pow(max(distance, 0.0001), -decay); } -void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity, -#ifdef LIGHT_BACKLIGHT_USED - vec3 backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - vec4 transmittance_color, - float transmittance_depth, - float transmittance_curve, - float transmittance_boost, -#endif -#ifdef LIGHT_RIM_USED - float rim, float rim_tint, -#endif -#ifdef LIGHT_CLEARCOAT_USED - float clearcoat, float clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - vec3 binormal, vec3 tangent, float anisotropy, -#endif -#ifdef USE_SHADOW_TO_OPACITY - inout float alpha, -#endif - inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy); - float omni_attenuation = get_omni_attenuation(light_length, lights.data[idx].inv_radius, attenuation_energy.x); - float light_attenuation = omni_attenuation; - vec3 shadow_attenuation = vec3(1.0); - vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular); - color_specular.rgb *= attenuation_energy.y; - float size_A = 0.0; - - if (lights.data[idx].size > 0.0) { - float t = lights.data[idx].size / max(0.001, light_length); - size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); - } - -#ifdef LIGHT_TRANSMITTANCE_USED - float transmittance_z = transmittance_depth; //no transmittance by default -#endif - +float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef USE_NO_SHADOWS - vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled); - if (shadow_color_enabled.w > 0.5) { + if (lights.data[idx].shadow_enabled) { // there is a shadowmap + vec3 light_rel_vec = lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + vec4 v = vec4(vertex, 1.0); vec4 splane = (lights.data[idx].shadow_matrix * v); @@ -961,6 +923,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v float shadow; +#ifdef USE_SOFT_SHADOWS if (lights.data[idx].soft_shadow_size > 0.0) { //soft shadow @@ -1051,6 +1014,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v shadow = 1.0; } } else { +#endif splane.xyz = normalize(splane.xyz); vec4 clamp_rect = lights.data[idx].atlas_rect; @@ -1070,97 +1034,145 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; splane.w = 1.0; //needed? i think it should be 1 already shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane); - } - -#ifdef LIGHT_TRANSMITTANCE_USED - { - vec4 clamp_rect = lights.data[idx].atlas_rect; - - //redo shadowmapping, but shrink the model a bit to avoid arctifacts - splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0)); - - shadow_len = length(splane.xyz); - splane = normalize(splane.xyz); - - if (splane.z >= 0.0) { - splane.z += 1.0; - - } else { - splane.z = 1.0 - splane.z; - } - - splane.xy /= splane.z; - splane.xy = splane.xy * 0.5 + 0.5; - splane.z = shadow_len * lights.data[idx].inv_radius; - splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - splane.w = 1.0; //needed? i think it should be 1 already - - float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; - transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius; +#ifdef USE_SOFT_SHADOWS } #endif - vec3 no_shadow = vec3(1.0); + return shadow; + } +#endif - if (lights.data[idx].projector_rect != vec4(0.0)) { - vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; - local_v = normalize(local_v); + return 1.0; +} - vec4 atlas_rect = lights.data[idx].projector_rect; +void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, +#ifdef LIGHT_BACKLIGHT_USED + vec3 backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + vec4 transmittance_color, + float transmittance_depth, + float transmittance_curve, + float transmittance_boost, +#endif +#ifdef LIGHT_RIM_USED + float rim, float rim_tint, vec3 rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + float clearcoat, float clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + vec3 binormal, vec3 tangent, float anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + inout float alpha, +#endif + inout vec3 diffuse_light, inout vec3 specular_light) { + vec3 light_rel_vec = lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + float omni_attenuation = get_omni_attenuation(light_length, lights.data[idx].inv_radius, lights.data[idx].attenuation); + float light_attenuation = omni_attenuation; + vec3 color = lights.data[idx].color; - if (local_v.z >= 0.0) { - local_v.z += 1.0; - atlas_rect.y += atlas_rect.w; +#ifdef USE_SOFT_SHADOWS + float size_A = 0.0; - } else { - local_v.z = 1.0 - local_v.z; - } + if (lights.data[idx].size > 0.0) { + float t = lights.data[idx].size / max(0.001, light_length); + size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); + } +#endif - local_v.xy /= local_v.z; - local_v.xy = local_v.xy * 0.5 + 0.5; - vec2 proj_uv = local_v.xy * atlas_rect.zw; +#ifdef LIGHT_TRANSMITTANCE_USED + float transmittance_z = transmittance_depth; //no transmittance by default + transmittance_color.a *= light_attenuation; + { + vec4 clamp_rect = lights.data[idx].atlas_rect; - vec2 proj_uv_ddx; - vec2 proj_uv_ddy; - { - vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; - local_v_ddx = normalize(local_v_ddx); + //redo shadowmapping, but shrink the model a bit to avoid arctifacts + vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0)); - if (local_v_ddx.z >= 0.0) { - local_v_ddx.z += 1.0; - } else { - local_v_ddx.z = 1.0 - local_v_ddx.z; - } + shadow_len = length(splane.xyz); + splane = normalize(splane.xyz); - local_v_ddx.xy /= local_v_ddx.z; - local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; + if (splane.z >= 0.0) { + splane.z += 1.0; - proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; - - vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; - local_v_ddy = normalize(local_v_ddy); - - if (local_v_ddy.z >= 0.0) { - local_v_ddy.z += 1.0; - } else { - local_v_ddy.z = 1.0 - local_v_ddy.z; - } - - local_v_ddy.xy /= local_v_ddy.z; - local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; - - proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; - } - - vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); - no_shadow = mix(no_shadow, proj.rgb, proj.a); + } else { + splane.z = 1.0 - splane.z; } - shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow); - } -#endif //USE_NO_SHADOWS + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len * lights.data[idx].inv_radius; + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + splane.w = 1.0; //needed? i think it should be 1 already - light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity, + float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; + transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius; + } +#endif + +#if 0 + + if (lights.data[idx].projector_rect != vec4(0.0)) { + vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; + local_v = normalize(local_v); + + vec4 atlas_rect = lights.data[idx].projector_rect; + + if (local_v.z >= 0.0) { + local_v.z += 1.0; + atlas_rect.y += atlas_rect.w; + + } else { + local_v.z = 1.0 - local_v.z; + } + + local_v.xy /= local_v.z; + local_v.xy = local_v.xy * 0.5 + 0.5; + vec2 proj_uv = local_v.xy * atlas_rect.zw; + + vec2 proj_uv_ddx; + vec2 proj_uv_ddy; + { + vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; + local_v_ddx = normalize(local_v_ddx); + + if (local_v_ddx.z >= 0.0) { + local_v_ddx.z += 1.0; + } else { + local_v_ddx.z = 1.0 - local_v_ddx.z; + } + + local_v_ddx.xy /= local_v_ddx.z; + local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; + + proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; + + vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; + local_v_ddy = normalize(local_v_ddy); + + if (local_v_ddy.z >= 0.0) { + local_v_ddy.z += 1.0; + } else { + local_v_ddy.z = 1.0 - local_v_ddy.z; + } + + local_v_ddy.xy /= local_v_ddy.z; + local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; + + proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; + } + + vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); + no_shadow = mix(no_shadow, proj.rgb, proj.a); + } +#endif + + light_attenuation *= shadow; + + light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif @@ -1172,7 +1184,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v transmittance_z, #endif #ifdef LIGHT_RIM_USED - rim * omni_attenuation, rim_tint, + rim * omni_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, @@ -1180,6 +1192,9 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif +#ifdef USE_SOFT_SHADOWS + size_A, +#endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif @@ -1187,62 +1202,12 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v specular_light); } -void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity, -#ifdef LIGHT_BACKLIGHT_USED - vec3 backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - vec4 transmittance_color, - float transmittance_depth, - float transmittance_curve, - float transmittance_boost, -#endif -#ifdef LIGHT_RIM_USED - float rim, float rim_tint, -#endif -#ifdef LIGHT_CLEARCOAT_USED - float clearcoat, float clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - vec3 binormal, vec3 tangent, float anisotropy, -#endif -#ifdef USE_SHADOW_TO_OPACITY - inout float alpha, -#endif - inout vec3 diffuse_light, - inout vec3 specular_light) { - vec3 light_rel_vec = lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy); - float spot_attenuation = get_omni_attenuation(light_length, lights.data[idx].inv_radius, attenuation_energy.x); - vec3 spot_dir = lights.data[idx].direction; - vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle); - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y); - float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y)); - spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x); - float light_attenuation = spot_attenuation; - vec3 shadow_attenuation = vec3(1.0); - vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular); - color_specular.rgb *= attenuation_energy.y; - - float size_A = 0.0; - - if (lights.data[idx].size > 0.0) { - float t = lights.data[idx].size / max(0.001, light_length); - size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); - } -/* - if (lights.data[idx].atlas_rect!=vec4(0.0)) { - //use projector texture - } - */ -#ifdef LIGHT_TRANSMITTANCE_USED - float transmittance_z = transmittance_depth; -#endif - +float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef USE_NO_SHADOWS - vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled); - if (shadow_color_enabled.w > 0.5) { + if (lights.data[idx].shadow_enabled) { + vec3 light_rel_vec = lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + vec3 spot_dir = lights.data[idx].direction; //there is a shadowmap vec4 v = vec4(vertex, 1.0); @@ -1263,6 +1228,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v vec4 splane = (lights.data[idx].shadow_matrix * v); splane /= splane.w; +#ifdef USE_SOFT_SHADOWS if (lights.data[idx].soft_shadow_size > 0.0) { //soft shadow @@ -1314,54 +1280,93 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v } } else { +#endif //hard shadow vec4 shadow_uv = vec4(splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy, z_norm, 1.0); shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); +#ifdef USE_SOFT_SHADOWS } +#endif - vec3 no_shadow = vec3(1.0); - - if (lights.data[idx].projector_rect != vec4(0.0)) { - splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)); - splane /= splane.w; - - vec2 proj_uv = splane.xy * lights.data[idx].projector_rect.zw; - - //ensure we have proper mipmaps - vec4 splane_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)); - splane_ddx /= splane_ddx.w; - vec2 proj_uv_ddx = splane_ddx.xy * lights.data[idx].projector_rect.zw - proj_uv; - - vec4 splane_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)); - splane_ddy /= splane_ddy.w; - vec2 proj_uv_ddy = splane_ddy.xy * lights.data[idx].projector_rect.zw - proj_uv; - - vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy); - no_shadow = mix(no_shadow, proj.rgb, proj.a); - } - - shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow); - -#ifdef LIGHT_TRANSMITTANCE_USED - { - splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0)); - splane /= splane.w; - splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy; - - float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; - //reconstruct depth - shadow_z /= lights.data[idx].inv_radius; - //distance to light plane - float z = dot(spot_dir, -light_rel_vec); - transmittance_z = z - shadow_z; - } -#endif //LIGHT_TRANSMITTANCE_USED + return shadow; } #endif //USE_NO_SHADOWS - light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity, + return 1.0; +} + +void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, +#ifdef LIGHT_BACKLIGHT_USED + vec3 backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + vec4 transmittance_color, + float transmittance_depth, + float transmittance_curve, + float transmittance_boost, +#endif +#ifdef LIGHT_RIM_USED + float rim, float rim_tint, vec3 rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + float clearcoat, float clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + vec3 binormal, vec3 tangent, float anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + inout float alpha, +#endif + inout vec3 diffuse_light, + inout vec3 specular_light) { + vec3 light_rel_vec = lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + float spot_attenuation = get_omni_attenuation(light_length, lights.data[idx].inv_radius, lights.data[idx].attenuation); + vec3 spot_dir = lights.data[idx].direction; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), lights.data[idx].cone_angle); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - lights.data[idx].cone_angle)); + spot_attenuation *= 1.0 - pow(spot_rim, lights.data[idx].cone_attenuation); + float light_attenuation = spot_attenuation; + vec3 color = lights.data[idx].color; + float specular_amount = lights.data[idx].specular_amount; + +#ifdef USE_SOFT_SHADOWS + float size_A = 0.0; + + if (lights.data[idx].size > 0.0) { + float t = lights.data[idx].size / max(0.001, light_length); + size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); + } +#endif + + /* + if (lights.data[idx].atlas_rect!=vec4(0.0)) { + //use projector texture + } + */ + +#ifdef LIGHT_TRANSMITTANCE_USED + float transmittance_z = transmittance_depth; + transmittance_color.a *= light_attenuation; + { + splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0)); + splane /= splane.w; + splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy; + + float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; + //reconstruct depth + shadow_z /= lights.data[idx].inv_radius; + //distance to light plane + float z = dot(spot_dir, -light_rel_vec); + transmittance_z = z - shadow_z; + } +#endif //LIGHT_TRANSMITTANCE_USED + + light_attenuation *= shadow; + + light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif @@ -1373,7 +1378,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v transmittance_z, #endif #ifdef LIGHT_RIM_USED - rim * spot_attenuation, rim_tint, + rim * spot_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, @@ -1381,6 +1386,9 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif +#ifdef USE_SOFT_SHADOW + size_A, +#endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif @@ -1404,11 +1412,11 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes blend *= blend; blend = max(0.0, 1.0 - blend); - if (reflections.data[ref_index].params.x > 0.0) { // compute reflection + if (reflections.data[ref_index].intensity > 0.0) { // compute reflection vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; - if (reflections.data[ref_index].params.w > 0.5) { //box project + if (reflections.data[ref_index].box_project) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos) / nrdir; @@ -1425,11 +1433,11 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb; - if (reflections.data[ref_index].params.z < 0.5) { + if (reflections.data[ref_index].exterior) { reflection.rgb = mix(specular_light, reflection.rgb, blend); } - reflection.rgb *= reflections.data[ref_index].params.x; + reflection.rgb *= reflections.data[ref_index].intensity; //intensity reflection.a = blend; reflection.rgb *= reflection.a; @@ -1448,7 +1456,7 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; ambient_out.a = blend; - if (reflections.data[ref_index].params.z < 0.5) { //interior + if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } @@ -1459,7 +1467,7 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = reflections.data[ref_index].ambient; - if (reflections.data[ref_index].params.z < 0.5) { + if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; @@ -1805,9 +1813,7 @@ void main() { float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); -#if defined(CUSTOM_FOG_USED) - vec4 custom_fog = vec4(0.0); -#endif + vec4 fog = vec4(0.0); #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif @@ -1815,10 +1821,8 @@ void main() { vec4 custom_irradiance = vec4(0.0); #endif -#if defined(AO_USED) float ao = 1.0; float ao_light_affect = 0.0; -#endif float alpha = 1.0; @@ -1956,6 +1960,45 @@ FRAGMENT_SHADER_CODE discard; } #endif + + /////////////////////// FOG ////////////////////// +#ifndef MODE_RENDER_DEPTH + +#ifndef CUSTOM_FOG_USED + // fog must be processed as early as possible and then packed. + // to maximize VGPR usage + // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. + + if (scene_data.fog_enabled) { + fog = fog_process(vertex); + } + +#ifndef LOW_END_MODE + if (scene_data.volumetric_fog_enabled) { + vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z); + if (scene_data.fog_enabled) { + //must use the full blending equation here to blend fogs + vec4 res; + float sa = 1.0 - volumetric_fog.a; + res.a = fog.a * sa + volumetric_fog.a; + if (res.a == 0.0) { + res.rgb = vec3(0.0); + } else { + res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a; + } + fog = res; + } else { + fog = volumetric_fog; + } + } +#endif //!LOW_END_MODE +#endif //!CUSTOM_FOG_USED + + uint fog_rg = packHalf2x16(fog.rg); + uint fog_ba = packHalf2x16(fog.ba); + +#endif //!MODE_RENDER_DEPTH + /////////////////////// DECALS //////////////////////////////// #ifndef MODE_RENDER_DEPTH @@ -2012,9 +2055,7 @@ FRAGMENT_SHADER_CODE if (decals.data[decal_index].orm_rect != vec4(0.0)) { vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz; -#if defined(AO_USED) ao = mix(ao, decal_orm.r, decal_albedo.a); -#endif roughness = mix(roughness, decal_orm.g, decal_albedo.a); metallic = mix(metallic, decal_orm.b, decal_albedo.a); } @@ -2027,6 +2068,8 @@ FRAGMENT_SHADER_CODE } } + //pack albedo until needed again, saves 2 VGPRs in the meantime + #endif //not render depth /////////////////////// LIGHTING ////////////////////////////// @@ -2094,12 +2137,7 @@ FRAGMENT_SHADER_CODE //radiance - float specular_blob_intensity = 1.0; - -#if defined(SPECULAR_TOON) - specular_blob_intensity *= specular * 2.0; -#endif - +/// GI /// #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef USE_LIGHTMAP @@ -2297,6 +2335,14 @@ FRAGMENT_SHADER_CODE } #endif +#ifndef LOW_END_MODE + if (scene_data.ssao_enabled) { + float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r; + ao = min(ao, ssao); + ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect); + } +#endif //LOW_END_MODE + { // process reflections vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); @@ -2321,6 +2367,16 @@ FRAGMENT_SHADER_CODE #endif } + //finalize ambient light here + ambient_light *= albedo.rgb; + ambient_light *= ao; + + // convert ao to direct light ao + ao = mix(1.0, ao, ao_light_affect); + + //this saves some VGPRs + vec3 f0 = F0(metallic, specular, albedo); + { #if defined(DIFFUSE_TOON) //simplify for toon, as @@ -2338,24 +2394,39 @@ FRAGMENT_SHADER_CODE float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; - vec3 f0 = F0(metallic, specular, albedo); specular_light *= env.x * f0 + env.y; #endif } +#endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#if !defined(MODE_RENDER_DEPTH) + //this saves some VGPRs + uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); +#endif + +// LIGHTING +#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + { //directional light - for (uint i = 0; i < scene_data.directional_light_count; i++) { + // Do shadow and lighting in two passes to reduce register pressure + uint shadow0 = 0; + uint shadow1 = 0; + + for (uint i = 0; i < 8; i++) { + if (i >= scene_data.directional_light_count) { + break; + } + if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { continue; //not masked } - vec3 shadow_attenuation = vec3(1.0); - -#ifdef LIGHT_TRANSMITTANCE_USED - float transmittance_z = transmittance_depth; -#endif + float shadow = 1.0; +#ifdef USE_SOFT_SHADOWS + //version with soft shadows, more expensive if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; @@ -2369,8 +2440,6 @@ FRAGMENT_SHADER_CODE normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; - float shadow = 0.0; - if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); @@ -2391,19 +2460,6 @@ FRAGMENT_SHADER_CODE shadow_color = directional_lights.data[i].shadow_color1.rgb; -#ifdef LIGHT_TRANSMITTANCE_USED - { - vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); - vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; - trans_coord /= trans_coord.w; - - float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; - shadow_z *= directional_lights.data[i].shadow_z_range.x; - float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x; - - transmittance_z = z - shadow_z; - } -#endif } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); @@ -2423,19 +2479,6 @@ FRAGMENT_SHADER_CODE } shadow_color = directional_lights.data[i].shadow_color2.rgb; -#ifdef LIGHT_TRANSMITTANCE_USED - { - vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); - vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; - trans_coord /= trans_coord.w; - - float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; - shadow_z *= directional_lights.data[i].shadow_z_range.y; - float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y; - - transmittance_z = z - shadow_z; - } -#endif } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); @@ -2455,19 +2498,6 @@ FRAGMENT_SHADER_CODE } shadow_color = directional_lights.data[i].shadow_color3.rgb; -#ifdef LIGHT_TRANSMITTANCE_USED - { - vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); - vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; - trans_coord /= trans_coord.w; - - float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; - shadow_z *= directional_lights.data[i].shadow_z_range.z; - float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z; - - transmittance_z = z - shadow_z; - } -#endif } else { vec4 v = vec4(vertex, 1.0); @@ -2488,20 +2518,6 @@ FRAGMENT_SHADER_CODE } shadow_color = directional_lights.data[i].shadow_color4.rgb; - -#ifdef LIGHT_TRANSMITTANCE_USED - { - vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); - vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; - trans_coord /= trans_coord.w; - - float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; - shadow_z *= directional_lights.data[i].shadow_z_range.w; - float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w; - - transmittance_z = z - shadow_z; - } -#endif } if (directional_lights.data[i].blend_splits) { @@ -2575,130 +2591,413 @@ FRAGMENT_SHADER_CODE shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance - shadow_attenuation = mix(shadow_color, vec3(1.0), shadow); +#undef BIAS_FUNC + } +#else + // Soft shadow disabled version + + if (directional_lights.data[i].shadow_enabled) { + float depth_z = -vertex.z; + + vec4 pssm_coord; + vec3 light_dir = directional_lights.data[i].direction; + vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))); + +#define BIAS_FUNC(m_var, m_idx) \ + m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ + vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \ + normal_bias -= light_dir * dot(light_dir, normal_bias); \ + m_var.xyz += normal_bias; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 0) + + pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); +#ifdef LIGHT_TRANSMITTANCE_USED + { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x; + + transmittance_z = z - shadow_z; + } +#endif + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 1) + + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); +#ifdef LIGHT_TRANSMITTANCE_USED + { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y; + + transmittance_z = z - shadow_z; + } +#endif + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 2) + + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); +#ifdef LIGHT_TRANSMITTANCE_USED + { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z; + + transmittance_z = z - shadow_z; + } +#endif + + } else { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 3) + + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); +#ifdef LIGHT_TRANSMITTANCE_USED + { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w; + + transmittance_z = z - shadow_z; + } +#endif + } + + pssm_coord /= pssm_coord.w; + + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + + if (directional_lights.data[i].blend_splits) { + float pssm_blend; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 1) + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); + pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 2) + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 3) + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); + } else { + pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) + } + + pssm_coord /= pssm_coord.w; + + float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + shadow = mix(shadow, shadow2, pssm_blend); + } + + shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } +#endif - light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity, -#ifdef LIGHT_BACKLIGHT_USED - backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - transmittance_color, - transmittance_depth, - transmittance_curve, - transmittance_boost, - transmittance_z, -#endif -#ifdef LIGHT_RIM_USED - rim, rim_tint, -#endif -#ifdef LIGHT_CLEARCOAT_USED - clearcoat, clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - binormal, tangent, anisotropy, -#endif -#ifdef USE_SHADOW_TO_OPACITY - alpha, -#endif - diffuse_light, - specular_light); + if (i < 4) { + shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8); + } else { + shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8); + } } - } - { //omni lights + for (uint i = 0; i < 8; i++) { + if (i >= scene_data.directional_light_count) { + break; + } - uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT; - uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK; - - for (uint i = 0; i < omni_light_count; i++) { - uint light_index = cluster_data.indices[omni_light_pointer + i]; - - if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { + if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { continue; //not masked } - light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity, +#ifdef LIGHT_TRANSMITTANCE_USED + float transmittance_z = transmittance_depth; + + if (directional_lights.data[i].shadow_enabled) { + float depth_z = -vertex.z; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x; + + transmittance_z = z - shadow_z; + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y; + + transmittance_z = z - shadow_z; + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z; + + transmittance_z = z - shadow_z; + + } else { + vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); + vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; + trans_coord /= trans_coord.w; + + float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; + shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w; + float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w; + + transmittance_z = z - shadow_z; + } +#endif + + float shadow = 1.0; + + if (i < 4) { + shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0; + } else { + shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0; + } + + light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, #ifdef LIGHT_BACKLIGHT_USED - backlight, + backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED - transmittance_color, - transmittance_depth, - transmittance_curve, - transmittance_boost, + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, + transmittance_z, #endif #ifdef LIGHT_RIM_USED - rim, - rim_tint, + rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED - clearcoat, clearcoat_gloss, + clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED - tangent, binormal, anisotropy, + binormal, tangent, anisotropy, +#endif +#ifdef USE_SOFT_SHADOW + directional_lights.data[i].size, #endif #ifdef USE_SHADOW_TO_OPACITY - alpha, + alpha, #endif - diffuse_light, specular_light); + diffuse_light, + specular_light); + } } - } - { //spot lights - uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT; - uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK; + { //omni lights - for (uint i = 0; i < spot_light_count; i++) { - uint light_index = cluster_data.indices[spot_light_pointer + i]; + uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT; + uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK; - if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { - continue; //not masked + // Do shadow and lighting in two passes to reduce register pressure + uint shadow0 = 0; + uint shadow1 = 0; + uint shadow2 = 0; + + for (uint i = 0; i < 18; i++) { + if (i >= omni_light_count) { + break; + } + uint light_index = cluster_data.indices[omni_light_pointer + i]; + + if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { + continue; //not masked + } + + float s = light_process_omni_shadow(light_index, vertex, view); + if (i < 6) { + shadow0 |= uint(clamp(s * 31.0, 0.0, 31.0)) << (i * 5); + } else if (i < 12) { + shadow1 |= uint(clamp(s * 31.0, 0.0, 31.0)) << ((i - 6) * 5); + } else { + shadow2 |= uint(clamp(s * 31.0, 0.0, 31.0)) << ((i - 12) * 5); + } } - light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity, + for (uint i = 0; i < 18; i++) { + if (i == omni_light_count) { + break; + } + uint light_index = cluster_data.indices[omni_light_pointer + i]; + + if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { + continue; //not masked + } + + float shadow; + if (i < 6) { + shadow = float(shadow0 >> (i * 5) & 0x1F) / 31.0; + } else if (i < 12) { + shadow = float(shadow1 >> ((i - 6) * 5) & 0x1F) / 31.0; + } else { + shadow = float(shadow1 >> ((i - 12) * 5) & 0x1F) / 31.0; + } + + light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, #ifdef LIGHT_BACKLIGHT_USED - backlight, + backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED - transmittance_color, - transmittance_depth, - transmittance_curve, - transmittance_boost, + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, #endif #ifdef LIGHT_RIM_USED - rim, - rim_tint, + rim, + rim_tint, + albedo, #endif #ifdef LIGHT_CLEARCOAT_USED - clearcoat, clearcoat_gloss, + clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED - tangent, binormal, anisotropy, + tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY - alpha, + alpha, #endif - diffuse_light, specular_light); + diffuse_light, specular_light); + } + } + + { //spot lights + uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT; + uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK; + + // Do shadow and lighting in two passes to reduce register pressure + uint shadow0 = 0; + uint shadow1 = 0; + uint shadow2 = 0; + + for (uint i = 0; i < 18; i++) { + if (i >= spot_light_count) { + break; + } + uint light_index = cluster_data.indices[spot_light_pointer + i]; + + if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { + continue; //not masked + } + + float s = light_process_spot_shadow(light_index, vertex, view); + if (i < 6) { + shadow0 |= uint(clamp(s * 31.0, 0.0, 31.0)) << (i * 5); + } else if (i < 12) { + shadow1 |= uint(clamp(s * 31.0, 0.0, 31.0)) << ((i - 6) * 5); + } else { + shadow2 |= uint(clamp(s * 31.0, 0.0, 31.0)) << ((i - 12) * 5); + } + } + + for (uint i = 0; i < 18; i++) { + if (i == spot_light_count) { + break; + } + uint light_index = cluster_data.indices[spot_light_pointer + i]; + + if (!bool(lights.data[light_index].mask & draw_call.layer_mask)) { + continue; //not masked + } + + float shadow; + if (i < 6) { + shadow = float(shadow0 >> (i * 5) & 0x1F) / 31.0; + } else if (i < 12) { + shadow = float(shadow1 >> ((i - 6) * 5) & 0x1F) / 31.0; + } else { + shadow = float(shadow1 >> ((i - 12) * 5) & 0x1F) / 31.0; + } + + light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, +#endif +#ifdef LIGHT_RIM_USED + rim, + rim_tint, + albedo, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + tangent, binormal, anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, specular_light); + } } - } #ifdef USE_SHADOW_TO_OPACITY - alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); + alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) - if (alpha < alpha_scissor) { - discard; - } + if (alpha < alpha_scissor) { + discard; + } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS - if (alpha < opaque_prepass_threshold) { - discard; - } + if (alpha < opaque_prepass_threshold) { + discard; + } #endif // USE_OPAQUE_PREPASS @@ -2710,173 +3009,149 @@ FRAGMENT_SHADER_CODE #ifdef MODE_RENDER_SDF - { - vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz; - ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size)); + { + vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz; + ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size)); - uint albedo16 = 0x1; //solid flag - albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11; - albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6; - albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1; + uint albedo16 = 0x1; //solid flag + albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11; + albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6; + albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1; - imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16)); + imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16)); - uint facing_bits = 0; - const vec3 aniso_dir[6] = vec3[]( - vec3(1, 0, 0), - vec3(0, 1, 0), - vec3(0, 0, 1), - vec3(-1, 0, 0), - vec3(0, -1, 0), - vec3(0, 0, -1)); + uint facing_bits = 0; + const vec3 aniso_dir[6] = vec3[]( + vec3(1, 0, 0), + vec3(0, 1, 0), + vec3(0, 0, 1), + vec3(-1, 0, 0), + vec3(0, -1, 0), + vec3(0, 0, -1)); - vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp); + vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp); - float closest_dist = -1e20; + float closest_dist = -1e20; - for (uint i = 0; i < 6; i++) { - float d = dot(cam_normal, aniso_dir[i]); - if (d > closest_dist) { - closest_dist = d; - facing_bits = (1 << i); + for (uint i = 0; i < 6; i++) { + float d = dot(cam_normal, aniso_dir[i]); + if (d > closest_dist) { + closest_dist = d; + facing_bits = (1 << i); + } + } + + imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits + + if (length(emission) > 0.001) { + float lumas[6]; + vec3 light_total = vec3(0); + + for (int i = 0; i < 6; i++) { + float strength = max(0.0, dot(cam_normal, aniso_dir[i])); + vec3 light = emission * strength; + light_total += light; + lumas[i] = max(light.r, max(light.g, light.b)); + } + + float luma_total = max(light_total.r, max(light_total.g, light_total.b)); + + uint light_aniso = 0; + + for (int i = 0; i < 6; i++) { + light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5); + } + + //compress to RGBE9995 to save space + + const float pow2to9 = 512.0f; + const float B = 15.0f; + const float N = 9.0f; + const float LN2 = 0.6931471805599453094172321215; + + float cRed = clamp(light_total.r, 0.0, 65408.0); + float cGreen = clamp(light_total.g, 0.0, 65408.0); + float cBlue = clamp(light_total.b, 0.0, 65408.0); + + float cMax = max(cRed, max(cGreen, cBlue)); + + float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B; + + float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f); + + float exps = expp + 1.0f; + + if (0.0 <= sMax && sMax < pow2to9) { + exps = expp; + } + + float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); + float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); + float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); + //store as 8985 to have 2 extra neighbour bits + uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25); + + imageStore(emission_grid, grid_pos, uvec4(light_rgbe)); + imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso)); } } - imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits - - if (length(emission) > 0.001) { - float lumas[6]; - vec3 light_total = vec3(0); - - for (int i = 0; i < 6; i++) { - float strength = max(0.0, dot(cam_normal, aniso_dir[i])); - vec3 light = emission * strength; - light_total += light; - lumas[i] = max(light.r, max(light.g, light.b)); - } - - float luma_total = max(light_total.r, max(light_total.g, light_total.b)); - - uint light_aniso = 0; - - for (int i = 0; i < 6; i++) { - light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5); - } - - //compress to RGBE9995 to save space - - const float pow2to9 = 512.0f; - const float B = 15.0f; - const float N = 9.0f; - const float LN2 = 0.6931471805599453094172321215; - - float cRed = clamp(light_total.r, 0.0, 65408.0); - float cGreen = clamp(light_total.g, 0.0, 65408.0); - float cBlue = clamp(light_total.b, 0.0, 65408.0); - - float cMax = max(cRed, max(cGreen, cBlue)); - - float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B; - - float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f); - - float exps = expp + 1.0f; - - if (0.0 <= sMax && sMax < pow2to9) { - exps = expp; - } - - float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); - float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); - float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); - //store as 8985 to have 2 extra neighbour bits - uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25); - - imageStore(emission_grid, grid_pos, uvec4(light_rgbe)); - imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso)); - } - } - #endif #ifdef MODE_RENDER_MATERIAL - albedo_output_buffer.rgb = albedo; - albedo_output_buffer.a = alpha; + albedo_output_buffer.rgb = albedo; + albedo_output_buffer.a = alpha; - normal_output_buffer.rgb = normal * 0.5 + 0.5; - normal_output_buffer.a = 0.0; - depth_output_buffer.r = -vertex.z; + normal_output_buffer.rgb = normal * 0.5 + 0.5; + normal_output_buffer.a = 0.0; + depth_output_buffer.r = -vertex.z; -#if defined(AO_USED) - orm_output_buffer.r = ao; -#else - orm_output_buffer.r = 0.0; -#endif - orm_output_buffer.g = roughness; - orm_output_buffer.b = metallic; - orm_output_buffer.a = sss_strength; + orm_output_buffer.r = ao; + orm_output_buffer.g = roughness; + orm_output_buffer.b = metallic; + orm_output_buffer.a = sss_strength; - emission_output_buffer.rgb = emission; - emission_output_buffer.a = 0.0; + emission_output_buffer.rgb = emission; + emission_output_buffer.a = 0.0; #endif #ifdef MODE_RENDER_NORMAL_ROUGHNESS - normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness); + normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness); #ifdef MODE_RENDER_GIPROBE - if (bool(draw_call.flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes - uint index1 = draw_call.gi_offset & 0xFFFF; - uint index2 = draw_call.gi_offset >> 16; - giprobe_buffer.x = index1 & 0xFF; - giprobe_buffer.y = index2 & 0xFF; - } else { - giprobe_buffer.x = 0xFF; - giprobe_buffer.y = 0xFF; - } + if (bool(draw_call.flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes + uint index1 = draw_call.gi_offset & 0xFFFF; + uint index2 = draw_call.gi_offset >> 16; + giprobe_buffer.x = index1 & 0xFF; + giprobe_buffer.y = index2 & 0xFF; + } else { + giprobe_buffer.x = 0xFF; + giprobe_buffer.y = 0xFF; + } #endif -#endif //MODE_RENDER_NORMAL +#endif //MODE_RENDER_NORMAL_ROUGHNESS //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else - specular_light *= scene_data.reflection_multiplier; - ambient_light *= albedo; //ambient must be multiplied by albedo at the end + // multiply by albedo + diffuse_light *= albedo; // ambient must be multiplied by albedo at the end -//ambient occlusion -#if defined(AO_USED) + // apply direct light AO + ao = unpackUnorm4x8(orms).x; + specular_light *= ao; + diffuse_light *= ao; -#ifndef LOW_END_MODE - if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) { - float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r; - ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect); - ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect); - } -#endif //LOW_END_MODE - - ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao); - ao_light_affect = mix(1.0, ao, ao_light_affect); - specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect); - diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect); -#else - -#ifndef LOW_END_MODE - if (scene_data.ssao_enabled) { - float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r; - ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao); - float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect); - specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect); - diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect); - } -#endif //LOW_END_MODE - -#endif // AO_USED - - // base color remapping - diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point + // apply metallic + metallic = unpackUnorm4x8(orms).z; + diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; + //restore fog + fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); + #ifdef MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED @@ -2892,25 +3167,8 @@ FRAGMENT_SHADER_CODE specular_buffer = vec4(specular_light, metallic); #endif - // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. - if (scene_data.fog_enabled) { - vec4 fog = fog_process(vertex); - diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); - specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); - } - -#ifndef LOW_END_MODE - if (scene_data.volumetric_fog_enabled) { - vec4 fog = volumetric_fog_process(screen_uv, -vertex.z); - diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); - specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); - } -#endif // LOW_END_MODE - -#if defined(CUSTOM_FOG_USED) - diffuse_buffer.rgb = mix(diffuse_buffer.rgb, custom_fog.rgb, custom_fog.a); - specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), custom_fog.a); -#endif //CUSTOM_FOG_USED + diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); + specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); #else //MODE_MULTIPLE_RENDER_TARGETS @@ -2922,22 +3180,9 @@ FRAGMENT_SHADER_CODE #endif //USE_NO_SHADING // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. - if (scene_data.fog_enabled) { - vec4 fog = fog_process(vertex); - frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); - } -#ifndef LOW_END_MODE - if (scene_data.volumetric_fog_enabled) { - vec4 fog = volumetric_fog_process(screen_uv, -vertex.z); - frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); - } -#endif - -#if defined(CUSTOM_FOG_USED) - frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a); -#endif //CUSTOM_FOG_USED + frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); #endif //MODE_MULTIPLE_RENDER_TARGETS #endif //MODE_RENDER_DEPTH -} + } diff --git a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl index 498a6ddb5b3..6215e721ce6 100644 --- a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl +++ b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl @@ -280,19 +280,14 @@ void main() { vec3 light_pos = lights.data[i].position; float d = distance(lights.data[i].position, view_pos); - vec3 shadow_attenuation = vec3(1.0); + float shadow_attenuation = 1.0; if (d * lights.data[i].inv_radius < 1.0) { - vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy); - vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular); + float attenuation = get_omni_attenuation(d, lights.data[i].inv_radius, lights.data[i].attenuation); - float attenuation = get_omni_attenuation(d, lights.data[i].inv_radius, attenuation_energy.x); + vec3 light = lights.data[i].color / M_PI; - vec3 light = attenuation_energy.y * color_specular.rgb / M_PI; - - vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled); - - if (shadow_color_enabled.a > 0.5) { + if (lights.data[i].shadow_enabled) { //has shadow vec4 v = vec4(view_pos, 1.0); @@ -319,9 +314,8 @@ void main() { splane.w = 1.0; //needed? i think it should be 1 already float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r; - float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade); - shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow); + shadow_attenuation = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade); } total_light += light * attenuation * shadow_attenuation; } @@ -336,25 +330,19 @@ void main() { vec3 light_pos = lights.data[i].position; vec3 light_rel_vec = lights.data[i].position - view_pos; float d = length(light_rel_vec); - vec3 shadow_attenuation = vec3(1.0); + float shadow_attenuation = 1.0; if (d * lights.data[i].inv_radius < 1.0) { - vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy); - vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular); - - float attenuation = get_omni_attenuation(d, lights.data[i].inv_radius, attenuation_energy.x); + float attenuation = get_omni_attenuation(d, lights.data[i].inv_radius, lights.data[i].attenuation); vec3 spot_dir = lights.data[i].direction; - vec2 spot_att_angle = unpackHalf2x16(lights.data[i].cone_attenuation_angle); - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y); - float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y)); - attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x); + float scos = max(dot(-normalize(light_rel_vec), spot_dir), lights.data[i].cone_angle); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - lights.data[i].cone_angle)); + attenuation *= 1.0 - pow(spot_rim, lights.data[i].cone_attenuation); - vec3 light = attenuation_energy.y * color_specular.rgb / M_PI; + vec3 light = lights.data[i].color / M_PI; - vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled); - - if (shadow_color_enabled.a > 0.5) { + if (lights.data[i].shadow_enabled) { //has shadow vec4 v = vec4(view_pos, 1.0); @@ -362,9 +350,8 @@ void main() { splane /= splane.w; float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r; - float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade); - shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow); + shadow_attenuation = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade); } total_light += light * attenuation * shadow_attenuation;