Merge pull request #28957 from aaronfranke/basis-optimize

Optimize Basis constructor for Axis Angle
This commit is contained in:
Rémi Verschelde 2019-05-27 17:42:43 +02:00 committed by GitHub
commit 7487d2f852
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 36 additions and 31 deletions

View file

@ -813,21 +813,28 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
ERR_FAIL_COND(!p_axis.is_normalized());
#endif
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
real_t cosine = Math::cos(p_phi);
real_t sine = Math::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
real_t sine = Math::sin(p_phi);
real_t t = 1 - cosine;
real_t xyzt = p_axis.x * p_axis.y * t;
real_t zyxs = p_axis.z * sine;
elements[0][1] = xyzt - zyxs;
elements[1][0] = xyzt + zyxs;
xyzt = p_axis.x * p_axis.z * t;
zyxs = p_axis.y * sine;
elements[0][2] = xyzt + zyxs;
elements[2][0] = xyzt - zyxs;
xyzt = p_axis.y * p_axis.z * t;
zyxs = p_axis.x * sine;
elements[1][2] = xyzt - zyxs;
elements[2][1] = xyzt + zyxs;
}
void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {

View file

@ -575,31 +575,29 @@ namespace Godot
public Basis(Vector3 axis, real_t phi)
{
var axis_sq = new Vector3(axis.x * axis.x, axis.y * axis.y, axis.z * axis.z);
Vector3 axisSq = new Vector3(axis.x * axis.x, axis.y * axis.y, axis.z * axis.z);
real_t cosine = Mathf.Cos(phi);
Row0.x = axisSq.x + cosine * (1.0f - axisSq.x);
Row1.y = axisSq.y + cosine * (1.0f - axisSq.y);
Row2.z = axisSq.z + cosine * (1.0f - axisSq.z);
real_t sine = Mathf.Sin(phi);
real_t t = 1.0f - cosine;
Row0 = new Vector3
(
axis_sq.x + cosine * (1.0f - axis_sq.x),
axis.x * axis.y * (1.0f - cosine) - axis.z * sine,
axis.z * axis.x * (1.0f - cosine) + axis.y * sine
);
real_t xyzt = axis.x * axis.y * t;
real_t zyxs = axis.z * sine;
Row0.y = xyzt - zyxs;
Row1.x = xyzt + zyxs;
Row1 = new Vector3
(
axis.x * axis.y * (1.0f - cosine) + axis.z * sine,
axis_sq.y + cosine * (1.0f - axis_sq.y),
axis.y * axis.z * (1.0f - cosine) - axis.x * sine
);
xyzt = axis.x * axis.z * t;
zyxs = axis.y * sine;
Row0.z = xyzt + zyxs;
Row2.x = xyzt - zyxs;
Row2 = new Vector3
(
axis.z * axis.x * (1.0f - cosine) - axis.y * sine,
axis.y * axis.z * (1.0f - cosine) + axis.x * sine,
axis_sq.z + cosine * (1.0f - axis_sq.z)
);
xyzt = axis.y * axis.z * t;
zyxs = axis.x * sine;
Row1.z = xyzt - zyxs;
Row2.y = xyzt + zyxs;
}
public Basis(Vector3 column0, Vector3 column1, Vector3 column2)